11,663 research outputs found

    Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages

    Get PDF
    The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level Σ1\Sigma_1 of the dot-depth hierarchy are decidable in NLNL (previously only the decidability was known). The same remains true if predicates mod dd for fixed dd are allowed. - If modular predicates for arbitrary dd are allowed, then the classes of the Boolean hierarchy over level Σ1\Sigma_1 are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level Σ2\Sigma_2 of the Straubing-Th\'erien hierarchy are decidable in NLNL. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for NLNL. - The membership problems for quasi-aperiodic languages and for dd-quasi-aperiodic languages are logspace many-one complete for PSPACEPSPACE

    Separation for dot-depth two

    Get PDF
    The dot-depth hierarchy of Brzozowski and Cohen classifies the star-free languages of finite words. By a theorem of McNaughton and Papert, these are also the first-order definable languages. The dot-depth rose to prominence following the work of Thomas, who proved an exact correspondence with the quantifier alternation hierarchy of first-order logic: each level in the dot-depth hierarchy consists of all languages that can be defined with a prescribed number of quantifier blocks. One of the most famous open problems in automata theory is to settle whether the membership problem is decidable for each level: is it possible to decide whether an input regular language belongs to this level? Despite a significant research effort, membership by itself has only been solved for low levels. A recent breakthrough was achieved by replacing membership with a more general problem: separation. Given two input languages, one has to decide whether there exists a third language in the investigated level containing the first language and disjoint from the second. The motivation is that: (1) while more difficult, separation is more rewarding (2) it provides a more convenient framework (3) all recent membership algorithms are reductions to separation for lower levels. We present a separation algorithm for dot-depth two. While this is our most prominent application, our result is more general. We consider a family of hierarchies that includes the dot-depth: concatenation hierarchies. They are built via a generic construction process. One first chooses an initial class, the basis, which is the lowest level in the hierarchy. Further levels are built by applying generic operations. Our main theorem states that for any concatenation hierarchy whose basis is finite, separation is decidable for level one. In the special case of the dot-depth, this can be lifted to level two using previously known results

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    A Sound and Complete Axiomatization of Majority-n Logic

    Get PDF
    Manipulating logic functions via majority operators recently drew the attention of researchers in computer science. For example, circuit optimization based on majority operators enables superior results as compared to traditional logic systems. Also, the Boolean satisfiability problem finds new solving approaches when described in terms of majority decisions. To support computer logic applications based on majority a sound and complete set of axioms is required. Most of the recent advances in majority logic deal only with ternary majority (MAJ- 3) operators because the axiomatization with solely MAJ-3 and complementation operators is well understood. However, it is of interest extending such axiomatization to n-ary majority operators (MAJ-n) from both the theoretical and practical perspective. In this work, we address this issue by introducing a sound and complete axiomatization of MAJ-n logic. Our axiomatization naturally includes existing majority logic systems. Based on this general set of axioms, computer applications can now fully exploit the expressive power of majority logic.Comment: Accepted by the IEEE Transactions on Computer

    Separating regular languages with two quantifier alternations

    Full text link
    We investigate a famous decision problem in automata theory: separation. Given a class of language C, the separation problem for C takes as input two regular languages and asks whether there exists a third one which belongs to C, includes the first one and is disjoint from the second. Typically, obtaining an algorithm for separation yields a deep understanding of the investigated class C. This explains why a lot of effort has been devoted to finding algorithms for the most prominent classes. Here, we are interested in classes within concatenation hierarchies. Such hierarchies are built using a generic construction process: one starts from an initial class called the basis and builds new levels by applying generic operations. The most famous one, the dot-depth hierarchy of Brzozowski and Cohen, classifies the languages definable in first-order logic. Moreover, it was shown by Thomas that it corresponds to the quantifier alternation hierarchy of first-order logic: each level in the dot-depth corresponds to the languages that can be defined with a prescribed number of quantifier blocks. Finding separation algorithms for all levels in this hierarchy is among the most famous open problems in automata theory. Our main theorem is generic: we show that separation is decidable for the level 3/2 of any concatenation hierarchy whose basis is finite. Furthermore, in the special case of the dot-depth, we push this result to the level 5/2. In logical terms, this solves separation for Σ3\Sigma_3: first-order sentences having at most three quantifier blocks starting with an existential one
    • …
    corecore