Packing Directed Cycles Quarter- and Half-Integrally

Abstract

The celebrated Erd\H{o}s-P\'osa theorem states that every undirected graph that does not admit a family of kk vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(klogk)O(k \log k). After being known for long as Younger's conjecture, a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas. However, in their proof, the dependency of the size of the feedback vertex set on the size of vertex-disjoint cycle packing is not elementary. We show that if we compare the size of a minimum feedback vertex set in a directed graph with the quarter-integral cycle packing number, we obtain a polynomial bound. More precisely, we show that if in a directed graph GG there is no family of kk cycles such that every vertex of GG is in at most four of the cycles, then there exists a feedback vertex set in GG of size O(k4)O(k^4). Furthermore, a variant of our proof shows that if in a directed graph GG there is no family of kk cycles such that every vertex of GG is in at most two of the cycles, then there exists a feedback vertex set in GG of size O(k6)O(k^6). On the way there we prove a more general result about quarter-integral packing of subgraphs of high directed treewidth: for every pair of positive integers aa and bb, if a directed graph GG has directed treewidth Ω(a6b8log2(ab))\Omega(a^6 b^8 \log^2(ab)), then one can find in GG a family of aa subgraphs, each of directed treewidth at least bb, such that every vertex of GG is in at most four subgraphs.Comment: Accepted to European Symposium on Algorithms (ESA '19

    Similar works

    Full text

    thumbnail-image

    Available Versions