3,101 research outputs found

    A Survey on Energy-Efficient Strategies in Static Wireless Sensor Networks

    Get PDF
    A comprehensive analysis on the energy-efficient strategy in static Wireless Sensor Networks (WSNs) that are not equipped with any energy harvesting modules is conducted in this article. First, a novel generic mathematical definition of Energy Efficiency (EE) is proposed, which takes the acquisition rate of valid data, the total energy consumption, and the network lifetime of WSNs into consideration simultaneously. To the best of our knowledge, this is the first time that the EE of WSNs is mathematically defined. The energy consumption characteristics of each individual sensor node and the whole network are expounded at length. Accordingly, the concepts concerning EE, namely the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective, are proposed. Subsequently, the relevant energy-efficient strategies proposed from 2002 to 2019 are tracked and reviewed. Specifically, they respectively are classified into five categories: the Energy-Efficient Media Access Control protocol, the Mobile Node Assistance Scheme, the Energy-Efficient Clustering Scheme, the Energy-Efficient Routing Scheme, and the Compressive Sensing--based Scheme. A detailed elaboration on both of the basic principle and the evolution of them is made. Finally, further analysis on the categories is made and the related conclusion is drawn. To be specific, the interdependence among them, the relationships between each of them, and the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective are analyzed in detail. In addition, the specific applicable scenarios for each of them and the relevant statistical analysis are detailed. The proportion and the number of citations for each category are illustrated by the statistical chart. In addition, the existing opportunities and challenges facing WSNs in the context of the new computing paradigm and the feasible direction concerning EE in the future are pointed out

    Optimized Clustering Protocol for Balancing Energy in Wireless Sensor Networks

    Get PDF
    While wireless sensor networks (WSNs) are increasingly equipped to handle more complex functions and in-network processing may require these battery powered sensors to judiciously use their constrained energy to prolong the effective network lifetime. Cluster-based Hierarchical Routing Protocol using compressive sensing (CS) theory (CBHRP-CS) divides the network into several clusters, each managed by a set of CHs called a header. Each member of the header compresses the collected data using CS. This paper proposes an optimized clustering protocol using CS (OCP-CS) to improve the performance of WSNs by exploiting compressibility. In OCP-CS, each cluster is managed by a cluster head (CH). CHs are selected based on node concentration and sensor residual energy, and performs data aggregation using CS to reduce the energy consumed in the process of data sampling and transmission. Simulations show that our proposed protocol is effective in prolonging the network lifetime and supporting scalable data aggregation than existing protocols

    Collaborative data collection scheme based on optimal clustering for wireless sensor networks

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. In recent years, energy-efficient data collection has evolved into the core problem in the resource-constrained Wireless Sensor Networks (WSNs). Different from existing data collection models in WSNs, we propose a collaborative data collection scheme based on optimal clustering to collect the sensed data in an energy-efficient and load-balanced manner. After dividing the data collection process into the intra-cluster data collection step and the inter-cluster data collection step, we model the optimal clustering problem as a separable convex optimization problem and solve it to obtain the analytical solutions of the optimal clustering size and the optimal data transmission radius. Then, we design a Cluster Heads (CHs)-linking algorithm based on the pseudo Hilbert curve to build a CH chain with the goal of collecting the compressed sensed data among CHs in an accumulative way. Furthermore, we also design a distributed cluster-constructing algorithm to construct the clusters around the virtual CHs in a distributed manner. The experimental results show that the proposed method not only reduces the total energy consumption and prolongs the network lifetime, but also effectively balances the distribution of energy consumption among CHs. By comparing it o the existing compression-based and non-compression-based data collection schemes, the average reductions of energy consumption are 17.9% and 67.9%, respectively. Furthermore, the average network lifetime extends no less than 20-times under the same comparison

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    On the Convergence of Decentralized Gradient Descent

    Full text link
    Consider the consensus problem of minimizing f(x)=i=1nfi(x)f(x)=\sum_{i=1}^n f_i(x) where each fif_i is only known to one individual agent ii out of a connected network of nn agents. All the agents shall collaboratively solve this problem and obtain the solution subject to data exchanges restricted to between neighboring agents. Such algorithms avoid the need of a fusion center, offer better network load balance, and improve data privacy. We study the decentralized gradient descent method in which each agent ii updates its variable x(i)x_{(i)}, which is a local approximate to the unknown variable xx, by combining the average of its neighbors' with the negative gradient step αfi(x(i))-\alpha \nabla f_i(x_{(i)}). The iteration is x(i)(k+1)neighborjofiwijx(j)(k)αfi(x(i)(k)),for each agenti,x_{(i)}(k+1) \gets \sum_{\text{neighbor} j \text{of} i} w_{ij} x_{(j)}(k) - \alpha \nabla f_i(x_{(i)}(k)),\quad\text{for each agent} i, where the averaging coefficients form a symmetric doubly stochastic matrix W=[wij]Rn×nW=[w_{ij}] \in \mathbb{R}^{n \times n}. We analyze the convergence of this iteration and derive its converge rate, assuming that each fif_i is proper closed convex and lower bounded, fi\nabla f_i is Lipschitz continuous with constant LfiL_{f_i}, and stepsize α\alpha is fixed. Provided that α<O(1/Lh)\alpha < O(1/L_h) where Lh=maxi{Lfi}L_h=\max_i\{L_{f_i}\}, the objective error at the averaged solution, f(1nix(i)(k))ff(\frac{1}{n}\sum_i x_{(i)}(k))-f^*, reduces at a speed of O(1/k)O(1/k) until it reaches O(α)O(\alpha). If fif_i are further (restricted) strongly convex, then both 1nix(i)(k)\frac{1}{n}\sum_i x_{(i)}(k) and each x(i)(k)x_{(i)}(k) converge to the global minimizer xx^* at a linear rate until reaching an O(α)O(\alpha)-neighborhood of xx^*. We also develop an iteration for decentralized basis pursuit and establish its linear convergence to an O(α)O(\alpha)-neighborhood of the true unknown sparse signal
    corecore