1,462 research outputs found

    Location Anonymization With Considering Errors and Existence Probability

    Get PDF
    Mobile devices that can sense their location using GPS or Wi-Fi have become extremely popular. However, many users hesitate to provide their accurate location information to unreliable third parties if it means that their identities or sensitive attribute values will be disclosed by doing so. Many approaches for anonymization, such as k-anonymity, have been proposed to tackle this issue. Existing studies for k-anonymity usually anonymize each user\u27s location so that the anonymized area contains k or more users. Existing studies, however, do not consider location errors and the probability that each user actually exists at the anonymized area. As a result, a specific user might be identified by untrusted third parties. We propose novel privacy and utility metrics that can treat the location and an efficient algorithm to anonymize the information associated with users\u27 locations. This is the first work that anonymizes location while considering location errors and the probability that each user is actually present at the anonymized area. By means of simulations, we have proven that our proposed method can reduce the risk of the user\u27s attributes being identified while maintaining the utility of the anonymized data

    Towards trajectory anonymization: a generalization-based approach

    Get PDF
    Trajectory datasets are becoming popular due to the massive usage of GPS and locationbased services. In this paper, we address privacy issues regarding the identification of individuals in static trajectory datasets. We first adopt the notion of k-anonymity to trajectories and propose a novel generalization-based approach for anonymization of trajectories. We further show that releasing anonymized trajectories may still have some privacy leaks. Therefore we propose a randomization based reconstruction algorithm for releasing anonymized trajectory data and also present how the underlying techniques can be adapted to other anonymity standards. The experimental results on real and synthetic trajectory datasets show the effectiveness of the proposed techniques

    k-anonymous Microdata Release via Post Randomisation Method

    Full text link
    The problem of the release of anonymized microdata is an important topic in the fields of statistical disclosure control (SDC) and privacy preserving data publishing (PPDP), and yet it remains sufficiently unsolved. In these research fields, k-anonymity has been widely studied as an anonymity notion for mainly deterministic anonymization algorithms, and some probabilistic relaxations have been developed. However, they are not sufficient due to their limitations, i.e., being weaker than the original k-anonymity or requiring strong parametric assumptions. First we propose Pk-anonymity, a new probabilistic k-anonymity, and prove that Pk-anonymity is a mathematical extension of k-anonymity rather than a relaxation. Furthermore, Pk-anonymity requires no parametric assumptions. This property has a significant meaning in the viewpoint that it enables us to compare privacy levels of probabilistic microdata release algorithms with deterministic ones. Second, we apply Pk-anonymity to the post randomization method (PRAM), which is an SDC algorithm based on randomization. PRAM is proven to satisfy Pk-anonymity in a controlled way, i.e, one can control PRAM's parameter so that Pk-anonymity is satisfied. On the other hand, PRAM is also known to satisfy ε{\varepsilon}-differential privacy, a recent popular and strong privacy notion. This fact means that our results significantly enhance PRAM since it implies the satisfaction of both important notions: k-anonymity and ε{\varepsilon}-differential privacy.Comment: 22 pages, 4 figure

    FLAIM: A Multi-level Anonymization Framework for Computer and Network Logs

    Full text link
    FLAIM (Framework for Log Anonymization and Information Management) addresses two important needs not well addressed by current log anonymizers. First, it is extremely modular and not tied to the specific log being anonymized. Second, it supports multi-level anonymization, allowing system administrators to make fine-grained trade-offs between information loss and privacy/security concerns. In this paper, we examine anonymization solutions to date and note the above limitations in each. We further describe how FLAIM addresses these problems, and we describe FLAIM's architecture and features in detail.Comment: 16 pages, 4 figures, in submission to USENIX Lis

    Publishing Microdata with a Robust Privacy Guarantee

    Full text link
    Today, the publication of microdata poses a privacy threat. Vast research has striven to define the privacy condition that microdata should satisfy before it is released, and devise algorithms to anonymize the data so as to achieve this condition. Yet, no method proposed to date explicitly bounds the percentage of information an adversary gains after seeing the published data for each sensitive value therein. This paper introduces beta-likeness, an appropriately robust privacy model for microdata anonymization, along with two anonymization schemes designed therefor, the one based on generalization, and the other based on perturbation. Our model postulates that an adversary's confidence on the likelihood of a certain sensitive-attribute (SA) value should not increase, in relative difference terms, by more than a predefined threshold. Our techniques aim to satisfy a given beta threshold with little information loss. We experimentally demonstrate that (i) our model provides an effective privacy guarantee in a way that predecessor models cannot, (ii) our generalization scheme is more effective and efficient in its task than methods adapting algorithms for the k-anonymity model, and (iii) our perturbation method outperforms a baseline approach. Moreover, we discuss in detail the resistance of our model and methods to attacks proposed in previous research.Comment: VLDB201
    corecore