7 research outputs found

    A future of living machines? International trends and prospects in biomimetic and biohybrid systems

    Get PDF
    Research in the fields of biomimetic and biohybrid systems is developing at an accelerating rate. Biomimetics can be understood as the development of new technologies using principles abstracted from the study of biological systems, however, biomimetics can also be viewed from an alternate perspective as an important methodology for improving our understanding of the world we live in and of ourselves as biological organisms. A biohybrid entity comprises at least one artificial (engineered) component combined with a biological one. With technologies such as microscale mobile computing, prosthetics and implants, humankind is moving towards a more biohybrid future in which biomimetics helps us to engineer biocompatible technologies. This paper reviews recent progress in the development of biomimetic and biohybrid systems focusing particularly on technologies that emulate living organisms—living machines. Based on our recent bibliographic analysis [1] we examine how biomimetics is already creating life-like robots and identify some key unresolved challenges that constitute bottlenecks for the field. Drawing on our recent research in biomimetic mammalian robots, including humanoids, we review the future prospects for such machines and consider some of their likely impacts on society, including the existential risk of creating artifacts with significant autonomy that could come to match or exceed humankind in intelligence. We conclude that living machines are more likely to be a benefit than a threat but that we should also ensure that progress in biomimetics and biohybrid systems is made with broad societal consent. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Perceptual content, not physiological signals, determines perceived duration when viewing dynamic, natural scenes

    Get PDF
    The neural basis of time perception remains unknown. A prominent account is the pacemaker-accumulator model, wherein regular ticks of some physiological or neural pacemaker are read out as time. Putative candidates for the pacemaker have been suggested in physiological processes (heartbeat), or dopaminergic mid-brain neurons, whose activity has been associated with spontaneous blinking. However, such proposals have difficulty accounting for observations that time perception varies systematically with perceptual content. We examined physiological influences on human duration estimates for naturalistic videos between 1-64 seconds using cardiac and eye recordings. Duration estimates were biased by the amount of change in scene content. Contrary to previous claims, heart rate, and blinking were not related to duration estimates. Our results support a recent proposal that tracking change in perceptual classification networks provides a basis for human time perception, and suggest that previous assertions of the importance of physiological factors should be tempered

    The robot vibrissal system: Understanding mammalian sensorimotor co-ordination through biomimetics

    Get PDF
    Chapter 10 The Robot Vibrissal System: Understanding Mammalian Sensorimotor Co-ordination Through Biomimetics Tony J. Prescott, Ben Mitchinson, Nathan F. Lepora, Stuart P. Wilson, Sean R. Anderson, John Porrill, Paul Dean, Charles ..

    The basal ganglia optimize decision making over general perceptual hypotheses

    No full text
    The basal ganglia are a subcortical group of interconnected nuclei involved in mediating action selection within cortex. A recent proposal is that this selection leads to optimal decision making over multiple alternatives because the basal ganglia anatomy maps onto a network implementation of an optimal statistical method for hypothesis testing, assuming that cortical activity encodes evidence for constrained gaussian-distributed alternatives. This letter demonstrates that this model of the basal ganglia extends naturally to encompass general Bayesian sequential analysis over arbitrary probability distributions, which raises the proposal to a practically realizable theory over generic perceptual hypotheses. We also show that the evidence in this model can represent either log likelihoods, log-likelihood ratios, or log odds, all leading proposals for the cortical processing of sensory data. For these reasons, we claim that the basal ganglia optimize decision making over general perceptual hypotheses represented in cortex. The relation of this theory to cortical encoding, cortico-basal ganglia anatomy, and reinforcement learning is discussed. </jats:p

    Final report key contents: main results accomplished by the EU-Funded project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots

    Get PDF
    This document has the goal of presenting the main scientific and technological achievements of the project IM-CLeVeR. The document is organised as follows: 1. Project executive summary: a brief overview of the project vision, objectives and keywords. 2. Beneficiaries of the project and contacts: list of Teams (partners) of the project, Team Leaders and contacts. 3. Project context and objectives: the vision of the project and its overall objectives 4. Overview of work performed and main results achieved: a one page overview of the main results of the project 5. Overview of main results per partner: a bullet-point list of main results per partners 6. Main achievements in detail, per partner: a throughout explanation of the main results per partner (but including collaboration work), with also reference to the main publications supporting them

    Contextual modulation of visual variability: perceptual biases over time and across the visual field

    Get PDF
    The visual system extracts statistical information about the environment to manage noise, ensure perceptual stability and predict future events. These summary representations are able to inform sensory information received in subsequent times or in other regions of the visual field. This has been conceptualized in terms of Bayesian inference within the predictive coding framework. Nevertheless, contextual influence can also drive anti-Bayesian biases, as in sensory adaptation. Variance is a crucial statistical descriptor, yet relatively overlooked in ensemble vision research. We assessed the mechanisms whereby visual variability exerts and is subject to contextual modulation over time and across the visual field. Perceptual biases over time: serial dependence (SD) In a series of visual experiments, we examined SD on visual variance: the influence of the variance of previously presented ensembles in current variance judgments. We encountered two history-dependent biases: a positive bias exerted by recent presentations and a negative bias driven by less recent context. Contrary to claims that positive SD has low-level sensory origin, our experiments demonstrated a decisional bias requiring perceptual awareness and subject to time and capacity limitations. The negative bias was likely of sensory origin (adaptation). A two-layer model combining population codes and Bayesian Kalman filters replicated positive and negative effects in their approximate timescales. Perceptual biases across the visual field: Uniformity Illusion (UI) In UI, presentation of a pattern with uniform foveal components and more variable peripheral elements results in the latter taking the appearance of the foveal input. We studied the mechanistic basis of UI on orientation and determined that it arose without changes in sensory encoding at the primary visual cortex. Conclusions We studied perceptual biases on visual variability across space and time and found a combination of sensory negative and positive decisional biases, likely to handle the balance between change sensitivity and perceptual stability
    corecore