115 research outputs found

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras

    Logics without the contraction rule and residuated lattices

    Get PDF
    In this paper, we will develop an algebraic study of substructural propositional logics over FLew, i.e. the logic which is obtained from intuitionistic logics by eliminating the contraction rule. Our main technical tool is to use residuated lattices as the algebraic semantics for them. This enables us to study different kinds of nonclassical logics, including intermediate logics, BCK-logics, Lukasiewicz’s many-valued logics and fuzzy logics, within a uniform framework

    On Noncommutative Generalisations of Boolean Algebras

    Get PDF
    Skew Boolean algebras (SBA) and Boolean-like algebras (nBA) are one-pointed and n-pointed noncommutative generalisation of Boolean algebras, respectively. We show that any nBA is a cluster of n isomorphic right-handed SBAs, axiomatised here as the variety of skew star algebras. The variety of skew star algebras is shown to be term equivalent to the variety of nBAs. We use SBAs in order to develop a general theory of multideals for nBAs. We also provide a representation theorem for right-handed SBAs in terms of nBAs of n-partitions
    • …
    corecore