

DEVELOPMENT OF INTERACTION TEST
DATA GENERATION STRATEGY WITH
INPUT-OUTPUT MAPPING SUPPORTS

ONG HUI YEH

UNIVERSITI SAINS MALAYSIA
2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/287745663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEVELOPMENT OF INTERACTION TEST DATA
GENERATION STRATEGY WITH INPUT-OUTPUT MAPPING

SUPPORTS

by

ONG HUI YEH

Thesis submitted in fulfillment of the requirements
for the degree of

Master of Science

January 2012

ii

ACKNOWLEDGEMENTS

First of all, I would like to show my sincere gratitude and thank to my supervisor

Assoc. Prof. Dr. Kamal Zuhairi Zamli. His endless enthusiasm, constantly advice

have encouraged me in completing this research work of master degree.

Next, my appreciations are expressed towards the administrative staffs in the School

of Electrical and Electronic Engineering and also Institute of Postgraduate Studies,

for their passionate to handle all forms of official tasks during my master study,

especially dedicated to the Dean of School of Electrical and Electronic Engineering,

Professor Dr. Mohd Zaid Abdullah. The appreciations also go to my postgraduate

friends, particularly Miss Lim Su Rong, Mr. Tiang Tow Leong and Mr. Eng Swee

Kheng. Their helpful supports and encouragements are highly appreciated.

Last but not least, this research work of master study is funded and supported by

USM Postgraduate Research Grant Scheme (PRGS) - “Development of Interaction

Test Data Generation Using Input-Output Mapping Supports”, the generous

fundamental grants - “Investigating T-Way Test Data Reduction Strategy Using

Particle Swarm Optimization Technique” from Ministry of Higher Education

(MOHE), USM research university grant - “Development of Variable Strength

Interaction Testing Strategy for T-Way Test Data Generation” and USM

postgraduate fellowship.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENTS .. iii

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

LIST OF ABBREVIATIONS .. x

ABSTRAK…………………………………………………………………………...xi

ABSTRACT………………………………………………………………………... xii

CHAPTER 1 INTRODUCTION

1.1 Software Testing .. 2

1.2 Test Case Design .. 3

1.3 Problem Statement ... 5

1.4 Thesis Aim and Objectives .. 7

1.5 Research Methodology .. 7

1.6 Section Outlines ... 10

CHAPTER 2 LITERATURE REVIEW

2.1 Mathematical Background ... 12

2.1.1 Covering Array .. 13

2.1.2 Mixed-level Covering Array .. 15

iv

2.1.3 Variable Strength Covering Array ... 17

2.1.4 Input-output Based Relationship Covering Array 20

2.2 Overview and Approaches towards Interaction Testing 22

2.2.1 Uniform Strength Interaction Testing (t-way Testing) 22

2.2.1.1 In-parameter-order-general (IPOG) Strategy 26

2.2.1.2 Automatic Efficient Test Generator (AETG) Strategy 27

2.2.1.3 GTWay Strategy .. 27

2.2.1.4 Test Configuration (TConfig) Strategy .. 28

2.2.2 Variable Strength Interaction Testing .. 28

2.2.2.1 Simulated Annealing (SA) Strategy... 30

2.2.2.2 Ant Colony System (ACS) Strategy .. 31

2.2.2.3 Test Vector Generator (TVG) Strategy .. 32

2.2.2.4 Pairwise Independent Combinatorial Testing (PICT) Strategy 33

2.2.3 Input-output Based Relationship Interaction Testing 33

2.2.3.1 Brute Force Strategy .. 36

2.2.3.2 Union Strategy ... 36

2.2.3.3 Greedy Strategy ... 37

2.2.3.4 ReqOrder Strategy ... 38

2.2.3.5 ParaOrder Strategy ... 38

2.2.3.6 Density Strategy ... 39

2.3 Automation Support for Interaction Testing 39

2.3.1 Automated Input-output Mapping Supports 42

v

2.3.1.1 GTWay Strategy .. 42

2.4 Flexibility of Interaction Test Suite Generation 44

2.5 Summary .. 45

CHAPTER 3 THE DESIGN OF AURA STRATEGY

3.1 Design Considerations ... 47

3.1.1 One-test-at-a-time Basis ... 47

3.1.2 Non-deterministic Output .. 47

3.1.3 Flexible Iteration Control Capability ... 48

3.1.4 Post-processing Automated Input-output Mapping Supports 49

3.2 Development of AURA Strategy ... 50

3.2.1 Interaction Pair Generation Algorithm .. 52

3.2.2 Test Suite Construction algorithm ... 58

3.2.3 Actual Data Mapping Algorithm ... 60

3.3 Development Details .. 62

3.4 Summary .. 64

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Characterization of AURA Strategy .. 65

4.1.1 Characterizing the Partitioned Base Data Structure 65

4.1.2 Characterizing the Flexible Iteration Control Capability 68

vi

4.2 Demonstration of Post-processing Automated Input-output Mapping

Supports ... 71

4.3 Execution on Benchmarking Inputs ... 74

4.3.1 Executing the Inputs of Input-output Based Relationship Interaction

Testing .. 76

4.3.2 Executing the Inputs of Uniform Strength Interaction Testing 79

4.3.3 Executing the Inputs of Variable Strength Interaction Testing 83

4.4 Summary .. 85

CHAPTER 5 CONCLUSION

5.1 Conclusion ... 86

5.2 Future Work ... 88

REFERENCES .. 90

APPENDICES

Appendix A: Demonstration of Post-processing Automated Input-output Mapping

Supports in Real Software System ... 99

LIST OF PUBLICATIONS ... 100

vii

LIST OF TABLES

 Page

Table 2.1 Summary of Components for an Internet-based Software System 24

Table 2.2 The Resultant Test Cases for 2-way Interactions 25

Table 3.1 Symbolic Notations for Inputs with 5 Parameters (Each with 2
Values)

53

Table 3.2 Summary of Parameter Interactions Groups 54

Table 3.3 The Resultant Interaction Pairs for Coverage Requirements ABC
and DE

55

Table 3.4 The Allocation of Interaction Pairs in both Partitioned and
Unpartitioned Base Data Structure

56

Table 3.5 The Input Execution that AURA Strategy Adopts 64

Table 4.1 Input Specifications for Characterizations of AURA Strategy 66

Table 4.2 The Resultant Input-output Interaction Test Suites Size
Generated from Different Strategies for Input F1

78

Table 4.3 The Resultant Input-output Interaction Test Suites Size
Generated from Different Strategies for Input F2

79

Table 4.4 Summary of Uniform Strength Interaction Testing Input
Specifications

81

Table 4.5 The Resultant Uniform Strength Interaction Testing Test Suites
Size Generated from Different Strategies

82

Table 4.6 The Resultant Variable Strength Interaction Testing Test Suites
Size Generated from Different Strategies

84

viii

LIST OF FIGURES

 Page

Figure 1.1 The Research Methodology Flow of AURA Strategy 9

Figure 2.1 Illustration of Relationship between t-way Testing Test Suite and
Covering Array: (a) Input Base Value Set; (b) Resultant Test
Cases; (c) Covering Array

14

Figure 2.2 Illustration of Relationship between t-way Testing Test Suite and
Mixed-level Covering Array: (a) Input Base Value Set; (b)
Resultant Test Cases; (c) Mixed-level Covering Array

16

Figure 2.3 Illustration of Relationship between Variable Strength Interaction
Testing Test Suite and Variable Strength Covering Array: (a)
Input Base Value Set; (b) Resultant Test Cases; (c) Variable
Strength Covering Array

19

Figure 2.4 Illustration of Relationship between Input-output Based
Relationship Interaction Testing Test Suite and Input-output
Based Relationship Covering Array: (a) Input Base Value Set;
(b) Resultant Test Cases; (c) Input-output Based Relationship
Covering Array

21

Figure 2.5 The System Implementation that Controls a Safety-critical
Hardware Interface

29

Figure 2.6 The Solution Space Used by Ant Colony System (ACS) to
Generate a Test Case

32

Figure 2.7 Program P1 with Four Inputs and Three Outputs 34

Figure 2.8 Input-output Relationship of Program P1 35

Figure 2.9 Typical Software Testing Lifecycle 41

Figure 2.10 Typical Fault File that GTWay Strategy Adopted 43

Figure 3.1 Framework of One-test-at-a-time Strategy 48

Figure 3.2 Overview of AURA Strategy 51

Figure 3.3 Typical Look-up Table 52

Figure 3.4 Pseudo-code of Interaction Pair Generation Algorithm 57

ix

Figure 3.5 Pseudo-code of Test Suite Construction Algorithm 59

Figure 3.6 Pseudo-code of Actual Data Mapping Algorithm 61

Figure 3.7 Mapping from Symbolic Values to Actual Data for a typical Test
Suite

62

Figure 4.1 Test Suites Generation Time Required by the Inputs with
Different Data Structure and Reduction of Time in Percentage

67

Figure 4.2 The Inputs Test Suite Generation Time with the Variation of
Iterations Number

69

Figure 4.3 The Inputs Test Suite Size with the Variation of Iterations
Number

70

Figure 4.4 The General Execution Flow of AURA Strategy with Typical
Input Set

73

Figure A.1 The Real Test Cases Generation for the Option of Page Setup 99

x

LIST OF ABBREVIATIONS

ACA Ant Colony Algorithm

ACO Ant Colony Optimization

ACS Ant Colony System

AETG Automatic Efficient Test Generator

AURA Automated Random Algorithm

GA Genetic Algorithm

GA-N Genetic Algorithm n-way

IDE Integrated Development Environment

IPO In-parameter-order

IPO-N In-parameter-order n-way

IPOG In-parameter-order-general

IPOG-D In-parameter-order-general D-construction

JDK Java Development Kit

JVM Java Virtual Machine

MC-MIPOG Multi-core Modified-in-parameter-order-general

MDI Multiple Document Interface

MIPOG Modified-in-parameter-order-general

PICT Pairwise Independent Combinatorial Testing

SA Simulated Annealing

SUT System under Test

TCG Test Case Generator

TConfig Test Configuration

TVG Test Vector Generator

http://en.wikipedia.org/wiki/Java_Virtual_Machine�

xi

PEMBANGUNAN STRATEGI PENJANAAN DATA UJIAN

INTERAKSI DENGAN SOKONGAN PEMETAAN MASUKAN-

KELUARAN

ABSTRAK

Pengujian dengan kekuatan seragam t-way (di mana t mewakili kekuatan interaksi)

adalah asas pengujian interaksi. Walau bagaimanapun, t jarang seragam di dunia

sebenar kerana bukan semua kesalahan interaksi semata-matanya dibentukkan oleh t-

interaksi yang tetap. Oleh yang demikian, satu penyelesaian umum diperkenalkan:

pengujian interaksi berasaskan hubungan masukan-keluaran. Walaupun berguna,

kebanyakan pelaksanaan strategi-strategi yang sedia ada kurang menekankan

sokongan pemetaan masukan-keluaran berautomatik (untuk menterjemahkan

keluaran simbol kembali ke bentuk data sebenar) dan kebolehlenturan penjanaan kes-

kes ujian. Untuk menangani isu-isu tersebut, satu pengujian interaksi strategi yang

berasaskan tidak berketentuan hubungan masukan-keluaran, AURA, telah

dibangunkan. Strategi AURA juga bersepadu dengan sokongan pemetaan masukan-

keluaran pascapemprosesan berautomatik dan kemampuan mengawal lelaran boleh

lentur untuk menyokong kebolehlenturan penjanaan kes-kes ujian. Keputusan ujikaji

menunjukkan bahawa strategi AURA menjana saiz kes-kes ujian bersaing terhadap

strategi-strategi yang sedia ada (Density, ParaOrder, Union, TVG, PICT, AETG,

ACA, GA-N, IPO-N, IPO, Jenny, SA dan ACS). Khususnya, strategi ini mampu

menjanakan saiz kes-kes ujian yang optimum seperti strategi-strategi lain bagi

masukan yang tertentu. Akhir sekali, sokongan pemetaan masukan-keluaran

pascapemprosesan berautomatik dan kemampuan mengawal lelaran boleh lentur

dinilai dengan menjalankan ujikaji.

xii

DEVELOPMENT OF INTERACTION TEST DATA

GENERATION STRATEGY WITH INPUT-OUTPUT MAPPING

SUPPORTS

ABSTRACT

Uniform strength t-way testing (where t represents interaction strength) forms the

basis of interaction testing. However, t is rarely uniform in real world as not all

interaction faults are solely constituted by these fixed t-interactions. Consequently, a

general solution has been introduced: input-output based relationship interaction

testing. Although useful, most existing strategy implementations are lacking in terms

of the automated input-output mapping support (to translate the symbolic outputs

back into actual data form) and test suite generation flexibility. In order to address

these aforementioned issues, a non-deterministic input-output based relationship

interaction testing strategy, AURA, has been developed. AURA strategy also

integrated with post-processing automated input-output mapping support and flexible

iteration control capability to support test suite generation flexibility. Experimental

results indicated that AURA strategy is generating competitive test suite size against

existing strategies (Density, ParaOrder, Union, TVG, PICT, AETG, ACA, GA-N,

IPO-N, IPO, Jenny, SA and ACS). Specifically, this strategy is capable to generate

the test suite size as optimized as other strategies for certain inputs. Lastly, the post-

processing automated input-output mapping support and flexible iteration control

capability are evaluated with experiments.

1

1.

CHAPTER 1

INTRODUCTION

Software is often referred to the written programs or procedures or rules and

associated documentation that pertaining to the operations of a computer system

(Catty, 2010; Khurana, 2010; Partsch, 1990). Nowadays, software systems affect

almost all aspects of our lives. In fact, most hardware implementations are gradually

being substituted by their software counterpart whenever possible such as washing

machine controllers, mobile phone applications as well as sophisticated airplane

control systems (Younis, Zamli, & Isa, 2008b).

Several numbers of factors are attributed on the growing dependency on software

instead of hardware. Firstly, unlike hardware products that would degrade along the

timeline, software products never wear out. Besides that, software products could be

duplicated easily and less expensive if compared with hardware that required costly

setup budgets to be reproduced. Therefore, the use of software able to reduce

maintenance costs. In addition, software is malleable, i.e. easy to be changed and

manipulated as required, which ease product improvement (Younis et al., 2008b).

Despite of the advantages that software possessed, software failures certainly have

diverse effects ranging from personal inconvenience up to catastrophic disaster. For

instance, it is widely known that most software systems likely contain undetected

faults with unknown (and perhaps unknowable) consequences (Chung, 1994).

Different from hardware faults where one circuit can often be backed up by another

2

spare, software faults sometimes will have a cascade effect of propagating

exponentially far beyond their origin point resulting in large-scale disruption.

Therefore, one possible analogy is to view software systems as time bombs since the

detonation time is unknown (Chung, 1994).

Hence, software reliability has become an essential factor especially when it is

employed in harsh, life threatening or critical (safety) applications such as airplane

control systems and biomedical instrumental devices. Rigorous software testing is

required to ensure the conformance and quality of software (Younis et al., 2008b).

1.1 Software Testing

Software testing plays an important role in the process of creating and delivering

high quality software products (Berndt & Watkins, 2005; Yuan & Gu, 2006).

Meanwhile, by covering as much as 30 to 50 percent of overall costs, software

testing is an essential part in software system development lifecycle (Cui, Li, & Yao,

2009; Gao & Hu, 2009; Schroeder, Eok, Arshem, & Bolaki, 2003; Younis, Zamli, &

Isa, 2008a). Technically, software testing can be regarded as any activity aimed at

evaluating an attribute or capability of a program or system and determining that it

meets its required results (Myers, Badgett, Thomas, & Sandler, 2004; Watkins &

Mills, 2010).

Software testing is also defined as the process of executing a program or system with

the intent of finding errors (Myers et al., 2004; Sobh, 2010). This testing phase is

crucial to ensure quality (i.e. reliability, functionality, usability, efficiency

3

maintainability and portability) of the end products before they can be delivered to

the users (Younis & Zamli, 2010).

1.2 Test Case Design

In order to ensure software quality and conformance to specifications, there is a need

to exhaustively test them. Yet, exhaustive testing is practically impossible (Younis &

Zamli, 2009a). Addressing this issue, many test case design strategies have been

developed in the literature (e.g. equivalence partitioning, boundary value analysis,

decision tables, and random testing) to help sample out test data into manageable

ones (Basili & Selby, 1987; Beer & Mohacsi, 2008; Kuhn, Wallace, & Gallo, 2004;

Reid, 1997):

• Equivalence Partitioning

Equivalence partitioning divides the set of all possible inputs into equivalence

classes. The equivalence relation describes the properties for which input sets

are belonging to the same partition. This strategy will reduce the number of

combinations of inputs and output values that used for testing, thereby

increasing the coverage and reducing the testing effort (Cechich, Piattini, &

Vallecillo, 2003; Ramesh, 2009).

• Boundary Value Analysis

Boundary value analysis is based on the assumption that bugs are likely

detected when inputs or state values are at or very near to a minimum or

maximum of an equivalence partition. Therefore, this strategy will select test

4

cases that exercising bounding values (i.e. boundaries of the input domain)

(Binder, 2000; Dasso & Funes, 2007).

• Decision Tables

A decision table is consisted of the decision variables, the conditions (or

values) by each of the decision variables, and the actions to take in each

combination of conditions. This strategy is often used to express rules and

regulations for embedded systems and administrative systems and effective to

generate test cases in scenarios which depends on the values of decision

variables (Hass, 2008; Ramesh, 2009).

• Random Testing

Random testing is a strategy that based on the random selection of test cases

from the entire input domain. This strategy is often applied in conjunction

with other test case design strategies. For example, after identifying the

equivalence partitions, random testing can be used to select test cases from

each of the identified equivalence partitions (Gao, Tsao, & Wu, 2003; Saleh,

2009).

Although useful, these test case design strategies do not sufficiently cater for faults

due to interaction (Calvagna, Gargantini, & Tramontana, 2009). For this reason,

interaction testing strategies have started to emerge. In interaction testing, a set of

test cases is generated to cover a subset of the possible combinations of the system’s

input parameters, rather than trying to cover all possible combinations.

5

It is noted that from software engineering perspective, a test case is defined as a set

of conditions or variables under which a tester will determine whether a software

system is working correctly or not (David, Michal, Nabendu, & Natarajan, 2011). A

set of test cases also can be denoted as test suite or test data.

The most fundamental interaction testing is t-way testing. t-way testing works on

detecting faults that caused by t-way interaction of variables whereby t indicates the

interaction strength (Kuhn, Yu, & Kacker, 2008). Conventionally, the rationale for t-

way testing stemmed from the fact that from empirical observation, the number of

parameters involved in software failures is relatively small (i.e. in the order of 2 to 6),

in some classes of software (Kimoto, Tsuchiya, & Kikuno, 2008; Kuhn & Vadim,

2006; Kuhn et al., 2004; Zamli & Younis, 2010). If t or fewer variables are known to

cause fault, test suite can be generated on some t-way combinations, then give rise to

a smaller size of test suite (Younis & Zamli, 2009b).

1.3 Problem Statement

Numerous efficient t-way testing strategies have been proposed in the past literatures

(Ahmed & Zamli, 2010; Kim, Choi, Hoffman, & Jung, 2007; Klaib, Zamli, Isa,

Younis, & Abdullah, 2008; Shi, Nie, & Xu, 2005; Xu, Xu, Nie, Chu, & Chang, 2003)

to generate optimized test cases for software system under test (SUT). However, t is

rarely uniform in real world as not all interaction faults from typical software SUT

are solely constituted by these t-interactions (Cohen, Gibbons, Mugridge, &

Colbourn, 2003a). Therefore, variable strength interaction testing strategy is then

been proposed to support this aforementioned concern (Cohen et al., 2003a; Cohen,

Gibbons, Mugridge, Colbourn, & Collofello, 2003b; Wang, Xu, & Nie, 2008; Zamli

6

& Younis, 2010). This approach no doubt solves some of real considerations by

allowing certain subsets to cover higher t-interactions, though; it is still insufficient

to generate test cases based on actual interactions (Wang et al., 2008). To overcome

this limitation, a general solution has been introduced: input-output based

relationship interaction testing, which focus on those input combinations that affect a

program output, rather than considering all possible input combinations (Patrick &

Bogdan, 2000; Patrick, Pat, & Bogdan, 2002; Wang, Xu, & Nie, 2007; Zabil, Zamli,

& Othman, 2011).

Meanwhile, as far as implementation is concerned, most existing strategy

implementations (Ahmed & Zamli, 2010; Lei, Kacker, Kuhn, Okun, & Lawrence,

2007; Younis & Zamli, 2010; Yu & Tai, 1998) generate their outputs in terms of

symbolic parameters for ease of data manipulation. This could be straightforward but

not user friendly approach because test engineers have to manually map these

symbolic values to actual data one by one before they could execute on them. As the

test case number is predominantly large especially in highly configurable software

systems, these could be another problematic issue in term of time and cost consumed

as well as the accuracy of test cases (due to the potential of human errors on

manually mapping process) (Zamli, Klaib, Younis, Isa, & Abdullah, 2011). Hence,

there is a need for automated input-output mapping to seamlessly translate the

symbolic outputs back into the actual data form.

Apart from automated input-output mapping, existing strategy implementations are

also lacking as far as flexibility of test suite generation is concerned. Here, the

problem of interaction test suite generation can be seen as two sides of the same coin

7

with optimal size and test generation time being the sides. On one side of the coin,

when the optimality of test suite size is preferred than generation time, a strategy

need to be adaptable to generate more optimized test suite. On the other side of same

coin, a strategy needs to be flexible enough to generate fast test suite but in expense

of optimality (Cohen, Dalal, Fredman, & Patton, 1997).

1.4 Thesis Aim and Objectives

The main aim of this research is to develop and evaluate a flexible input-output

based interaction testing strategy with automated input-output mapping supports,

called Automated Random Algorithm (AURA), for combinatorial test data

generation. The main objectives of the work undertaken are:

i. To develop and investigate AURA strategy as a test data generation tool.

ii. To integrate the post-processing input-output mapping supports as part of

AURA strategy.

iii. To integrate the flexible iteration control for constructing interaction test suite,

as part of AURA strategy.

iv. To evaluate and compare the performance of AURA strategy in terms of test

size against existing works (Density, ParaOrder, Union, TVG, PICT, AETG,

ACA, GA-N, IPO-N, IPO, Jenny, SA and ACS).

1.5 Research Methodology

Generally, the research methodology of this thesis consists of a number of phases as

shown:

8

• Phase 1: Literature Review

In this phase, a comprehensive literature survey is performed to establish the

state-of-the-art on test case design of interaction testing.

• Phase 2: Development of AURA Strategy

Upon completion of literature review, the proposed solution, AURA strategy

is developed and tested based on research aim and objectives.

• Phase 3: Experimental Verification and Evaluation

After AURA strategy is developed, the correctness of this strategy is then

verified practically. Meanwhile, this phase also evaluates AURA strategy by

conducting several experiments which includes characterization and

benchmarking inputs evaluation of the strategy.

• Phase 4: Research Documentation

Finally, a concrete conclusion with possible future work is also discussed

here. In this phase, all research details are summarized as a whole in the

thesis for documentation purpose.

For instance illustration, Figure 1.1 depicts the general flow of research methodology.

9

Figure 1.1 The Research Methodology Flow of AURA Strategy

10

1.6 Section Outlines

The rest of this thesis is structured into four chapters as follows.

Chapter 2 includes relevant literature review on interaction testing. For instance,

there are three interaction testing approaches have been taken into account: uniform

strength interaction testing, variable strength interaction testing and input-output

based relationship interaction testing. For each approach, the mathematical

background, overview as well as the recent published strategies are included in the

discussion. Lastly, some literature on automation supports for interaction testing and

flexibility of interaction test suite generation are also presented as one of the research

scopes.

Chapter 3 illustrates the design of AURA strategy. In the chapter, all important

design considerations of this strategy have been mentioned in order to develop

AURA strategy as a test data generation tool that is supporting the automated input-

output mapping and the flexible test suite generation capability. After that, the

development of AURA strategy is detailed out and discussed. Subsequently, the

corresponding development details of this strategy are also covered.

Chapter 4 describes the experimental setup and describes the findings of AURA

strategy based on the results obtained. For instance, the flexible iteration control

capability is characterized. Furthermore, this chapter also demonstrates and justifies

the automated input-output mapping supports that proposed in AURA strategy.

Additionally, the benchmarking inputs on AURA strategy have been executed and

11

compared against other published strategies in order to demonstrate the

competitiveness of this strategy.

Lastly, the research work in this thesis is concluded as a whole in Chapter 5. Based

on the findings obtained through experimental results together with the discussions

been made in earlier chapters, a concrete conclusion has been made. In addition, the

possible further work is also been discussed in this chapter.

12

2.

CHAPTER 2

LITERATURE REVIEW

Before the design of AURA strategy is detailed out, there is a need to present

relevant literature survey in this thesis. In this chapter, a comprehensive literature

survey on interaction testing is presented. First of all, interaction testing is illustrated

from mathematic perspective where covering arrays and its variants are used to

express interaction test suites. Next, the insight overview of interaction testing

approaches which included uniform strength, variable strength and input-output

based relationship interaction testing have been included. Meanwhile, recent

significant published strategies for each approach are also covered in the discussion

here. Lastly, this chapter highlighted the issue of automation support in interaction

testing as well as flexibility of interaction test suite generation.

2.1 Mathematical Background

Interaction testing test suite can be described in mathematical formulation forms.

Based on different considerations in interaction testing (i.e. uniform strength,

variable strength and input-output based relationship interaction testing), covering

array and its variants (i.e. mixed-level covering array, variable strength covering

array and input-output based relationship covering array) are often used to express

the test suite mathematically (Hartman & Raskin, 2004).

In this section, these different types of covering arrays will be defined accordingly.

Meanwhile, each of these covering arrays will be discussed with an example in order

13

to illustrate how these covering arrays can be used to abstract the interaction testing

test suites.

2.1.1 Covering Array

Uniform strength interaction testing or t-way testing is an approach that used to

systematically sample the set of inputs in such a way that all t-way combinations of

inputs are included (Dubois, 2009). In brief, this approach will exhaustively explore

t-strength interaction between input parameters in order to sample out the intended

test cases.

Mathematically, t-way testing test suite can be abstracted to a covering array.

Covering array is a combinatorial object that been extensively used to generate

interaction test cases in software systems when all factors (parameters) have equal

number of levels (options or values) (Myra, Colbourn, & Alan, 2003).

A covering array, CA (N; t, k, v), is an array with N rows and k columns that satisfies

the criteria that each t-tuple occurs at least once within these rows (Dean, Charles, &

Douglas, 2005). When N is unknown or unspecified, the notation CA (t, k, v) can be

used (i.e. t is interaction strength, k is the number of factors and v is the number of

options associated with each factor). For covering array, the value of v is the same

for all k (Cemal, Myra, & Adam, 2006; Myra et al., 2003).

In order to illustrate the relationship between t-way testing test suite and covering

array, consider the input base value set as shown in Figure 2.1(a), which consisted of

14

3 parameters (A, B and C) where each has 2 possible values (a0, a1, b0, b1, c0 and

c1). As far as covering array is concerned, the values for all parameters concerned

have to be the uniform (i.e. same number of values) in this example.

For the discussion here, it is desired to configure 2-way interaction (i.e. when t is

fixed to 2) test cases. Therefore, the possible resultant test cases are generated as

shown in Figure 2.1(b), which have included all 2-way combinations of input A, B

and C (i.e. AB, AC and BC). It is noted that the resultant test cases number is 4.

Figure 2.1 Illustration of Relationship between t-way Testing Test Suite and
Covering Array: (a) Input Base Value Set; (b) Resultant Test Cases; (c) Covering

Array

Given these test cases, covering array can be used to abstract them as shown in

Figure 2.1(c). For CA (N; t, k, v), it is known that N = 4, t = 2, k = 3 and v = 2 in this

15

example. Therefore, the test cases can be termed as CA (4; 2, 3, 2). As a whole,

Figure 2.1 depicts the illustration of relationship between t-way testing test suite and

covering array.

2.1.2 Mixed-level Covering Array

As discussed earlier, covering array is used in t-way testing for inputs with uniform

number of values. For certain inputs, the number of values for each parameter might

not be ideally uniform. Therefore, mixed-level covering array has been proposed to

overcome this limitation (Colbourn et al., 2006; Dean, Renee, & Charles, 2004).

Mixed-level covering array is a generalization of covering array that allows for

different alphabet sizes for different rows. The mixed-level covering array is denoted

as MCA (N; t, k, (v1, v2, …, vk)), an N x k array on v symbols, where ∑=
=

k

i ivv
1 , with

the following properties (Bryce & Colbourn, 2006, 2007; Yan & Jian, 2006):

• Each column i (1 ≤ i ≤ k) contains only elements from a set Si with | Si | = vi.

• The rows of each N x t sub-array cover all t-tuples of values from the t

columns at least once.

In fact, a shorthand notation can be used to describe mixed-level covering array (also

applicable for covering array, variable strength covering array and input-output

relationship covering array) by combining the same vi’s and representing this number

as a superscript (Yan & Jian, 2006). For instance, three vi’s each with two options is

16

written as 23. In this manner, an MCA (N; t, k, (v1, v2, …, vk)) can also be written as

an MCA(N; t, (s1
p1, s2

p2, …, sr
pr)) where ∑=

=
r

i ipk
1 .

Figure 2.2 Illustration of Relationship between t-way Testing Test Suite and Mixed-
level Covering Array: (a) Input Base Value Set; (b) Resultant Test Cases; (c) Mixed-

level Covering Array

To illustrate the relationship between t-way testing test suite and mixed-level

covering array, the input base value set as shown in Figure 2.2(a) has been taken into

account, which consisted of 3 parameters (A, B and C) with non-uniform values. In

17

this case, parameters A and C each has 2 possible values (a0, a1, c0 and c1) whereas

parameter B has 3 values (b0, b1 and b2).

For this example, assumed that it is desired to configure 2-way interaction (i.e. when

t is fixed to 2) test cases. Therefore, the possible resultant test cases are generated as

shown in Figure 2.2(b), which have included all 2-way combinations of input A, B

and C (i.e. AB, AC and BC). It is noted that the resultant test cases number is 6 in the

discussion here.

For these test cases, mixed-level covering array can be used to abstract them as

shown in Figure 2.2(c). As N = 6, t = 2, k = 3, v1 = 2, v2 = 3, and v3 = 2 for MCA (N;

t, k, (v1, v2, …, vk)), are known in this example. Therefore, these test cases can be

termed as MCA (6; 2, (2, 3, 2)) or MCA (6; 2, (22, 3)). In general, Figure 2.2 shows

the illustration of relationship between t-way testing test suite and mixed-level

covering array.

2.1.3 Variable Strength Covering Array

In previous sections, the relationship between t-way testing test suite and both

covering array and mixed-level covering array have been illustrated. Here, when

variable strength interaction testing which allows for different strengths of coverage

for subsets of parameters is concerned, variable strength covering array can be used

to abstract this consideration into mathematical form (Cohen et al., 2003a; Mathur,

2008).

18

Variable strength covering array, denoted as VCA (N; t, (v1, v2, …, vk), C), is an N x k

mixed level covering array, of strength t containing C, a vector of covering arrays

each of strength greater than t and defined on a subset of the k columns. Ordering of

the columns in the representation of a VCA is important since the columns of the

covering arrays in C are listed consecutively from left to right (Chen, Gu, Li, & Chen,

2009; Cohen et al., 2003b; Wang et al., 2008).

The input base value as shown in Figure 2.3(a) has been considered in order to

illustrate the relationship between variable strength interaction testing test suite and

variable strength covering array. The inputs consisted of 4 parameters (A, B, C and D)

where each has 2 possible values (a0, a1, b0, b1, c0, c1, d0 and d1 respectively).

Here, it is wanted to configure 2-way interaction (i.e. when t is fixed to 2) test cases.

Meanwhile, it is also desired to include 3-way interaction (i.e. when t is fixed to 3)

for parameters A, B and C as far as variable strength interaction testing test suite is

concerned.

Based on this set of t-way interactions, the possible resultant test cases are generated

as shown in Figure 2.3(b), which have included all 2-way combinations of input A, B,

C and D (i.e. AB, AC, AD, BC, BD and CD) and also 3-way combinations of input

A, B and C (i.e. ABC). It is noted that the resultant test cases number is 8.

Given these test cases, variable strength covering array can be used to abstract them

as shown in Figure 2.3(c). For VCA (N; t, (v1, v2, …, vk), C), it is known that N = 8, t

= 2, k = 4, v1 = v2 = v3 = v4 = 2 and C = CA (3, 23) in this case. Hence, it can be

19

termed as VCA (8; 2, (2, 2, 2, 2), CA (3, 23)) or VCA (8; 2, 24, CA (3, 23)). As a

whole, Figure 2.3 depicts the illustration of relationship between variable strength

interaction testing test suite and variable strength covering array.

Figure 2.3 Illustration of Relationship between Variable Strength Interaction Testing
Test Suite and Variable Strength Covering Array: (a) Input Base Value Set; (b)

Resultant Test Cases; (c) Variable Strength Covering Array

20

2.1.4 Input-output Based Relationship Covering Array

Differing from t-way testing and variable strength interaction testing, input-output

based relationship interaction testing needs not generate test cases to cover all t-way

or a set of t-way combinations for a given set of input parameter. Indeed, this

approach concerns on the actual interactions based on input-output relationship and

abstracted as input-output based relationship covering array (Cheng, Dumitrescu, &

Schroeder, 2003; Patrick et al., 2002).

Input-output based relationship covering array can be denoted as IOR (N; (v1, v2, …,

vk), R), an N x k mixed level covering array which covers interaction relationship, R,

of a typical software SUT. R is consisted of w number of interaction coverage

requirement, r, which specified the actual interactions for that SUT and is defined as

},...,,{ 21 wrrrR = . Each r indicates a set of inputs (factors) that are interacting and is

constitute to a specified interaction coverage requirement (Patrick & Bogdan, 2000;

Wang et al., 2007).

In order to illustrate the relationship between input-output based relationship

interaction testing and input-output based relationship covering array, the input base

value set as shown in Figure 2.4(a) has been considered. These inputs are consisted

of 5 parameters (A, B, C, D and E) where each has 2 possible values (a0, a1, b0, b1,

c0, c1, d0, d1, e0 and e1 respectively).

In this example, assuming that it is desired to configure test cases based on actual

interactions AB and CDE. Therefore, Figure 2.4(b) depicts the resultant test cases

21

that included all possible combinations of both actual interactions AB and CDE. The

resultant test cases number is 8.

Figure 2.4 Illustration of Relationship between Input-output Based Relationship
Interaction Testing Test Suite and Input-output Based Relationship Covering Array:

(a) Input Base Value Set; (b) Resultant Test Cases; (c) Input-output Based
Relationship Covering Array

22

For these test cases, input-output based relationship covering array can be used to

abstract them as shown in Figure 2.4(c). For IOR (N; (v1, v2, …, vk), R), these shown

that N = 8, v1 = v2 = v3 = v4 = v5 = 2 and R = {(f1, f2), (f3, f4, f5)}. Thus, the test cases

can be termed IOR (8; (2, 2, 2, 2, 2), {(f1, f2), (f3, f4, f5)}) or IOR (8; 25, {(f1, f2), (f3,

f4, f5)}). In brief, the illustration of relationship between input-output based

relationship interaction testing test suite and input-output based relationship covering

array is depicted in Figure 2.4.

2.2 Overview and Approaches towards Interaction Testing

The main aim of interaction testing is to generate effective test data for detecting

faults that due to interaction. As this strategy is found useful, there are different

levels of interaction possibilities have been considered in the existing literatures, as

part of interaction testing strategies which included uniform strength interaction

testing, variable strength interaction testing as well as input-output based relationship

interaction testing. As a result, many interaction strategies have been developed

based on these approaches (Zabil et al., 2011).

In this section, the overview of all interaction testing approaches (i.e. uniform

strength, variable strength and input-output based relationship interaction testing)

will be explored. Also, the recent significant published strategies on these approaches

are cited accordingly.

2.2.1 Uniform Strength Interaction Testing (t-way Testing)

The most fundamental interaction testing is uniform strength interaction testing (also

known as t-way testing). t-way testing forms the basis of interaction testing which

23

works on detecting faults that caused by t-way interaction of parameters (where t

indicates the interaction strength). According to empirical studies, the rationale for t-

way testing stemmed from the fact that the number of parameters involved in

software failures is relatively small (i.e. in the order of 2 to 6), in some classes of

software (Burr & Young, 1998; Kimoto et al., 2008; Kuhn & Michael, 2002; Kuhn &

Vadim, 2006; Kuhn et al., 2004).

Given a set of input, adopting all combinations is seemed impossible especially in a

highly configurable software system. If t or fewer parameters interactions are known

to cause fault or failure for software SUT, test suite can be constructed on some t-

way combinations, then reduce to a smaller size of test suite (instead of considering

all possible combinations) without decreasing the fault detection capability (Younis

& Zamli, 2009b).

For example, an internet-based software system has been taken into account. The

users may use a variety of browsers (i.e. Netscape, Internet Explorer and other). In

addition, they may be using different operating systems (i.e. Windows, Macintosh

and GNU/Linux), connection types (i.e. Local Area Network, Point-to-point

Protocols and Integrated Services Digital Network) and printer configurations (i.e.

Local, Networked and Screen) (Cohen et al., 2003a). The components of such

software system have been summarized as shown in Table 2.1.

In order to completely test this software system, it is desired to consider all of the

possible supported configurations (combinations). In this case, there are 34 or 81

combinations needed to test all possible interactions for the software system. Here, it

24

is assumed that the interaction faults for the software system are constituted of 2-way

interactions (i.e. t = 2) among the components.

Table 2.1 Summary of Components for an Internet-based Software System (Cohen et
al., 2003a)

Components

Web
Browser

Operating
System Connection Type Printer

Configuration

Netscape Windows Local Area Network Local

Internet
Explorer Macintosh Point-to-point Protocol Networked

Other GNU/Linux Integrated Services Digital
Network Screen

Instead of adopting all 81 possible combinations, t-way testing can be used to reduce

the number of combinations (test cases) into 9 based on 2-way interactions as

depicted in Table 2.2 (Cohen et al., 2003a). In this case, these 9 test cases have

covered all possible combinations for 2-way interactions among the components (i.e.

Web Browser, Operating System, Connection Type and Printer Configuration).

Hence, any interaction faults that due to 2-way interactions within these components

can be discovered by adopting these test cases.

As the uniform strength interaction testing approach is found useful to reduce the test

suite size and detect faults according to the specified interaction strength (i.e. t),

numerous strategies have been proposed. For instance, the significant strategies

25

included: In-parameter-order-general (IPOG) strategy (Lei et al., 2007), Automatic

Efficient Test Generator (AETG) strategy (Cohen et al., 1997; Cohen, Dalal, Kajla,

& Patton, 1994; Cohen, Dalal, Parelius, & Patton, 1996), GTWay strategy (Zamli et

al., 2011) as well as Test Configuration (TConfig) (Williams, 2002) strategy. All

these strategies will be further elucidated in following subsections.

Table 2.2 The Resultant Test Cases for 2-way Interactions (Cohen et al., 2003a)

Test
Number

Browser Operating
System Connection Type Printer

Configuration

1 Netscape Windows Local Area Network Local

2 Netscape GNU/Linux Integrated Services
Digital Network Networked

3 Netscape Macintosh Point-to-point Protocol Screen

4 Internet
Explorer Windows Integrated Services

Digital Network Screen

5 Internet
Explorer Macintosh Local Area Network Networked

6 Internet
Explorer GNU/Linux Point-to-point Protocol Local

7 Other Windows Point-to-point Protocol Networked

8 Other GNU/Linux Local Area Network Screen

9 Other Macintosh Integrated Services
Digital Network Local

	DEVELOPMENT OF INTERACTION TEST
	DATA GENERATION STRATEGY WITH
	INPUT-OUTPUT MAPPING SUPPORTS
	DEVELOPMENT OF INTERACTION TEST DATA GENERATION STRATEGY WITH INPUT-OUTPUT MAPPING SUPPORTS
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	2.2.1.1 In-parameter-order-general (IPOG) Strategy 26
	2.2.1.2 Automatic Efficient Test Generator (AETG) Strategy 27
	2.2.1.3 GTWay Strategy 27
	2.2.1.4 Test Configuration (TConfig) Strategy 28
	2.2.2.1 Simulated Annealing (SA) Strategy 30
	2.2.2.2 Ant Colony System (ACS) Strategy 31
	2.2.2.3 Test Vector Generator (TVG) Strategy 32
	2.2.2.4 Pairwise Independent Combinatorial Testing (PICT) Strategy 33
	2.2.3.1 Brute Force Strategy 36
	2.2.3.2 Union Strategy 36
	2.2.3.3 Greedy Strategy 37
	2.2.3.4 ReqOrder Strategy 38
	2.2.3.5 ParaOrder Strategy 38
	2.2.3.6 Density Strategy 39
	2.3.1.1 GTWay Strategy 42

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRAK
	ABSTRACT
	CHAPTER 1 INTRODUCTION
	Software Testing
	Test Case Design
	Problem Statement
	Thesis Aim and Objectives
	Research Methodology
	Section Outlines

	CHAPTER 2 LITERATURE REVIEW
	Mathematical Background
	Covering Array
	Mixed-level Covering Array
	Variable Strength Covering Array
	Input-output Based Relationship Covering Array

	Overview and Approaches towards Interaction Testing
	Uniform Strength Interaction Testing (t-way Testing)
	In-parameter-order-general (IPOG) Strategy
	Automatic Efficient Test Generator (AETG) Strategy
	GTWay Strategy
	Test Configuration (TConfig) Strategy

	Variable Strength Interaction Testing
	Simulated Annealing (SA) Strategy
	Ant Colony System (ACS) Strategy
	Test Vector Generator (TVG) Strategy
	Pairwise Independent Combinatorial Testing (PICT) Strategy

	Input-output Based Relationship Interaction Testing
	Brute Force Strategy
	Union Strategy
	Greedy Strategy
	ReqOrder Strategy
	ParaOrder Strategy
	Density Strategy

	Automation Support for Interaction Testing
	Automated Input-output Mapping Supports
	GTWay Strategy

	Flexibility of Interaction Test Suite Generation
	Summary

	CHAPTER 3 THE DESIGN OF AURA STRATEGY
	Design Considerations
	One-test-at-a-time Basis
	Non-deterministic Output
	Flexible Iteration Control Capability
	Post-processing Automated Input-output Mapping Supports

	Development of AURA Strategy
	Interaction Pair Generation Algorithm
	Test Suite Construction algorithm
	Actual Data Mapping Algorithm

	Development Details
	Summary

	CHAPTER 4 RESULTS AND DISCUSSION
	Characterization of AURA Strategy
	Characterizing the Partitioned Base Data Structure
	Characterizing the Flexible Iteration Control Capability

	Demonstration of Post-processing Automated Input-output Mapping Supports
	Execution on Benchmarking Inputs
	Executing the Inputs of Input-output Based Relationship Interaction Testing
	Executing the Inputs of Uniform Strength Interaction Testing
	Executing the Inputs of Variable Strength Interaction Testing

	Summary

	CHAPTER 5 CONCLUSION
	Conclusion
	Future Work

	REFERENCES
	APPENDICES
	Appendix A: Demonstration of Post-processing Automated Input-output Mapping Supports in Real Software System

	LIST OF PUBLICATIONS

