80 research outputs found

    IRPS – An Efficient Test Data Generation Strategy For Pairwise Testing.

    Get PDF
    Software testing is an integral part of software engineering. Lack of testing often leads to disastrous consequences including loss of data, fortunes, and even lives

    Development Of Interaction Test Data Generation Strategy With Input-Output Mapping Supports

    Get PDF
    Uniform strength t-way testing (where t represents interaction strength) forms the basis of interaction testing. However, t is rarely uniform in real world as not all interaction faults are solely constituted by these fixed t-interactions. Consequently, a general solution has been introduced: input-output based relationship interaction testing. Although useful, most existing strategy implementations are lacking in terms of the automated input-output mapping support (to translate the symbolic outputs back into actual data form) and test suite generation flexibility. In order to address these aforementioned issues, a non-deterministic input-output based relationship interaction testing strategy, AURA, has been developed. AURA strategy also integrated with post-processing automated input-output mapping support and flexible iteration control capability to support test suite generation flexibility. Experimental results indicated that AURA strategy is generating competitive test suite size against existing strategies (Density, ParaOrder, Union, TVG, PICT, AETG, ACA, GA-N, IPO-N, IPO, Jenny, SA and ACS). Specifically, this strategy is capable to generate the test suite size as optimized as other strategies for certain inputs. Lastly, the post-processing automated input-output mapping support and flexible iteration control capability are evaluated with experiments

    An Enhanced Pairwise Search Approach for Generating Optimum Number of Test Data and Reduce Execution Time

    Get PDF
    In recent days testing considers the most important task for building software that is free from error. Since the resources and time is limited to produce software, hence, it is not possible of performing exhaustive tests (i.e. to test all possible combinations of input data.) An alternative to get ride from this type exhaustive numbers and as well to reduce cost, an approach called Pairwise (2 way) test data generation approach will be effective. Most of the software faults in pairwise approach caused by unusual combination of input data.  Hence, the demand for the optimization of number of generated test-cases and reducing the execution time is growing in software industries. This paper proposes an enhancement in pairwise search approach which generates optimum number of input values for testing purposes.  In this approach it searches the most coverable pairs by pairing parameters and adopts one-test-at-a-time strategy for constructing a final test-suite.  Compared to other existing strategies, Our proposed approach is effective in terms of number of generated test cases and of execution time. Keywords:, Software testing, Pairwise testing, Combinatorial interaction testing, Test case generation

    PWiseHA: Application of Harmony Search Algorithm for Test Suites Generation using Pairwise Techniques

    Get PDF
    Pairwise testing is an approach that tests every possible combinations of values of parameters. In this approach, number of all combinations are selected to ensure all possible pairs of parameter values are included in the final test suite. Generating test cases is the most active research area in pairwise testing, but the generation process of the efficient test suite with minimum size can be considered as one of optimization problem. In this research paper we articulate the problem of finding a pairwise final test suite as a search problem and the application of harmony search algorithm to solve it. Also, in this research paper, we developed a pairwise software testing tool called PWiseHA that will generate test cases using harmony search algorithm and this PWiseHA is well optimized. Finally, the result obtained from PWiseHA shows a competitive results if matched with the result of existing pairwise testing tools. PWiseHA is still in prototype form, an obvious starting point for future work

    Testing embedded system through optimal mining technique (OMT) based on multi-input domain

    Get PDF
    Testing embedded systems must be done carefully particularly in the significant regions of the embedded systems. Inputs from an embedded system can happen in multiple order and many relationships can exist among the input sequences. Consideration of the sequences and the relationships among the sequences is one of the most important considerations that must be tested to find the expected behavior of the embedded systems. On the other hand combinatorial approaches help determining fewer test cases that are quite enough to test the embedded systems exhaustively. In this paper, an Optimal Mining Technique that considers multi-input domain which is based on built-in combinatorial approaches has been presented. The method exploits multi-input sequences and the relationships that exist among multi-input vectors. The technique has been used for testing an embedded system that monitors and controls the temperature within the Nuclear reactors

    A Requirements-Based Partition Testing Framework Using Particle Swarm Optimization Technique

    Get PDF
    Modern society is increasingly dependent on the quality of software systems. Software failure can cause severe consequences, including loss of human life. There are various ways of fault prevention and detection that can be deployed in different stages of software development. Testing is the most widely used approach for ensuring software quality. Requirements-Based Testing and Partition Testing are two of the widely used approaches for testing software systems. Although both of these techniques are mature and are addressed widely in the literature and despite the general agreement on both of these key techniques of functional testing, a combination of them lacks a systematic approach. In this thesis, we propose a framework along with a procedural process for testing a system using Requirements-Based Partition Testing (RBPT). This framework helps testers to start from the requirements documents and follow a straightforward step by step process to generate the required test cases without loosing any required data. Although many steps of the process are manual, the framework can be used as a foundation for automating the whole test case generation process. Another issue in testing a software product is the test case selection problem. Choosing appropriate test cases is an essential part of software testing that can lead to significant improvements in efficiency, as well as reduced costs of combinatorial testing. Unfortunately, the problem of finding minimum size test sets is NP-complete in general. Therefore, artificial intelligence-based search algorithms have been widely used for generating near-optimal solutions. In this thesis, we also propose a novel technique for test case generation using Particle Swarm Optimization (PSO), an effective optimization tool which has emerged in the last decade. Empirical studies show that in some domains particle swarm optimization is equally well-suited or even better than some other techniques. At the same time, a particle swarm algorithm is much simpler, easier to implement, and has just a few parameters that the user needs to adjust. These properties make PSO an ideal technique for test case generation. In order to have a fair comparison of our newly proposed algorithm against existing techniques, we have designed and implemented a framework for automatic evaluation of these methods. Through experiments using our evaluation framework, we illustrate how this new test case generation technique can outperform other existing methodologies

    A Survey of Constrained Combinatorial Testing

    Get PDF
    Combinatorial Testing (CT) is a potentially powerful testing technique, whereas its failure revealing ability might be dramatically reduced if it fails to handle constraints in an adequate and efficient manner. To ensure the wider applicability of CT in the presence of constrained problem domains, large and diverse efforts have been invested towards the techniques and applications of constrained combinatorial testing. In this paper, we provide a comprehensive survey of representations, influences, and techniques that pertain to constraints in CT, covering 129 papers published between 1987 and 2018. This survey not only categorises the various constraint handling techniques, but also reviews comparatively less well-studied, yet potentially important, constraint identification and maintenance techniques. Since real-world programs are usually constrained, this survey can be of interest to researchers and practitioners who are looking to use and study constrained combinatorial testing techniques
    corecore