57 research outputs found

    Throughput Maximization for Intelligent Refracting Surface Assisted mmWave High-Speed Train Communications

    Full text link
    With the increasing demands from passengers for data-intensive services, millimeter-wave (mmWave) communication is considered as an effective technique to release the transmission pressure on high speed train (HST) networks. However, mmWave signals ncounter severe losses when passing through the carriage, which decreases the quality of services on board. In this paper, we investigate an intelligent refracting surface (IRS)-assisted HST communication system. Herein, an IRS is deployed on the train window to dynamically reconfigure the propagation environment, and a hybrid time division multiple access-nonorthogonal multiple access scheme is leveraged for interference mitigation. We aim to maximize the overall throughput while taking into account the constraints imposed by base station beamforming, IRS discrete phase shifts and transmit power. To obtain a practical solution, we employ an alternating optimization method and propose a two-stage algorithm. In the first stage, the successive convex approximation method and branch and bound algorithm are leveraged for IRS phase shift design. In the second stage, the Lagrangian multiplier method is utilized for power allocation. Simulation results demonstrate the benefits of IRS adoption and power allocation for throughput improvement in mmWave HST networks.Comment: 13 pages, 7 figures, IEEE Internet of Things Journa

    Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G

    Get PDF
    Antenna arrays have a long history of more than 100 years and have evolved closely with the development of electronic and information technologies, playing an indispensable role in wireless communications and radar. With the rapid development of electronic and information technologies, the demand for all-time, all-domain, and full-space network services has exploded, and new communication requirements have been put forward on various space/air/ground platforms. To meet the ever increasing requirements of the future sixth generation (6G) wireless communications, such as high capacity, wide coverage, low latency, and strong robustness, it is promising to employ different types of antenna arrays with various beamforming technologies in space/air/ground communication networks, bringing in advantages such as considerable antenna gains, multiplexing gains, and diversity gains. However, enabling antenna array for space/air/ground communication networks poses specific, distinctive and tricky challenges, which has aroused extensive research attention. This paper aims to overview the field of antenna array enabled space/air/ground communications and networking. The technical potentials and challenges of antenna array enabled space/air/ground communications and networking are presented first. Subsequently, the antenna array structures and designs are discussed. We then discuss various emerging technologies facilitated by antenna arrays to meet the new communication requirements of space/air/ground communication systems. Enabled by these emerging technologies, the distinct characteristics, challenges, and solutions for space communications, airborne communications, and ground communications are reviewed. Finally, we present promising directions for future research in antenna array enabled space/air/ground communications and networking

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies

    Full text link
    High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture

    Intelligent Massive MIMO Systems for Beyond 5G Networks: An Overview and Future Trends

    Get PDF
    Machine learning (ML) which is a subset of artificial intelligence is expected to unlock the potential of challenging large-scale problems in conventional massive multiple-input-multiple-output (CM-MIMO) systems. This introduces the concept of intelligent massive MIMO (I-mMIMO) systems. Due to the surge of application of different ML techniques in the enhancement of mMIMO systems for existing and emerging use cases beyond fifth-generation (B5G) networks, this article aims to provide an overview of the different aspects of the I-mMIMO systems. First, the characteristics and challenges of the CM-MIMO have been identified. Secondly, the most recent efforts aimed at applying ML to a different aspect of CM-MIMO systems are presented. Thirdly, the deployment of I-mMIMO and efforts towards standardization are discussed. Lastly, the future trends of I-mMIMO-enabled application systems are presented. The aim of this paper is to assist the readers to understand different ML approaches in CM-MIMO systems, explore some of the advantages and disadvantages, identify some of the open issues, and motivate the readers toward future trends

    A Survey of Beam Management for mmWave and THz Communications Towards 6G

    Full text link
    Communication in millimeter wave (mmWave) and even terahertz (THz) frequency bands is ushering in a new era of wireless communications. Beam management, namely initial access and beam tracking, has been recognized as an essential technique to ensure robust mmWave/THz communications, especially for mobile scenarios. However, narrow beams at higher carrier frequency lead to huge beam measurement overhead, which has a negative impact on beam acquisition and tracking. In addition, the beam management process is further complicated by the fluctuation of mmWave/THz channels, the random movement patterns of users, and the dynamic changes in the environment. For mmWave and THz communications toward 6G, we have witnessed a substantial increase in research and industrial attention on artificial intelligence (AI), reconfigurable intelligent surface (RIS), and integrated sensing and communications (ISAC). The introduction of these enabling technologies presents both open opportunities and unique challenges for beam management. In this paper, we present a comprehensive survey on mmWave and THz beam management. Further, we give some insights on technical challenges and future research directions in this promising area.Comment: accepted by IEEE Communications Surveys & Tutorial

    Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective

    Get PDF
    Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-MultipleAccess (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication

    Towards Context Information-based High-Performing Connectivity in Internet of Vehicle Communications

    Get PDF
    Internet-of-vehicles (IoV) is one of the most important use cases in the fifth generation (5G) of wireless networks and beyond. Here, IoV communications refer to two types of scenarios: serving the in-vehicle users with moving relays (MRs); and supporting vehicle-to-everything (V2X) communications for, e.g., connected vehicle functionalities. Both of them can be achieved by transceivers on top of vehicles with growing demand for quality of service (QoS), such as spectrum efficiency, peak data rate, and coverage probability. However, the performance of MRs and V2X is limited by challenges such as the inaccurate prediction/estimation of the channel state information (CSI), beamforming mismatch, and blockages. Knowing the environment and utilizing such context information to assist communication could alleviate these issues. This thesis investigates various context information-based performance enhancement schemes for IoV networks, with main contributions listed as follows.In order to mitigate the channel aging issue, i.e., the CSI becomes inaccurate soon at high speeds, the first part of the thesis focuses on one way to increase the prediction horizon of CSI in MRs: predictor antennas (PAs). A PA system is designed as a system with two sets of antennas on the roof of a vehicle, where the PAs positioned at the front of the vehicle are used to predict the CSI observed by the receive antennas (RAs) that are aligned behind the PAs. In PA systems, however, the benefit is affected by a variety of factors. For example, 1) spatial mismatch between the point where the PA estimates the channel and the point where the RA reaches several time slots later, 2) antenna utilization efficiency of the PA, 3) temporal evolution, and 4) estimation error of the PA-base station (BS) channel. First, in Paper A, we study the PA system in the presence of the spatial mismatch problem, and propose an analytical channel model which is used for rate adaptation. In paper B, we propose different approximation schemes for the analytical investigation of PA systems, and study the effect of different parameters on the network performance. Then, involving PAs into data transmission, Paper C and Paper D analyze the outage- and the delay-limited performance of PA systems using hybrid automatic repeat request (HARQ), respectively. As we show in the analytical and the simulation results in Papers C-D, the combination of PA and HARQ protocols makes it possible to improve spectral efficiency and adapt the transmission parameters to mitigate the effect of spatial mismatch. Finally, a review of PA studies in the literature, the challenges and potentials of PA as well as some to-be-solved issues are presented in Paper E.The second part of the thesis focuses on using advanced technologies to further improve the MR/IoV performance. In Paper F, a cooperative PA scheme in IoV networks is proposed to mitigate both the channel aging effect and blockage sensitivity in millimeter-wave channels by collaborative vehicles and BS handover. Then, in Paper G, we study the potentials and challenges of dynamic blockage pre-avoidance in IoV networks

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications
    corecore