6 research outputs found

    Improved Bi-criteria Approximation for the All-or-Nothing Multicommodity Flow Problem in Arbitrary Networks

    Full text link
    This paper addresses the following fundamental maximum throughput routing problem: Given an arbitrary edge-capacitated nn-node directed network and a set of kk commodities, with source-destination pairs (si,ti)(s_i,t_i) and demands di>0d_i> 0, admit and route the largest possible number of commodities -- i.e., the maximum {\em throughput} -- to satisfy their demands. The main contributions of this paper are two-fold: First, we present a bi-criteria approximation algorithm for this all-or-nothing multicommodity flow (ANF) problem. Our algorithm is the first to achieve a {\em constant approximation of the maximum throughput} with an {\em edge capacity violation ratio that is at most logarithmic in nn}, with high probability. Our approach is based on a version of randomized rounding that keeps splittable flows, rather than approximating those via a non-splittable path for each commodity: This allows our approach to work for {\em arbitrary directed edge-capacitated graphs}, unlike most of the prior work on the ANF problem. Our algorithm also works if we consider the weighted throughput, where the benefit gained by fully satisfying the demand for commodity ii is determined by a given weight wi>0w_i>0. Second, we present a derandomization of our algorithm that maintains the same approximation bounds, using novel pessimistic estimators for Bernstein's inequality. In addition, we show how our framework can be adapted to achieve a polylogarithmic fraction of the maximum throughput while maintaining a constant edge capacity violation, if the network capacity is large enough. One important aspect of our randomized and derandomized algorithms is their {\em simplicity}, which lends to efficient implementations in practice

    Packing Directed Cycles Quarter- and Half-Integrally

    Full text link
    The celebrated Erd\H{o}s-P\'osa theorem states that every undirected graph that does not admit a family of kk vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(klogk)O(k \log k). After being known for long as Younger's conjecture, a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas. However, in their proof, the dependency of the size of the feedback vertex set on the size of vertex-disjoint cycle packing is not elementary. We show that if we compare the size of a minimum feedback vertex set in a directed graph with the quarter-integral cycle packing number, we obtain a polynomial bound. More precisely, we show that if in a directed graph GG there is no family of kk cycles such that every vertex of GG is in at most four of the cycles, then there exists a feedback vertex set in GG of size O(k4)O(k^4). Furthermore, a variant of our proof shows that if in a directed graph GG there is no family of kk cycles such that every vertex of GG is in at most two of the cycles, then there exists a feedback vertex set in GG of size O(k6)O(k^6). On the way there we prove a more general result about quarter-integral packing of subgraphs of high directed treewidth: for every pair of positive integers aa and bb, if a directed graph GG has directed treewidth Ω(a6b8log2(ab))\Omega(a^6 b^8 \log^2(ab)), then one can find in GG a family of aa subgraphs, each of directed treewidth at least bb, such that every vertex of GG is in at most four subgraphs.Comment: Accepted to European Symposium on Algorithms (ESA '19

    Maximizing Routing Throughput with Applications to Delay Tolerant Networks

    Get PDF
    abstract: Many applications require efficient data routing and dissemination in Delay Tolerant Networks (DTNs) in order to maximize the throughput of data in the network, such as providing healthcare to remote communities, and spreading related information in Mobile Social Networks (MSNs). In this thesis, the feasibility of using boats in the Amazon Delta Riverine region as data mule nodes is investigated and a robust data routing algorithm based on a fountain code approach is designed to ensure fast and timely data delivery considering unpredictable boat delays, break-downs, and high transmission failures. Then, the scenario of providing healthcare in Amazon Delta Region is extended to a general All-or-Nothing (Splittable) Multicommodity Flow (ANF) problem and a polynomial time constant approximation algorithm is designed for the maximum throughput routing problem based on a randomized rounding scheme with applications to DTNs. In an MSN, message content is closely related to users’ preferences, and can be used to significantly impact the performance of data dissemination. An interest- and content-based algorithm is developed where the contents of the messages, along with the network structural information are taken into consideration when making message relay decisions in order to maximize data throughput in an MSN. Extensive experiments show the effectiveness of the above proposed data dissemination algorithm by comparing it with state-of-the-art techniques.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Deterministic Decremental Reachability, SCC, and Shortest Paths via Directed Expanders and Congestion Balancing

    Full text link
    Let G=(V,E,w)G = (V,E,w) be a weighted, digraph subject to a sequence of adversarial edge deletions. In the decremental single-source reachability problem (SSR), we are given a fixed source ss and the goal is to maintain a data structure that can answer path-queries svs \rightarrowtail v for any vVv \in V. In the more general single-source shortest paths (SSSP) problem the goal is to return an approximate shortest path to vv, and in the SCC problem the goal is to maintain strongly connected components of GG and to answer path queries within each component. All of these problems have been very actively studied over the past two decades, but all the fast algorithms are randomized and, more significantly, they can only answer path queries if they assume a weaker model: they assume an oblivious adversary which is not adaptive and must fix the update sequence in advance. This assumption significantly limits the use of these data structures, most notably preventing them from being used as subroutines in static algorithms. All the above problems are notoriously difficult in the adaptive setting. In fact, the state-of-the-art is still the Even and Shiloach tree, which dates back all the way to 1981 and achieves total update time O(mn)O(mn). We present the first algorithms to break through this barrier: 1) deterministic decremental SSR/SCC with total update time mn2/3+o(1)mn^{2/3 + o(1)} 2) deterministic decremental SSSP with total update time n2+2/3+o(1)n^{2+2/3+o(1)}. To achieve these results, we develop two general techniques of broader interest for working with dynamic graphs: 1) a generalization of expander-based tools to dynamic directed graphs, and 2) a technique that we call congestion balancing and which provides a new method for maintaining flow under adversarial deletions. Using the second technique, we provide the first near-optimal algorithm for decremental bipartite matching.Comment: Reuploaded with some generalizations of previous theorem

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore