39 research outputs found

    Hyperon production in Ar+KCl collisions at 1.76A GeV

    Get PDF
    We present transverse momentum spectra, rapidity distribution and multiplicity of Lambda-hyperons measured with the HADES spectrometer in the reaction Ar(1.76A GeV)+KCl. The yield of Xi- is calculated from our previously reported Xi-/(Lambda+Sigma0) ratio and compared to other strange particle multiplicities. Employing a strangeness balance equation the multiplicities of the yet unmeasured charged Sigma hyperons can be estimated. Finally a statistical hadronization model is used to fit the yields of pi-, K+, K0s, K-, phi, Lambda and Xi-. The resulting chemical freeze-out temperature of T=(76+-2) MeV is compared to the measured slope parameters obtained from fits to the transverse mass distributions of the particles

    Recursive marginal quantization: extensions and applications in finance

    Get PDF
    Quantization techniques have been used in many challenging finance applications, including pricing claims with path dependence and early exercise features, stochastic optimal control, filtering problems and the efficient calibration of large derivative books. Recursive marginal quantization of an Euler scheme has recently been proposed as an efficient numerical method for evaluating functionals of solutions of stochastic differential equations. This algorithm is generalized and it is shown that it is possible to perform recursive marginal quantization for two higher-order schemes: the Milstein scheme and a simplified weak-order 2.0 scheme. Furthermore, the recursive marginal quantization algorithm is extended by showing how absorption and reflection at the zero boundary may be incorporated. Numerical evidence is provided of the improved weak-order convergence and computational efficiency for the geometric Brownian motion and constant elasticity of variance models by pricing European, Bermudan and barrier options. The current theoretical error bound is extended to apply to the proposed higher-order methods. When applied to two-factor models, recursive marginal quantization becomes computationally inefficient as the optimization problem usually requires stochastic methods, for example, the randomized Lloyd’s algorithm or Competitive Learning Vector Quantization. To address this, a new algorithm is proposed that allows recursive marginal quantization to be applied to two-factor stochastic volatility models while retaining the efficiency of the original Newton-Raphson gradientdescent technique. The proposed method is illustrated for European options on the Heston and Stein-Stein models and for various exotic options on the popular SABR model. Finally, the recursive marginal quantization algorithm, and improvements, are applied outside the traditional risk-neutral pricing framework by pricing long-dated contracts using the benchmark approach. The growth-optimal portfolio, the central object of the benchmark approach, is modelled using the time-dependent constant elasticity of variance model. Analytic European option prices are derived that generalize the current formulae in the literature. The time-dependent constant elasticity of variance model is then combined with a 3/2 stochastic short rate model to price zerocoupon bonds and zero-coupon bond options, thereby showing the departure from risk-neutral pricing

    Structure-Based Bayesian Sparse Reconstruction

    Full text link
    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is relatively low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at a low sparsity rate.Comment: 29 pages, 15 figures, accepted in IEEE Transactions on Signal Processing (July 2012

    Embracing the chaos: analysis and diagnosis of numerical instability in variational flows

    Full text link
    In this paper, we investigate the impact of numerical instability on the reliability of sampling, density evaluation, and evidence lower bound (ELBO) estimation in variational flows. We first empirically demonstrate that common flows can exhibit a catastrophic accumulation of error: the numerical flow map deviates significantly from the exact map -- which affects sampling -- and the numerical inverse flow map does not accurately recover the initial input -- which affects density and ELBO computations. Surprisingly though, we find that results produced by flows are often accurate enough for applications despite the presence of serious numerical instability. In this work, we treat variational flows as dynamical systems, and leverage shadowing theory to elucidate this behavior via theoretical guarantees on the error of sampling, density evaluation, and ELBO estimation. Finally, we develop and empirically test a diagnostic procedure that can be used to validate results produced by numerically unstable flows in practice

    Multiscale derivation, analysis and simulation of collective dynamics models: geometrical aspects and applications

    Get PDF
    This thesis is a contribution to the study of swarming phenomena from the point of view of mathematical kinetic theory. This multiscale approach starts from stochastic individual based (or particle) models and aims at the derivation of partial differential equation models on statistical quantities when the number of particles tends to infinity. This latter class of models is better suited for mathematical analysis in order to reveal and explain large-scale emerging phenomena observed in various biological systems such as flocks of birds or swarms of bacteria. Within this objective, a large part of this thesis is dedicated to the study of a body-attitude coordination model and, through this example, of the influence of geometry on self-organisation. The first part of the thesis deals with the rigorous derivation of partial differential equation models from particle systems with mean-field interactions. After a review of the literature, in particular on the notion of propagation of chaos, a rigorous convergence result is proved for a large class of geometrically enriched piecewise deterministic particle models towards local BGK-type equations. In addition, the method developed is applied to the design and analysis of a new particle-based algorithm for sampling. This first part also addresses the question of the efficient simulation of particle systems using recent GPU routines. The second part of the thesis is devoted to kinetic and fluid models for body-oriented particles. The kinetic model is rigorously derived as the mean-field limit of a particle system. In the spatially homogeneous case, a phase transition phenomenon is investigated which discriminates, depending on the parameters of the model, between a “disordered” dynamics and a self-organised “ordered” dynamics. The fluid (or macroscopic) model was derived as the hydrodynamic limit of the kinetic model a few years ago by Degond et al. The analytical and numerical study of this model reveal the existence of new self-organised phenomena which are confirmed and quantified using particle simulations. Finally a generalisation of this model in arbitrary dimension is presented.Open Acces

    Computational Methods for Martingale Optimal Transport problems

    Full text link
    We establish numerical methods for solving the martingale optimal transport problem (MOT) - a version of the classical optimal transport with an additional martingale constraint on transport's dynamics. We prove that the MOT value can be approximated using linear programming (LP) problems which result from a discretisation of the marginal distributions combined with a suitable relaxation of the martingale constraint. Specialising to dimension one, we provide bounds on the convergence rate of the above scheme. We also show a stability result under only partial specification of the marginal distributions. Finally, we specialise to a particular discretisation scheme which preserves the convex ordering and does not require the martingale relaxation. We introduce an entropic regularisation for the corresponding LP problem and detail the corresponding iterative Bregman projection. We also rewrite its dual problem as a minimisation problem without constraint and solve it by computing the concave envelope of scattered data

    Classical surrogates for quantum learning models

    Full text link
    The advent of noisy intermediate-scale quantum computers has put the search for possible applications to the forefront of quantum information science. One area where hopes for an advantage through near-term quantum computers are high is quantum machine learning, where variational quantum learning models based on parametrized quantum circuits are discussed. In this work, we introduce the concept of a classical surrogate, a classical model which can be efficiently obtained from a trained quantum learning model and reproduces its input-output relations. As inference can be performed classically, the existence of a classical surrogate greatly enhances the applicability of a quantum learning strategy. However, the classical surrogate also challenges possible advantages of quantum schemes. As it is possible to directly optimize the ansatz of the classical surrogate, they create a natural benchmark the quantum model has to outperform. We show that large classes of well-analyzed re-uploading models have a classical surrogate. We conducted numerical experiments and found that these quantum models show no advantage in performance or trainability in the problems we analyze. This leaves only generalization capability as possible point of quantum advantage and emphasizes the dire need for a better understanding of inductive biases of quantum learning models.Comment: 4 pages, 3 figure
    corecore