1,122 research outputs found

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    A constructive and unifying framework for zero-bit watermarking

    Get PDF
    In the watermark detection scenario, also known as zero-bit watermarking, a watermark, carrying no hidden message, is inserted in content. The watermark detector checks for the presence of this particular weak signal in content. The article looks at this problem from a classical detection theory point of view, but with side information enabled at the embedding side. This means that the watermark signal is a function of the host content. Our study is twofold. The first step is to design the best embedding function for a given detection function, and the best detection function for a given embedding function. This yields two conditions, which are mixed into one `fundamental' partial differential equation. It appears that many famous watermarking schemes are indeed solution to this `fundamental' equation. This study thus gives birth to a constructive framework unifying solutions, so far perceived as very different.Comment: submitted to IEEE Trans. on Information Forensics and Securit

    Network communication privacy: traffic masking against traffic analysis

    Get PDF
    An increasing number of recent experimental works have been demonstrating the supposedly secure channels in the Internet are prone to privacy breaking under many respects, due to traffic features leaking information on the user activity and traffic content. As a matter of example, traffic flow classification at application level, web page identification, language/phrase detection in VoIP communications have all been successfully demonstrated against encrypted channels. In this thesis I aim at understanding if and how complex it is to obfuscate the information leaked by traffic features, namely packet lengths, direction, times. I define a security model that points out what the ideal target of masking is, and then define the optimized and practically implementable masking algorithms, yielding a trade-off between privacy and overhead/complexity of the masking algorithm. Numerical results are based on measured Internet traffic traces. Major findings are that: i) optimized full masking achieves similar overhead values with padding only and in case fragmentation is allowed; ii) if practical realizability is accounted for, optimized statistical masking algorithms attain only moderately better overhead than simple fixed pattern masking algorithms, while still leaking correlation information that can be exploited by the adversary
    • …
    corecore