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PEMBANGUNAN STRATEGI PENJANAAN DATA UJIAN 

INTERAKSI DENGAN SOKONGAN PEMETAAN MASUKAN-

KELUARAN 

 

ABSTRAK 

Pengujian dengan kekuatan seragam t-way (di mana t mewakili kekuatan interaksi) 

adalah asas pengujian interaksi. Walau bagaimanapun, t jarang seragam di dunia 

sebenar kerana bukan semua kesalahan interaksi semata-matanya dibentukkan oleh t-

interaksi yang tetap. Oleh yang demikian, satu penyelesaian umum diperkenalkan: 

pengujian interaksi berasaskan hubungan masukan-keluaran. Walaupun berguna, 

kebanyakan pelaksanaan strategi-strategi yang sedia ada kurang menekankan 

sokongan pemetaan masukan-keluaran berautomatik (untuk menterjemahkan 

keluaran simbol kembali ke bentuk data sebenar) dan kebolehlenturan penjanaan kes-

kes ujian. Untuk menangani isu-isu tersebut, satu pengujian interaksi strategi yang 

berasaskan tidak berketentuan hubungan masukan-keluaran, AURA, telah 

dibangunkan. Strategi AURA juga bersepadu dengan sokongan pemetaan masukan-

keluaran pascapemprosesan berautomatik dan kemampuan mengawal lelaran boleh 

lentur untuk menyokong kebolehlenturan penjanaan kes-kes ujian. Keputusan ujikaji 

menunjukkan bahawa strategi AURA menjana saiz kes-kes ujian bersaing terhadap 

strategi-strategi yang sedia ada (Density, ParaOrder, Union, TVG, PICT, AETG, 

ACA, GA-N, IPO-N, IPO, Jenny, SA dan ACS). Khususnya, strategi ini mampu 

menjanakan saiz kes-kes ujian yang optimum seperti strategi-strategi lain bagi 

masukan yang tertentu. Akhir sekali, sokongan pemetaan masukan-keluaran 

pascapemprosesan berautomatik dan kemampuan mengawal lelaran boleh lentur 

dinilai dengan menjalankan ujikaji. 
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DEVELOPMENT OF INTERACTION TEST DATA 

GENERATION STRATEGY WITH INPUT-OUTPUT MAPPING 

SUPPORTS 

 

ABSTRACT 

Uniform strength t-way testing (where t represents interaction strength) forms the 

basis of interaction testing. However, t is rarely uniform in real world as not all 

interaction faults are solely constituted by these fixed t-interactions. Consequently, a 

general solution has been introduced: input-output based relationship interaction 

testing. Although useful, most existing strategy implementations are lacking in terms 

of the automated input-output mapping support (to translate the symbolic outputs 

back into actual data form) and test suite generation flexibility. In order to address 

these aforementioned issues, a non-deterministic input-output based relationship 

interaction testing strategy, AURA, has been developed. AURA strategy also 

integrated with post-processing automated input-output mapping support and flexible 

iteration control capability to support test suite generation flexibility. Experimental 

results indicated that AURA strategy is generating competitive test suite size against 

existing strategies (Density, ParaOrder, Union, TVG, PICT, AETG, ACA, GA-N, 

IPO-N, IPO, Jenny, SA and ACS). Specifically, this strategy is capable to generate 

the test suite size as optimized as other strategies for certain inputs. Lastly, the post-

processing automated input-output mapping support and flexible iteration control 

capability are evaluated with experiments.   
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1. 

CHAPTER 1 

INTRODUCTION 

 

Software is often referred to the written programs or procedures or rules and 

associated documentation that pertaining to the operations of a computer system 

(Catty, 2010; Khurana, 2010; Partsch, 1990). Nowadays, software systems affect 

almost all aspects of our lives. In fact, most hardware implementations are gradually 

being substituted by their software counterpart whenever possible such as washing 

machine controllers, mobile phone applications as well as sophisticated airplane 

control systems (Younis, Zamli, & Isa, 2008b).  

 

Several numbers of factors are attributed on the growing dependency on software 

instead of hardware. Firstly, unlike hardware products that would degrade along the 

timeline, software products never wear out. Besides that, software products could be 

duplicated easily and less expensive if compared with hardware that required costly 

setup budgets to be reproduced. Therefore, the use of software able to reduce 

maintenance costs. In addition, software is malleable, i.e. easy to be changed and 

manipulated as required, which ease product improvement (Younis et al., 2008b).   

 

Despite of the advantages that software possessed, software failures certainly have 

diverse effects ranging from personal inconvenience up to catastrophic disaster. For 

instance, it is widely known that most software systems likely contain undetected 

faults with unknown (and perhaps unknowable) consequences (Chung, 1994). 

Different from hardware faults where one circuit can often be backed up by another 
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spare, software faults sometimes will have a cascade effect of propagating 

exponentially far beyond their origin point resulting in large-scale disruption. 

Therefore, one possible analogy is to view software systems as time bombs since the 

detonation time is unknown (Chung, 1994).  

 

Hence, software reliability has become an essential factor especially when it is 

employed in harsh, life threatening or critical (safety) applications such as airplane 

control systems and biomedical instrumental devices. Rigorous software testing is 

required to ensure the conformance and quality of software (Younis et al., 2008b). 

 

1.1 Software Testing 

Software testing plays an important role in the process of creating and delivering 

high quality software products (Berndt & Watkins, 2005; Yuan & Gu, 2006). 

Meanwhile, by covering as much as 30 to 50 percent of overall costs, software 

testing is an essential part in software system development lifecycle (Cui, Li, & Yao, 

2009; Gao & Hu, 2009; Schroeder, Eok, Arshem, & Bolaki, 2003; Younis, Zamli, & 

Isa, 2008a). Technically, software testing can be regarded as any activity aimed at 

evaluating an attribute or capability of a program or system and determining that it 

meets its required results (Myers, Badgett, Thomas, & Sandler, 2004; Watkins & 

Mills, 2010).  

 

Software testing is also defined as the process of executing a program or system with 

the intent of finding errors (Myers et al., 2004; Sobh, 2010). This testing phase is 

crucial to ensure quality (i.e. reliability, functionality, usability, efficiency 
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maintainability and portability) of the end products before they can be delivered to 

the users (Younis & Zamli, 2010).  

 

1.2 Test Case Design  

In order to ensure software quality and conformance to specifications, there is a need 

to exhaustively test them. Yet, exhaustive testing is practically impossible (Younis & 

Zamli, 2009a). Addressing this issue, many test case design strategies have been 

developed in the literature (e.g. equivalence partitioning, boundary value analysis, 

decision tables, and random testing) to help sample out test data into manageable 

ones (Basili & Selby, 1987; Beer & Mohacsi, 2008; Kuhn, Wallace, & Gallo, 2004; 

Reid, 1997):  

 

• Equivalence Partitioning 

Equivalence partitioning divides the set of all possible inputs into equivalence 

classes. The equivalence relation describes the properties for which input sets 

are belonging to the same partition. This strategy will reduce the number of 

combinations of inputs and output values that used for testing, thereby 

increasing the coverage and reducing the testing effort (Cechich, Piattini, & 

Vallecillo, 2003; Ramesh, 2009). 

 

• Boundary Value Analysis 

Boundary value analysis is based on the assumption that bugs are likely 

detected when inputs or state values are at or very near to a minimum or 

maximum of an equivalence partition. Therefore, this strategy will select test 
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cases that exercising bounding values (i.e. boundaries of the input domain) 

(Binder, 2000; Dasso & Funes, 2007).   

 

• Decision Tables 

A decision table is consisted of the decision variables, the conditions (or 

values) by each of the decision variables, and the actions to take in each 

combination of conditions. This strategy is often used to express rules and 

regulations for embedded systems and administrative systems and effective to 

generate test cases in scenarios which depends on the values of decision 

variables (Hass, 2008; Ramesh, 2009). 

 

• Random Testing  

Random testing is a strategy that based on the random selection of test cases 

from the entire input domain. This strategy is often applied in conjunction 

with other test case design strategies. For example, after identifying the 

equivalence partitions, random testing can be used to select test cases from 

each of the identified equivalence partitions (Gao, Tsao, & Wu, 2003; Saleh, 

2009).  

 

Although useful, these test case design strategies do not sufficiently cater for faults 

due to interaction (Calvagna, Gargantini, & Tramontana, 2009). For this reason, 

interaction testing strategies have started to emerge. In interaction testing, a set of 

test cases is generated to cover a subset of the possible combinations of the system’s 

input parameters, rather than trying to cover all possible combinations.  
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It is noted that from software engineering perspective, a test case is defined as a set 

of conditions or variables under which a tester will determine whether a software 

system is working correctly or not (David, Michal, Nabendu, & Natarajan, 2011). A 

set of test cases also can be denoted as test suite or test data.  

 

The most fundamental interaction testing is t-way testing. t-way testing works on 

detecting faults that caused by t-way interaction of variables whereby t indicates the 

interaction strength (Kuhn, Yu, & Kacker, 2008). Conventionally, the rationale for t-

way testing stemmed from the fact that from empirical observation, the number of 

parameters involved in software failures is relatively small (i.e. in the order of 2 to 6), 

in some classes of software (Kimoto, Tsuchiya, & Kikuno, 2008; Kuhn & Vadim, 

2006; Kuhn et al., 2004; Zamli & Younis, 2010). If t or fewer variables are known to 

cause fault, test suite can be generated on some t-way combinations, then give rise to 

a smaller size of test suite (Younis & Zamli, 2009b). 

 

1.3 Problem Statement 

Numerous efficient t-way testing strategies have been proposed in the past literatures 

(Ahmed & Zamli, 2010; Kim, Choi, Hoffman, & Jung, 2007; Klaib, Zamli, Isa, 

Younis, & Abdullah, 2008; Shi, Nie, & Xu, 2005; Xu, Xu, Nie, Chu, & Chang, 2003) 

to generate optimized test cases for software system under test (SUT). However, t is 

rarely uniform in real world as not all interaction faults from typical software SUT 

are solely constituted by these t-interactions (Cohen, Gibbons, Mugridge, & 

Colbourn, 2003a). Therefore, variable strength interaction testing strategy is then 

been proposed to support this aforementioned concern (Cohen et al., 2003a; Cohen, 

Gibbons, Mugridge, Colbourn, & Collofello, 2003b; Wang, Xu, & Nie, 2008; Zamli 
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& Younis, 2010). This approach no doubt solves some of real considerations by 

allowing certain subsets to cover higher t-interactions, though; it is still insufficient 

to generate test cases based on actual interactions (Wang et al., 2008). To overcome 

this limitation, a general solution has been introduced: input-output based 

relationship interaction testing, which focus on those input combinations that affect a 

program output, rather than considering all possible input combinations (Patrick & 

Bogdan, 2000; Patrick, Pat, & Bogdan, 2002; Wang, Xu, & Nie, 2007; Zabil, Zamli, 

& Othman, 2011).  

 

Meanwhile, as far as implementation is concerned, most existing strategy 

implementations (Ahmed & Zamli, 2010; Lei, Kacker, Kuhn, Okun, & Lawrence, 

2007; Younis & Zamli, 2010; Yu & Tai, 1998) generate their outputs in terms of 

symbolic parameters for ease of data manipulation. This could be straightforward but 

not user friendly approach because test engineers have to manually map these 

symbolic values to actual data one by one before they could execute on them. As the 

test case number is predominantly large especially in highly configurable software 

systems, these could be another problematic issue in term of time and cost consumed 

as well as the accuracy of test cases (due to the potential of human errors on 

manually mapping process) (Zamli, Klaib, Younis, Isa, & Abdullah, 2011). Hence, 

there is a need for automated input-output mapping to seamlessly translate the 

symbolic outputs back into the actual data form. 

 

Apart from automated input-output mapping, existing strategy implementations are 

also lacking as far as flexibility of test suite generation is concerned. Here, the 

problem of interaction test suite generation can be seen as two sides of the same coin 
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with optimal size and test generation time being the sides. On one side of the coin, 

when the optimality of test suite size is preferred than generation time, a strategy 

need to be adaptable to generate more optimized test suite. On the other side of same 

coin, a strategy needs to be flexible enough to generate fast test suite but in expense 

of optimality (Cohen, Dalal, Fredman, & Patton, 1997).   

 

1.4 Thesis Aim and Objectives 

The main aim of this research is to develop and evaluate a flexible input-output 

based interaction testing strategy with automated input-output mapping supports, 

called Automated Random Algorithm (AURA), for combinatorial test data 

generation. The main objectives of the work undertaken are: 

 

i. To develop and investigate AURA strategy as a test data generation tool. 

ii. To integrate the post-processing input-output mapping supports as part of 

AURA strategy. 

iii. To integrate the flexible iteration control for constructing interaction test suite, 

as part of AURA strategy. 

iv. To evaluate and compare the performance of AURA strategy in terms of test 

size against existing works (Density, ParaOrder, Union, TVG, PICT, AETG, 

ACA, GA-N, IPO-N, IPO, Jenny, SA and ACS). 

 

1.5 Research Methodology 

Generally, the research methodology of this thesis consists of a number of phases as 

shown: 
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• Phase 1: Literature Review 

In this phase, a comprehensive literature survey is performed to establish the 

state-of-the-art on test case design of interaction testing.  

 

• Phase 2: Development of AURA Strategy 

Upon completion of literature review, the proposed solution, AURA strategy 

is developed and tested based on research aim and objectives. 

 

• Phase 3: Experimental Verification and Evaluation 

After AURA strategy is developed, the correctness of this strategy is then 

verified practically. Meanwhile, this phase also evaluates AURA strategy by 

conducting several experiments which includes characterization and 

benchmarking inputs evaluation of the strategy. 

 

 

• Phase 4: Research Documentation 

Finally, a concrete conclusion with possible future work is also discussed 

here. In this phase, all research details are summarized as a whole in the 

thesis for documentation purpose.  

  

For instance illustration, Figure 1.1 depicts the general flow of research methodology.   
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Figure 1.1 The Research Methodology Flow of AURA Strategy 
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1.6 Section Outlines 

The rest of this thesis is structured into four chapters as follows. 

 

Chapter 2 includes relevant literature review on interaction testing. For instance, 

there are three interaction testing approaches have been taken into account: uniform 

strength interaction testing, variable strength interaction testing and input-output 

based relationship interaction testing. For each approach, the mathematical 

background, overview as well as the recent published strategies are included in the 

discussion. Lastly, some literature on automation supports for interaction testing and 

flexibility of interaction test suite generation are also presented as one of the research 

scopes.  

 

Chapter 3 illustrates the design of AURA strategy. In the chapter, all important 

design considerations of this strategy have been mentioned in order to develop 

AURA strategy as a test data generation tool that is supporting the automated input-

output mapping and the flexible test suite generation capability. After that, the 

development of AURA strategy is detailed out and discussed. Subsequently, the 

corresponding development details of this strategy are also covered. 

 

Chapter 4 describes the experimental setup and describes the findings of AURA 

strategy based on the results obtained. For instance, the flexible iteration control 

capability is characterized. Furthermore, this chapter also demonstrates and justifies 

the automated input-output mapping supports that proposed in AURA strategy. 

Additionally, the benchmarking inputs on AURA strategy have been executed and 
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compared against other published strategies in order to demonstrate the 

competitiveness of this strategy. 

 

Lastly, the research work in this thesis is concluded as a whole in Chapter 5. Based 

on the findings obtained through experimental results together with the discussions 

been made in earlier chapters, a concrete conclusion has been made. In addition, the 

possible further work is also been discussed in this chapter. 
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2. 

CHAPTER 2  

LITERATURE REVIEW 

 

Before the design of AURA strategy is detailed out, there is a need to present 

relevant literature survey in this thesis. In this chapter, a comprehensive literature 

survey on interaction testing is presented. First of all, interaction testing is illustrated 

from mathematic perspective where covering arrays and its variants are used to 

express interaction test suites. Next, the insight overview of interaction testing 

approaches which included uniform strength, variable strength and input-output 

based relationship interaction testing have been included. Meanwhile, recent 

significant published strategies for each approach are also covered in the discussion 

here. Lastly, this chapter highlighted the issue of automation support in interaction 

testing as well as flexibility of interaction test suite generation. 

 

2.1 Mathematical Background 

Interaction testing test suite can be described in mathematical formulation forms. 

Based on different considerations in interaction testing (i.e. uniform strength, 

variable strength and input-output based relationship interaction testing), covering 

array and its variants (i.e. mixed-level covering array, variable strength covering 

array and input-output based relationship covering array) are often used to express 

the test suite mathematically (Hartman & Raskin, 2004).  

 

In this section, these different types of covering arrays will be defined accordingly. 

Meanwhile, each of these covering arrays will be discussed with an example in order 
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to illustrate how these covering arrays can be used to abstract the interaction testing 

test suites. 

 

2.1.1 Covering Array 

Uniform strength interaction testing or t-way testing is an approach that used to 

systematically sample the set of inputs in such a way that all t-way combinations of 

inputs are included (Dubois, 2009). In brief, this approach will exhaustively explore 

t-strength interaction between input parameters in order to sample out the intended 

test cases.  

 

Mathematically, t-way testing test suite can be abstracted to a covering array. 

Covering array is a combinatorial object that been extensively used to generate 

interaction test cases in software systems when all factors (parameters) have equal 

number of levels (options or values) (Myra, Colbourn, & Alan, 2003).  

 

A covering array, CA (N; t, k, v), is an array with N rows and k columns that satisfies 

the criteria that each t-tuple occurs at least once within these rows (Dean, Charles, & 

Douglas, 2005). When N is unknown or unspecified, the notation CA (t, k, v) can be 

used (i.e. t is interaction strength, k is the number of factors and v is the number of 

options associated with each factor). For covering array, the value of v is the same 

for all k (Cemal, Myra, & Adam, 2006; Myra et al., 2003). 

 

In order to illustrate the relationship between t-way testing test suite and covering 

array, consider the input base value set as shown in Figure 2.1(a), which consisted of 
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3 parameters (A, B and C) where each has 2 possible values (a0, a1, b0, b1, c0 and 

c1). As far as covering array is concerned, the values for all parameters concerned 

have to be the uniform (i.e. same number of values) in this example.   

 

For the discussion here, it is desired to configure 2-way interaction (i.e. when t is 

fixed to 2) test cases. Therefore, the possible resultant test cases are generated as 

shown in Figure 2.1(b), which have included all 2-way combinations of input A, B 

and C (i.e. AB, AC and BC). It is noted that the resultant test cases number is 4. 

 

 
 

Figure 2.1 Illustration of Relationship between t-way Testing Test Suite and 
Covering Array: (a) Input Base Value Set; (b) Resultant Test Cases; (c) Covering 

Array 
 
 

Given these test cases, covering array can be used to abstract them as shown in 

Figure 2.1(c). For CA (N; t, k, v), it is known that N = 4, t = 2, k = 3 and v = 2 in this 



 

15 

example. Therefore, the test cases can be termed as CA (4; 2, 3, 2). As a whole, 

Figure 2.1 depicts the illustration of relationship between t-way testing test suite and 

covering array. 

 

2.1.2 Mixed-level Covering Array 

As discussed earlier, covering array is used in t-way testing for inputs with uniform 

number of values. For certain inputs, the number of values for each parameter might 

not be ideally uniform. Therefore, mixed-level covering array has been proposed to 

overcome this limitation (Colbourn et al., 2006; Dean, Renee, & Charles, 2004).  

 

Mixed-level covering array is a generalization of covering array that allows for 

different alphabet sizes for different rows. The mixed-level covering array is denoted 

as MCA (N; t, k, (v1, v2, …, vk)), an N x k array on v symbols, where ∑=
=

k

i ivv
1 , with 

the following properties (Bryce & Colbourn, 2006, 2007; Yan & Jian, 2006): 

 

• Each column i (1 ≤ i ≤ k) contains only elements from a set Si with | Si | = vi. 

• The rows of each N x t sub-array cover all t-tuples of values from the t 

columns at least once. 

 

In fact, a shorthand notation can be used to describe mixed-level covering array (also 

applicable for covering array, variable strength covering array and input-output 

relationship covering array) by combining the same vi’s and representing this number 

as a superscript (Yan & Jian, 2006). For instance, three vi’s each with two options is 
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written as 23. In this manner, an MCA (N; t, k, (v1, v2, …, vk)) can also be written as 

an MCA(N; t, (s1
p1, s2

p2, …, sr
pr)) where ∑=

=
r

i ipk
1 .  

 

 
 

Figure 2.2 Illustration of Relationship between t-way Testing Test Suite and Mixed-
level Covering Array: (a) Input Base Value Set; (b) Resultant Test Cases; (c) Mixed-

level Covering Array 
 
 

To illustrate the relationship between t-way testing test suite and mixed-level 

covering array, the input base value set as shown in Figure 2.2(a) has been taken into 

account, which consisted of 3 parameters (A, B and C) with non-uniform values. In 
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this case, parameters A and C each has 2 possible values (a0, a1, c0 and c1) whereas 

parameter B has 3 values (b0, b1 and b2). 

 

For this example, assumed that it is desired to configure 2-way interaction (i.e. when 

t is fixed to 2) test cases. Therefore, the possible resultant test cases are generated as 

shown in Figure 2.2(b), which have included all 2-way combinations of input A, B 

and C (i.e. AB, AC and BC). It is noted that the resultant test cases number is 6 in the 

discussion here. 

 

For these test cases, mixed-level covering array can be used to abstract them as 

shown in Figure 2.2(c). As N = 6, t = 2, k = 3, v1 = 2, v2 = 3, and v3 = 2 for MCA (N; 

t, k, (v1, v2, …, vk)), are known in this example. Therefore, these test cases can be 

termed as MCA (6; 2, (2, 3, 2)) or MCA (6; 2, (22, 3)). In general, Figure 2.2 shows 

the illustration of relationship between t-way testing test suite and mixed-level 

covering array. 

 

2.1.3 Variable Strength Covering Array 

In previous sections, the relationship between t-way testing test suite and both 

covering array and mixed-level covering array have been illustrated. Here, when 

variable strength interaction testing which allows for different strengths of coverage 

for subsets of parameters is concerned, variable strength covering array can be used 

to abstract this consideration into mathematical form (Cohen et al., 2003a; Mathur, 

2008).  
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Variable strength covering array, denoted as VCA (N; t, (v1, v2, …, vk), C), is an N x k 

mixed level covering array, of strength t containing C, a vector of covering arrays 

each of strength greater than t and defined on a subset of the k columns. Ordering of 

the columns in the representation of a VCA is important since the columns of the 

covering arrays in C are listed consecutively from left to right (Chen, Gu, Li, & Chen, 

2009; Cohen et al., 2003b; Wang et al., 2008). 

 

The input base value as shown in Figure 2.3(a) has been considered in order to 

illustrate the relationship between variable strength interaction testing test suite and 

variable strength covering array. The inputs consisted of 4 parameters (A, B, C and D) 

where each has 2 possible values (a0, a1, b0, b1, c0, c1, d0 and d1 respectively). 

 

Here, it is wanted to configure 2-way interaction (i.e. when t is fixed to 2) test cases. 

Meanwhile, it is also desired to include 3-way interaction (i.e. when t is fixed to 3) 

for parameters A, B and C as far as variable strength interaction testing test suite is 

concerned.  

 

Based on this set of t-way interactions, the possible resultant test cases are generated 

as shown in Figure 2.3(b), which have included all 2-way combinations of input A, B, 

C and D (i.e. AB, AC, AD, BC, BD and CD) and also 3-way combinations of input 

A, B and C (i.e. ABC). It is noted that the resultant test cases number is 8. 

 

Given these test cases, variable strength covering array can be used to abstract them 

as shown in Figure 2.3(c). For VCA (N; t, (v1, v2, …, vk), C), it is known that N = 8, t 

= 2, k = 4, v1 = v2 = v3 = v4 = 2 and C = CA (3, 23) in this case. Hence, it can be 
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termed as VCA (8; 2, (2, 2, 2, 2), CA (3, 23)) or VCA (8; 2, 24, CA (3, 23)). As a 

whole, Figure 2.3 depicts the illustration of relationship between variable strength 

interaction testing test suite and variable strength covering array. 

 

 
 

Figure 2.3 Illustration of Relationship between Variable Strength Interaction Testing 
Test Suite and Variable Strength Covering Array: (a) Input Base Value Set; (b) 

Resultant Test Cases; (c) Variable Strength Covering Array 
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2.1.4 Input-output Based Relationship Covering Array 

Differing from t-way testing and variable strength interaction testing, input-output 

based relationship interaction testing needs not generate test cases to cover all t-way 

or a set of t-way combinations for a given set of input parameter. Indeed, this 

approach concerns on the actual interactions based on input-output relationship and 

abstracted as input-output based relationship covering array (Cheng, Dumitrescu, & 

Schroeder, 2003; Patrick et al., 2002). 

 

Input-output based relationship covering array can be denoted as IOR (N; (v1, v2, …, 

vk), R), an N x k mixed level covering array which covers interaction relationship, R, 

of a typical software SUT. R is consisted of w number of interaction coverage 

requirement, r, which specified the actual interactions for that SUT and is defined as

},...,,{ 21 wrrrR = . Each r indicates a set of inputs (factors) that are interacting and is 

constitute to a specified interaction coverage requirement (Patrick & Bogdan, 2000; 

Wang et al., 2007). 

 

In order to illustrate the relationship between input-output based relationship 

interaction testing and input-output based relationship covering array, the input base 

value set as shown in Figure 2.4(a) has been considered. These inputs are consisted 

of 5 parameters (A, B, C, D and E) where each has 2 possible values (a0, a1, b0, b1, 

c0, c1, d0, d1, e0 and e1 respectively). 

 

In this example, assuming that it is desired to configure test cases based on actual 

interactions AB and CDE. Therefore, Figure 2.4(b) depicts the resultant test cases 
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that included all possible combinations of both actual interactions AB and CDE. The 

resultant test cases number is 8. 

 

 
 

Figure 2.4 Illustration of Relationship between Input-output Based Relationship 
Interaction Testing Test Suite and Input-output Based Relationship Covering Array: 

(a) Input Base Value Set; (b) Resultant Test Cases; (c) Input-output Based 
Relationship Covering Array 
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For these test cases, input-output based relationship covering array can be used to 

abstract them as shown in Figure 2.4(c). For IOR (N; (v1, v2, …, vk), R), these shown 

that N = 8, v1 = v2 = v3 = v4 = v5 = 2 and R = {(f1, f2), (f3, f4, f5)}. Thus, the test cases 

can be termed IOR (8; (2, 2, 2, 2, 2), {(f1, f2), (f3, f4, f5)}) or IOR (8; 25, {(f1, f2), (f3, 

f4, f5)}). In brief, the illustration of relationship between input-output based 

relationship interaction testing test suite and input-output based relationship covering 

array is depicted in Figure 2.4. 

 

2.2 Overview and Approaches towards Interaction Testing 

The main aim of interaction testing is to generate effective test data for detecting 

faults that due to interaction. As this strategy is found useful, there are different 

levels of interaction possibilities have been considered in the existing literatures, as 

part of interaction testing strategies which included uniform strength interaction 

testing, variable strength interaction testing as well as input-output based relationship 

interaction testing. As a result, many interaction strategies have been developed 

based on these approaches (Zabil et al., 2011).  

 

In this section, the overview of all interaction testing approaches (i.e. uniform 

strength, variable strength and input-output based relationship interaction testing) 

will be explored. Also, the recent significant published strategies on these approaches 

are cited accordingly. 

 

2.2.1 Uniform Strength Interaction Testing (t-way Testing) 

The most fundamental interaction testing is uniform strength interaction testing (also 

known as t-way testing). t-way testing forms the basis of interaction testing which 
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works on detecting faults that caused by t-way interaction of parameters (where t 

indicates the interaction strength). According to empirical studies, the rationale for t-

way testing stemmed from the fact that the number of parameters involved in 

software failures is relatively small (i.e. in the order of 2 to 6), in some classes of 

software (Burr & Young, 1998; Kimoto et al., 2008; Kuhn & Michael, 2002; Kuhn & 

Vadim, 2006; Kuhn et al., 2004). 

 

Given a set of input, adopting all combinations is seemed impossible especially in a 

highly configurable software system. If t or fewer parameters interactions are known 

to cause fault or failure for software SUT, test suite can be constructed on some t-

way combinations, then reduce to a smaller size of test suite (instead of considering 

all possible combinations) without decreasing the fault detection capability (Younis 

& Zamli, 2009b). 

 

For example, an internet-based software system has been taken into account. The 

users may use a variety of browsers (i.e. Netscape, Internet Explorer and other). In 

addition, they may be using different operating systems (i.e. Windows, Macintosh 

and GNU/Linux), connection types (i.e. Local Area Network, Point-to-point 

Protocols and Integrated Services Digital Network) and printer configurations (i.e. 

Local, Networked and Screen) (Cohen et al., 2003a). The components of such 

software system have been summarized as shown in Table 2.1.  

 

In order to completely test this software system, it is desired to consider all of the 

possible supported configurations (combinations). In this case, there are 34 or 81 

combinations needed to test all possible interactions for the software system. Here, it 
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is assumed that the interaction faults for the software system are constituted of 2-way 

interactions (i.e. t = 2) among the components. 

 

Table 2.1 Summary of Components for an Internet-based Software System (Cohen et 
al., 2003a) 

 

Components 

Web 
Browser 

Operating 
System Connection Type Printer 

Configuration 

Netscape Windows Local Area Network Local 

Internet 
Explorer Macintosh Point-to-point Protocol Networked 

Other GNU/Linux Integrated Services Digital 
Network Screen 

 
 

Instead of adopting all 81 possible combinations, t-way testing can be used to reduce 

the number of combinations (test cases) into 9 based on 2-way interactions as 

depicted in Table 2.2 (Cohen et al., 2003a). In this case, these 9 test cases have 

covered all possible combinations for 2-way interactions among the components (i.e. 

Web Browser, Operating System, Connection Type and Printer Configuration). 

Hence, any interaction faults that due to 2-way interactions within these components 

can be discovered by adopting these test cases.   

 

As the uniform strength interaction testing approach is found useful to reduce the test 

suite size and detect faults according to the specified interaction strength (i.e. t), 

numerous strategies have been proposed. For instance, the significant strategies 
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included: In-parameter-order-general (IPOG) strategy (Lei et al., 2007), Automatic 

Efficient Test Generator (AETG) strategy (Cohen et al., 1997; Cohen, Dalal, Kajla, 

& Patton, 1994; Cohen, Dalal, Parelius, & Patton, 1996), GTWay strategy (Zamli et 

al., 2011) as well as Test Configuration (TConfig) (Williams, 2002) strategy. All 

these strategies will be further elucidated in following subsections. 

 

Table 2.2 The Resultant Test Cases for 2-way Interactions (Cohen et al., 2003a) 
 

Test  
Number 

Browser Operating 
System Connection Type Printer 

Configuration 

1 Netscape Windows Local Area Network Local 

2 Netscape GNU/Linux Integrated Services 
Digital Network Networked 

3 Netscape Macintosh Point-to-point Protocol Screen 

4 Internet 
Explorer Windows Integrated Services 

Digital Network Screen 

5 Internet 
Explorer Macintosh Local Area Network Networked 

6 Internet 
Explorer GNU/Linux Point-to-point Protocol Local 

7 Other Windows Point-to-point Protocol Networked 

8 Other GNU/Linux Local Area Network Screen 

9 Other Macintosh Integrated Services 
Digital Network Local 
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