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Abstract

This thesis is a contribution to the study of swarming phenomena from the point of view
of mathematical kinetic theory. This multiscale approach starts from stochastic individual
based (or particle) models and aims at the derivation of partial differential equation models
on statistical quantities when the number of particles tends to infinity. This latter class of
models is better suited for mathematical analysis in order to reveal and explain large-scale
emerging phenomena observed in various biological systems such as flocks of birds or
swarms of bacteria. Within this objective, a large part of this thesis is dedicated to the
study of a body-attitude coordination model and, through this example, of the influence
of geometry on self-organisation.

The first part of the thesis deals with the rigorous derivation of partial differential
equation models from particle systems with mean-field interactions. After a review of
the literature, in particular on the notion of propagation of chaos, a rigorous convergence
result is proved for a large class of geometrically enriched piecewise deterministic particle
models towards local BGK-type equations. In addition, the method developed is applied
to the design and analysis of a new particle-based algorithm for sampling. This first part
also addresses the question of the efficient simulation of particle systems using recent GPU
routines.

The second part of the thesis is devoted to kinetic and fluid models for body-oriented
particles. The kinetic model is rigorously derived as the mean-field limit of a particle
system. In the spatially homogeneous case, a phase transition phenomenon is investigated
which discriminates, depending on the parameters of the model, between a “disordered”
dynamics and a self-organised “ordered” dynamics. The fluid (or macroscopic) model was
derived as the hydrodynamic limit of the kinetic model a few years ago by Degond et al.
The analytical and numerical study of this model reveal the existence of new self-organised
phenomena which are confirmed and quantified using particle simulations. Finally a
generalisation of this model in arbitrary dimension is presented.
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Chapter 1

Background

1.1 Active particle systems and kinetic theory

The starting point of all the subjects discussed in this work will always be a large system
of interacting particles and most often, a system of active particles. Taking its roots in
the kinetic theory of gas due to Boltzmann [44], the notion of particle is understood as
a convenient elementary modelling entity which can represent for instance an atom, a
molecule, a cell in a living organism and even the organism itself: a bird in a bird flock or
a human being in a crowd. The interactions can be dictated by the laws of physics, for
instance for the molecules in a gas. But in the case of the so-called active particles, the
interactions mostly depend on social or behavioural rules commonly found in the living
world: e.g. the response of bacteria to chemical signals, the tendency of an animal in a
herd to stay close to its fellow animals or the evolution of the opinion of an individual in
a debate. When the number of particles in the system grows to infinity, the numerous
elementary interactions between the particles can create large-scale complex swarming
structures which motivate this work (see Figure 1.1). Since these phenomena could not be
predicted only by looking at the individual behaviour of the particles (due to their large
number), these phenomena are often said to emerge or to be self-organised.

The study of large particle systems in physics (in thermodynamics typically) is an
old (but still active) problem and the pioneering works of Boltzmann and Maxwell have
stimulated the development of mathematical concepts and techniques, in particular in
stochastic analysis and Partial Differential Equations (PDE). One of the main ideas of the
so-called mathematical kinetic theory is that a high-dimensional linear problem given by a
system of N � 1 ordinary or stochastic differential equations can be turned into only one
nonlinear PDE. This idea will be largely detailed in Part I of this thesis.
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However, the study of active particle systems is much more recent and mainly driven by
biological or socio-economical questions. The main difference with classical physical systems
is that active particle systems are not bound to physical laws such as the conservation of
energy or momentum. It does not mean that biological systems break the laws of physics
but that at this modelling scale we simply consider that the particles (bacteria, animals,
etc) can use their own energy to interact: we do not really take into consideration this
energy loss but only take into account e.g. the evolution of their positions and velocities or
the kind of forces which result from the interactions. In this context, the classical results,
sometimes, still apply and lead to the study of new types of nonlinear PDEs. However the
lack of conservation laws makes the analysis much different and requires new ideas and
techniques. In the present work, another layer of difficulty will be added by addressing the
influence of geometry in active particle systems. Examples of PDE models of swarming
with geometrical constraints will be the subject of Part II of this thesis.

Stimulated by these ideas, the last two decades have seen the active development of
the mathematics of swarming, in particular in the kinetic theory community. Since then,
these ideas have been applied to many systems in various contexts. Beyond the seminal
biological motivations, one recent trend, which will also be developed in this thesis, is the
study of artificial particle systems introduced in data science algorithms.

(a) (b) (c) (d)

Figure 1.1: Various examples of self-organised phenomena in the living world.
(A) A colony of Paenibacillus vortex bacteria. Each bright dot is made of many
individuals swarming collectively by rotating [204]. (Colin J. Ingham and Eshel
Ben Jacob, CC BY 2.0, via Wikimedia Commons). (B) Pheromone trails formed
by Argentine ants [279]. (Andrea Perna, Roehampton University, CC BY 2.5, via
Wikimedia Commons). (C) Murmuration of starlings. (Walter Baxter, CC BY-SA
2.0, via Wikimedia Commons). (D) A mill of schooling barracuda. (Robin Hughes,
CC BY-SA 2.0, via Wikimedia Commons).

In a broader perspective, the concept of emergence and self-organisation across scales is
actually one of the most fundamental questions in life sciences. Almost all living creatures
are made of an aggregate of cells of different sizes and shapes, often interacting with other
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symbiotic or adversary microorganisms. During the early embryonic development, the
growth, division and spatial organisation of the cells create a very structured mature
organism with various specialised organs. This highly complex biological process runs
through extended space and time scales. Nevertheless, at the macroscopic scale, living
organisms are characterised by both a great variability of traits among the individuals and
a great reproducibility of shapes and functions. This remarkable macroscopic robustness,
in spite of the inherent microscopic stochasticity, naturally raises fundamental questions
about the mechanisms which rule this multiscale development and cause these biological
phase transitions. Within this perspective, the development of rigorous mathematical
models is of primary importance: on the one hand, to understand how the living world
and its constituent systems work and interact together, and, on the other hand, to identify
the dysfunctions, their cause and potential treatments. Classically, energy exchanges and
chemical signalling have been basic and key modelling components. At an even more
fundamental level, mechanical, geometrical and topological constraints certainly also play
an important role that may not have been so extensively studied.

The present thesis remains, of course, only a modest contribution to the mathematical
formalisation and conceptualization of all these issues. While the present work is mostly
based on mathematical kinetic theory, there is nowadays an intense research effort across
all mathematics to study the fundamental principles of biology. To cite a few: reaction-
diffusion equations, fluid dynamics, optimization, graph and network theory, stochastic and
computer models all offer complementary points of view. In addition to these model-driven
approaches, data-driven approaches are also of course essential. Over the last few years,
all these mathematical approaches have been applied in various and critical medical fields
such as oncology, neurosciences, epidemiology, microbiology, etc.

This introductory chapter presents the main tools and concepts on which the rest of
the thesis will be based. The first three sections follow the classical multiscale kinetic
theory approach using as a running example the Vicsek model [321, 122, 140], on which
most of the models studied in this thesis will be based. Section 1.2 focuses on particle
systems. Section 1.3 explains how kinetic PDE models are derived when the number of
particles grows to infinity. The so-called hydrodynamic limit of these kinetic models is
developed in Section 1.4, which leads to the derivation of macroscopic (or fluid dynamics)
PDE models. Finally the last Section 1.5 reviews some other classical swarming models
and discusses recent applications in data science.
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1.2 Individual Based Models

To begin with, this section reviews and introduces the particle systems which motivate
this work. At this modelling level, sometimes referred as the microscopic level, the main
objective is to introduce a proper mathematical formalisation of the interaction rules
between the particles. The resulting models are referred as Individual Based Models (IBM).

From a mathematical point of view, a system of N particles is simply a Markov process
(or a deterministic dynamical system) with values in a product space EN . The state of a
particle in the space E can be its position E = Rd in which case it will be usually denoted
XN
t = (X1

t , . . . , X
N
t )t where t is the time index. In kinetic theory the state space E is

the phase space E = Rd × Rd in which case the state of the i-th particle is the couple
(X i

t , V
i
t ) of its position and velocity. Such particle will be referred as a kinetic particle.

One of the objectives of this work is to generalise this framework to more general state
spaces endowed with a geometrical structure, for instance, by replacing the velocity by an
element of a manifold. The following sections further elaborate on this idea and introduce
the kinetic theory approach by taking as a running example the Vicsek model [321, 122,
140] which is the starting point of the models studied in this thesis.

1.2.1 Swarming models

Over the last twenty years, there has been a growing interest in both the mathematics
and physics communities for theorizing the underlying principles of large animal societies.
Among the most common examples of such systems, one can cite flocks of birds, fish
schools, large herds of mammals or ant colonies. In all these systems, the individuals
collectively produce large-scale coherent complex structures, called swarms, without any
obvious exterior organizing principle such as a leader. Other examples can be found in the
microscopic world (for instance colonies of bacteria or spermatozoa) or in human societies
(for instance crowds phenomena or traffic flows). In all these systems, each individual can
be roughly described as a kinetic particle (X i

t , V
i
t ) and the evolution over time of the system

is typically modelled via Newton’s laws (plus noise) dX i
t = V i

t dt and dV i
t = F (XN

t )dt,
where F is a force or a sum of forces. This modelling perspective gives much freedom on
the choice of the interaction mechanism itself (i.e. on the force F ). From an analytical
point of view, a fruitful idea is to look for minimal models, i.e. with interaction mechanisms
taken as elementary as possible to exhibit a given collective behaviour. They are often
based on the following assumptions.
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1. (Self-propulsion). Active particles are said to be self-propelled, which means that
they use their own energy to move. The force F does not need to be conservative
and may for instance include a relaxation part towards a preferred moving speed.

2. (Bounded vision). The particles have a bounded, small, sensing region and interact
only with the other particles which belong to this region. The easiest way to model
this is to take an observation kernel K : [0,+∞)→ [0,+∞) (also called interaction
kernel) which vanishes at infinity, for instance K(r) = 1[0,R](r) for a fixed interaction
radius R, and to consider that the sensing region of a particle at position X i

t depends
on the map x 7→ K(|x − X i

t |). A more elaborated point of view is the so-called
three-zone model [65]. One may also consider non symmetric interaction kernels, for
instance in order to model a cone of vision [90, 83, 84].

3. (Randomness). The individual based models in the present work are stochastic
models. Randomness may be incorporated to model the environmental noise, the
perception error of the agents or the uncertainty in general.

Then, the two following classical and elementary interaction rules are often assumed to
give rise to collective dynamics.

1. (Attraction-Repulsion). A particle tends to avoid the other particles in its sensing
region (for instance to avoid collisions) or on the contrary to move closer to the
center of mass of its neighbours (in order to keep a coherent swarm).

2. (Alignment). A particle tends to align its direction of motion with the ones of the
other particles in order to create a coherent motion. This is called a flocking model
and this will be the main object of the present thesis.

These modelling assumptions have been used since the 80’s in various contexts. Among
the first works, one should cite the simulation of fish schools by Aoki [8] and the renowned
boids model developed by Reynolds [285] which has been widely used for realistic computer
graphics simulations in cinema or video games. Since then, there has been an intense
research effort in the physics community to understand active particle systems, in particular
based on the models introduced by Vicsek [321] and Couzin [92, 91]. A gallery of models
can be found for instance in the reviews [322] or [4]. In addition to the Vicsek model
discussed in the following sections within a mathematical kinetic theory perspective, other
important swarming models in the mathematics literature will be reviewed in Section 1.5.1.
Finally, in Section 1.5.2 we will discuss various so-called Swarm Intelligence algorithms
which are based on the simulation of artificial particle systems with interaction mechanisms
specifically designed to solve tough problems in data sciences.
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1.2.2 The Vicsek model

In the 90’s, Vicsek et al. [321] introduced a discrete-time “flocking algorithm”, with an
interaction mechanism based only on alignment, and the minimal assumption that the
particles move at a fixed constant speed c0 > 0. Despite its simplicity, the Vicsek model
has quickly become one of the most prominent models in the active matter literature.
Several works have numerically exhibited the emergence of complex patterns at the particle
level; see for instance [80] where the emergence of high-density band-like structures on a
compact spatial domain is studied.

From a mathematical point of view, since the speed of the particles is fixed, then the
velocity of each particle is characterised by a unit vector which defines its direction of
motion. The state of a particle (X i

t , V
i
t ) at any time t thus belongs to E = Rd × Sd−1

where Sd−1 denotes the unit sphere in dimension d. This seemingly small change, from
a velocity in Rd to a direction of motion in the manifold Sd−1, nevertheless leads to
complex mathematical developments, as reviewed in the following. Moreover it paves
the way to the development of a larger class of geometrically enriched models where
the traditional velocity variable in kinetic theory now encompasses additional degrees
of freedom or interaction specifications. A large part of this thesis is dedicated to the
study of body-oriented particles, which model rigid bodies with an orientation defined by
a rotation matrix in the manifold SO3(R). Other examples can be found in the liquid
crystal literature [13, 14] or in the modelling of the nematic alignment of bacteria [121] by
un-oriented rod-like particles with a velocity which belongs the projective space Sd−1/± 1.

In the seminal article of Vicsek et al. [322], the model introduced was a computational
discrete-time model not well suited to mathematical analysis. A few years later, in the
mathematics community, Degond and Motsch [122] thus introduced another version of the
Vicsek model using a more classical continuous-time diffusion framework. This model will
be discussed later. The basis of the present work is the following variant of the Vicsek
model which has been introduced by Di Marco and Motsch [140] as an alternative to the
diffusion framework. It is based on a Piecewise Deterministic Markov Process (PDMP)
also known as a run-and-tumble process in the literature.

• To each agent i ∈ {1, . . . , N} is attached an independent Poisson process with fixed
intensity ν > 0 and jump times (T in)n.

• Between two jump times, the evolution is deterministic: for all i ∈ {1, . . . , N} and
for all t ∈ [T in, T

i
n+1),

dX i
t = c0V

i
t dt, dV i

t = 0. (1.1)
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• At each jump time T in, the agent labelled by i ∈ {1, . . . , N} updates its orientation
by taking a random perturbation of the average local orientation of its neighbours.
Formally, the new orientation is obtained by drawing a random variable from a von
Mises distribution

V i
T in
∼Mκ(Jin)Vin , (1.2)

where the parameters κ, J in and Vi
n will be defined next. The von Mises distribu-

tion MJ with parameter J ∈ Rd is a probability distribution on the sphere Sd−1

defined by its probability density function

MJ(v) :=
exp(J · v)∫

Sd−1 exp(J · v′)dv′ .

The von Mises distribution MJ is a spherical analog to the Gaussian distribution in
a vector space [247, 246, 230]: it tends towards the Dirac delta distribution at the
point J/|J | as |J | → +∞ and towards the uniform distribution on Sd−1 as |J | → 0.
In the present case, the parameter of the distribution is defined by a concentration
parameter κ : Rd → [0,+∞) which sets the level of noise and the vectors J in and Vi

n

which define the average local direction of motion:

J in := lim
t→(T in)−

1

N

N∑
j=1

K
(
|X i

t −Xj
t |
)
V j
t ∈ Rd, Vi

n :=
J in
|J in|
∈ Sd−1, (1.3)

where K is a given interaction kernel. Common choices for the concentration
parameter κ are

κ(J) = κ0 = constant, κ(J) = κ0|J |.

A schematic representation of this process is depicted below.

T in−1 − T in−2 ∼ Exp(ν)

Observation kernel K

Vin
V i
T in

Figure 1.2: Alignment through a Piecewise Deterministic Markov Process. The
dashed line depicts the trajectory of a particle (red points). At each jump time the
new direction of motion V i

T in
is a random perturbation of the average direction of

motion Vin within an observation kernel.

20



This simple interaction procedure will be the basis of most of the models studied in this
thesis. Preceding the work of Di Marco and Motsch, the first mathematical formalisation
of the original Vicsek model [321] based on a diffusion process was introduced by Degond
and Motsch [122]. In this work, the N -particle process is defined by a set of 2N coupled
Stratonovich Stochastic Differential Equations (SDE) :

dX i
t = c0V

i
t dt, (1.4a)

dV i
t = ν

(
|J it |
)
P(V i

t )Vi
tdt+

√
2σ
(
|J it |
)
P(V i

t ) ◦ dBi
t, (1.4b)

where (Bi
t)t are N independent Brownian motions in Rd, P(v) := Id−v⊗v is the projection

on the plane orthogonal to a unit vector v, the functions ν, σ : [0,+∞) → [0,+∞) are
respectively the intensity of the alignment and the strength of the diffusion and

J it :=
1

N

N∑
j=1

K
(
|Xj

t −X i
t |
)
V j
t ∈ Rd, Vi

t :=
J it
|J it |
∈ Sd−1. (1.5)

The drift term in equation (1.4b) is a relaxation force towards the local average velocity Vi
t.

The source of the noise comes from a Brownian motion. The Stratonovich framework and
the projection operator P(V i

t ) ensure that V i
t remains of norm one.

In the following, it will be shown that the scaling limits of the PDMP and diffusion vari-
ants of the Vicsek model, are, on many aspects, equivalent. However, the PDMP framework
will lead to structurally simpler PDE models which justifies this modelling choice.

1.2.3 Mean-field particle systems

As N grows to infinity, the individual trajectories of the particles become intractable
due to the high-dimension: for instance, in the Vicsek model, the N coupled trajectories
(X1

t , V
1
t , . . . , X

N
t , V

N
t )t define a process in dimension 2Nd. The system is therefore better

understood using a statistical description inherited from the theory of Markov processes.
First of all, for a fixed finite value of N , the theory of Markov processes gives two ways

to characterise globally the system. The first one is the law fNt of the particle system
at any time t which is a probability measure on EN . The second one is the N -particle
generator LN . The two characterisations are linked by the linear Kolmogorov equations.
The forward Kolmogorov equation is often called the Liouville equation in a kinetic theory
context. The particle systems studied in this work are moreover said to be exchangeable
which means that fNt is a symmetric probability measure (i.e. invariant by any permutation
of its arguments). The exchangeability property assumes that all the particles are identical
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and play an identical role. Thanks to a famous result due to De Finetti [136] and Hewitt
and Savage, but used in a kinetic theory context since the work of Grünbaum [179], the law
of an exchangeable particle system XN

t = (X1
t , . . . , X

N
t ) on a state space E is essentially

characterised by its empirical measure

µXNt :=
1

N

N∑
i=1

δXi
t
, (1.6)

where δx denotes the Dirac delta distribution at a point x ∈ E. Further technical details
will be given in Chapter 3. Compared to the full particle system, the random empirical
measure belongs to a space which does not depend on N , namely the space of probability
measures on E as opposed to the product space EN . Working with the empirical measure
therefore transforms the study of N (finite-dimensional) processes into the study of only
one process but which belongs to an infinite-dimensional space.

The empirical measure gives access to statistical averages of the form

〈µXNt , ϕ〉 :=

∫
E

ϕ(x)µXNt (dx) =
1

N

N∑
i=1

ϕ(X i
t),

where ϕ is a test function on the state space E. In the Vicsek model, the interactions
are therefore fully described by the empirical measure since, for instance, (1.5) can be
re-written as

J it =

∫
Rd×Sd−1

K(|x−X i
t |)v µZNt (dx, dv),

where ZNt = ((X1
t , V

1
t ), . . . (XN

t , V
N
t )). All the particle systems considered in this work

will also be such that the interactions can be prescribed by the empirical measure. These
particle systems are called mean-field particle systems (see Section 3.3 for a more formal
definition). Notice that mean-field particle systems do not include binary “collisional”
interactions as in classical collisional kinetic theory [324] (see also Section 10.2.4). In the
next section, we will see how this statistical description behaves for mean-field systems
when N → +∞.

1.3 Mesoscopic limit

As N grows to infinity, the empirical measure (1.6) defines a sequence of a random
probability measures on E. The mesoscopic description of the N -particle system is given
by the limit N → +∞ of this sequence (which will be assumed or shown to exist). This
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limiting object thus describes the average statistical behaviour of the system for a large
number of particles. As we shall see, studying its properties is both easier and more
informative on the global behaviour of the system than tracking the individual information
of the particles.

For the various mean-field models studied in the present work, we will either prove or
assume that the following (weak) limit holds true:

µXNt −→
N→+∞

ft, (1.7)

for any t > 0 and where the limit ft ≡ f(t, x, v) is a deterministic solution of a PDE. For
the different variants of the Vicsek model, this limit is the solution of a nonlinear kinetic
PDE of the form

∂tft + c0v · ∇xft = Q(ft), (1.8)

where Q(ft) is a nonlinear operator, usually called the collision operator. For the PDMP
Vicsek model (1.1)-(1.2), the equation is the following nonlinear BGK-type equation [34]

∂tft + c0v · ∇xft = ν
(
ρftMκ(JK?ft )VK?ft − ft

)
, (1.9)

where ρft(x) =
∫
Sd−1 ft(x, v)dv and

JK?ft(x) :=

∫
Rd×Sd−1

K
(
|x− y|

)
v ft(y, v)dydv, VK?ft(x) :=

JK?ft
|JK?ft |

. (1.10)

For the diffusion model (1.4), this equation is replaced by a nonlinear Fokker-Planck
equation

∂tft + c0v · ∇xft = −ν
(
|JK?ft|

)
∇v ·

(
P(v)VK?ftft

)
+ σ
(
|JK?ft|

)
∆vft, (1.11)

where ∇v· and ∆v denote respectively the divergence and Laplace-Beltrami operator on
the manifold Sd−1.

The kernels of the collision operators corresponding to the two variants, PDMP or
diffusion process, can be shown to be the same. Moreover, these operators act on the x
variable only through the convolution (in x) with K in (1.10). In some cases investigated
in Chapter 4, it is possible to take simultaneously the limits N → +∞ and K → δ0 (the
interaction is said to be moderate [273, 221, 138]) in which case we simply write Jδ0?ft ≡ Jft .
The interaction between the particles are then asymptotically purely local in space and Q
becomes an operator which acts on the v variable only as it is classically assumed in kinetic

23



theory. We make this simplifying assumption in the subsequent examples.
The weak limit (1.7) is equivalent to a property called propagation of chaos which

plays a major role in mathematical kinetic theory. It was used by Boltzmann and Maxwell
before being mathematically rigorously formalised by Kac [223] and much developed by
McKean [249] and Sznitman [307] for mean-field particle systems. This aspect will be
discussed in great details in Part I and in particular in Chapter 3. For the time being,
let us simply mention that it implies the following property: if the particles are initially
independent, then at each later time t > 0, for each fixed number of k ≥ 1 of particles,
when N → +∞, any subset of k particles tends to k independent random variables with
common law ft. It means that despite the interactions, independence is still recovered for
any finite group of particles. The solution ft of the mesoscopic PDE (1.8) can therefore be
understood as the law of an average particle (that is, the probability of finding a particle
at a given state at a given time). It is thus often called the particle distribution. Note
that the main difference with the N -particle distribution fNt is that ft satisfies a nonlinear
PDE in E whereas fNt satisfies the Kolmogorov equation which is a linear equation in EN .

Thanks to this statistical description, the analytical (or numerical) study of the
mesoscopic PDE can provide information on the long-time behaviour of the system. For
the Vicsek model, the analytical study of the full kinetic PDEs (1.9) or (1.11) is still
in progress and many questions are left open, in particular the long-time behaviour of
the solutions. In a simpler spatially-homogeneous setting, where ft solves the spatially
homogeneous version of (1.8):

∂tft(v) = Q(ft),

the long-time behaviour of the solution has been studied in particular in [160, 113] for
different variants of the model. These results are based on the analysis of the equilibria of
the collision operator Q, i.e. the functions f such that Q(f) = 0. The main result of [113]
is a phase transition phenomenon which states that, depending on an explicit condition on
the parameters ν and σ and the mass ρ =

∫
ft(v)dv, two kinds of asymptotic behaviours

coexist: either
ft −→

t→+∞
ρ, or ft −→

t→+∞
ρMκ̃Ṽ.

The first case corresponds to the convergence towards an asymptotic disordered isotropic
equilibrium, which models a situation where the particles have a uniformly distributed
orientation. The second case corresponds to the convergence towards an ordered flocking
equilibrium where the particles move in average in the direction given by Ṽ ∈ Sd−1 with
a concentration κ̃ > 0 which are explicitly given by the parameters of the system. This
result will be extended to the case of body-oriented particles in Chapter 7.
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1.4 Macroscopic limit

The space and time scales at the mesoscopic level are the same as the ones of the particles
at the microscopic level. For the PDMP Vicsek model it means that the interaction rate ν
and the mean-free path of a particle set the time and space scale and therefore the typical
size of the system. However, for biological systems, it is clear that the mean-free path of a
particle should be much smaller than the size of the whole system. In order to capture this
so-called macroscopic features of the system, one therefore needs to find an appropriate
rescaling of the time and space scales. One choice is the hyperbolic scaling

t̃ = εt/t0, x̃ = εx/x0,

where t, x are the microscopic time and space variables, t0 and x0 are the typical microscopic
time and space units and ε � 1 is a scaling parameter. The resulting (dimensionless)
variables t̃ and x̃ are the macroscopic time and space variables and the dimensionless speed
is c̃0 = c0t0/x0. Using these new variables, the rescaled distribution function

f̃ ε(t̃, x̃, v) :=
(x0

ε

)d
f

(
t̃t0
ε
,
x̃x0

ε
, v

)
,

satisfies, dropping the tilde for clarity,

∂tf
ε + c0v · ∇xf

ε =
1

ε
Q(f ε),

where we recall that the collision operator Q is given by (1.9) or (1.11) with K = δ0.
For the Vicsek model, the formal limit ε → 0 has been investigated in [122] for the
Fokker-Planck model and in [140] for the BGK model. In both cases, the authors assume
that

f ε −→
ε→0

ρMκV,

where ρ ≡ ρ(t, x) and V ≡ V(t, x) represent respectively the density of particles and
average direction of motion at time t and position x. Then, it can be proved that (ρ,V)

are, also in both cases, the solutions of

∂tρ+∇x · (c1V) = 0 (1.12)

(∂t + c2V · ∇x)V + λP(V)∇x log ρ = 0, (1.13)
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where c1, c2 and λ are explicit functions of κ and c0. This formal derivation follows from
the same arguments as the derivation of the compressible Euler equations from a kinetic
PDE, as explained for instance in [108]. However, while the first equation (1.12) easily
follows from the mass conservation, the second equation (1.13) is much more difficult to
obtain due to the lack of conservation laws. In [122], Degond and Motsch introduced the
concept of Generalised Collision Invariant (GCI) to cope with this difficulty and derived
the equation (1.13). This methodology has been made rigorous in [214, 213] and has since
then been applied to derive macroscopic models for a wide range of swarming models [114,
116, 121, 2, 140, 123]. As expected, the Equations (1.12) and (1.13) share similarities with
the classical compressible Euler equations but with a new pressure term which involves
the projection operator P(v) = Id − v ⊗ v in order to preserve the geometrical constraint
V ∈ Sd−1. A numerical study of this model can be found in [263]. The macroscopic model
associated to a body-orientation dynamics model derived using the same methodology
in [114, 116] and in Chapter 7 will be studied in Chapter 8. It will be shown that more
complex geometrical constraints lead to a novel class of explicit solutions characterised by
a nontrivial topological structure.

1.5 Other collective dynamics models and applications

This section shortly reviews other related classical swarming models and introduces some
recent applications of the mathematics of swarming to data science problems. This latter
aspect will be further discussed in Chapter 6. Further examples can be found in the review
article [76] on which this section is also based.

1.5.1 Classical models of swarming and self-organisation

The Vicsek model is only one of the several swarming models introduced in the past
decades. For the sake of completeness, some important examples are discussed below.
Note, however, that none of these models are geometrically enriched models like the Vicsek
model.

Attraction-Repulsion.

One of the first deterministic mathematical swarming model is due to D’Orsogna et al. [99].
It is based on the combination of self-propulsion and an attraction-repulsion force. With
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the mean-field scaling introduced in [68], the equations on the velocities in Rd are:

dV i
t

dt
= (α− β|V i

t |2)V i
t −

1

N
∇xi

∑
j 6=i

U
(
|X i

t −Xj
t |
)
,

where U(r) = −Cae−r/`a + Cre
−r/`r is the Morse potential. The nonnegative constants α,

β, Ca, `a, Cr, `r are respectively the self-propulsion and friction forces magnitudes, the
strength of alignment, the typical alignment length, the strength of the repulsion and the
typical repulsion length. Due to the propulsion and friction forces, each particle tends
to adopt the fixed cruising speed

√
α/β. Unlike the Vicsek model, the self-propulsion

constraint is encoded as a “soft” constraint rather than as a “hard” geometrical constraint
of the form V i

t ∈ Sd−1. The propagation of chaos property follows for instance from [40]
and the limit PDE reads:

∂tft(x, v) + v · ∇xft = −∇v · ((α− β|v|2)vft) + (∇xU ? ρ[ft]) · ∇vft,

where ρ[ft](dx) =
∫
Rd ft(dx, dv). The analysis of the limit kinetic PDE and its macroscopic

limit in [68] gives a rigorous theoretical explanation for the emergence of complex patterns
such as rotating mills which were observed in numerical simulations only in [99].

Flocking.

Alternatively to the Vicsek model, Cucker and Smale [98] introduced a deterministic
alignment mechanism for velocities in Rd given by:

dV i
t

dt
=

1

N

∑
j 6=i

K
(
|Xj

t −X i
t |
)
(V j

t − V i
t ),

where K is an observation kernel which is typically taken equal to K(r) = (1 + |r|2)−γ/2,
γ > 0. The main result is that if the observation kernel is large enough in the sense that∫ +∞

0
K(r)dr = +∞, then the particle system satisfies for all i, j ∈ {1, . . . , N},

|V i
t − V∞| ≤ C1e−λt, |X i

t −Xj
t | ≤ C2,

for some constants C1, C2, λ > 0 and for an asymptotic velocity V∞ ∈ Rd. Note that since
the momentum is preserved, V∞ = 1

N

∑N
i=1 V

i
0 . There is an extensive literature on the

deterministic Cucker-Smale model, see the reviews [65, 67, 4].
On the other hand, there are various ways to add a stochastic component to the
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Cucker-Smale model. Maybe the most obvious way in this context, is to consider the
diffusion model introduced in [185]:

dV i
t =

1

N

∑
j 6=i

K
(
|Xj

t −X i
t |
)
(V j

t − V i
t ) + σdBi

t,

for N independent Brownian motions (Bi
t)t. In this case, the propagation of chaos is

proved in [40] using a so-called synchronous coupling method (see Chapter 3) or in [277]
using martingale arguments. The difficulty here lies in the unboundedness of the kernel K.
The limit Fokker-Planck equation reads:

∂tft(x, v) + v · ∇xft = −∇v · (ξ[ft]ft) +
σ2

2
∆vft, (1.14)

with
ξ[ft](x, v) :=

∫
Rd×Rd

K(|x′ − x|)(v′ − v)ft(dx
′, dv′).

More refined models can also be considered to incorporate a self-propulsion force [17, 16],
a non constant diffusion matrix, boundary conditions [83] or an anisotropic observation
kernel (e.g. a cone of vision centered around the velocity of the particle) [84]. Macroscopic
limits for various kinetic Cucker-Smale models have been obtained for instance in [46, 17,
228].

In [3], Ahn and Ha considered the Cucker-Smale model with a random environmental
noise common to all the particles. In this case, the propagation of chaos does not hold
in the usual sense. Given a realisation of the common noise, a conditional propagation
of chaos property can be shown [87] by revisiting the classical arguments of Dobrushin
[144] in the deterministic case. However the limit law ft is not deterministic and satisfies a
stochastic PDE which depends on the common noise (roughly speaking, it is the PDE (1.14)
where the Laplacian is replaced by a Brownian motion). For the Cucker-Smale system,
this type of result can be found in [85].

There exist many other Cucker-Smale models where the stochasticity is incorporated
through a diffusive behaviour. For further examples, we refer the interested reader to the
review [72] and the references therein. Lately, [165] proposed a stochastic Cucker-Smale
model based on a PDMP mechanism.

The Kuramoto model

The Kuramoto model is the most classical model for synchronisation phenomena between
populations of oscillators, which may be used to model a clapping crowd, a population
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of fireflies or a system of neurons to cite a few examples. Despite its formal simplicity,
the Kuramoto model exhibits a complex long-time behaviour which has motivated a vast
literature, see for instance the reviews [1, 243], the articles [31, 32] and the references
therein.

In the Kuramoto model, the particles are N oscillators defined by N angles ΘN
t =

(θ1
t , . . . , θ

N
t ) ∈ RN (defined modulo 2π so that they can actually be seen as elements of the

circle) which satisfy the following system of SDEs:

dθit = ξidt−
λ

N

N∑
j=1

sin(θit − θjt )dt+ dBi
t,

where λ ∈ R is a real parameter of the model and (ξi)i∈{1,...,N} are N i.i.d. random
variables which model the natural frequency of the oscillators (also called the disorder).
When a realisation of the natural frequency is chosen beforehand, then the model is said
to be of quenched type and is equivalent to a spatially homogeneous Vicsek model in
dimension 2. As a consequence, at least when ξi = 0 for all i, the propagation of chaos on
any finite time interval easily follows (see McKean’s Theorem in Chapter 3) and the limit
Fokker-Planck equation admits as stationary solutions the family of von Mises distributions
of the form Mκe(θ0) where κ ≥ 0 is explicitly given, θ0 ∈ R is an arbitrary parameter and
e(θ0) := (cos θ0, sin θ0)

T. The trivial solution with κ = 0 is always a stationary solution
but when λ > 1 there also exists a nontrivial solution with κ > 0 and the associated family
of stationary solutions becomes asymptotically stable. This phase transition phenomenon
and the long-time dynamics analysis of the solution of the Fokker-Planck equation can be
found in [172, 113]. Recent works [32, 132] have studied, using a large deviation approach,
the links between this phase transition phenomenon and the propagation of chaos property
(see also Section 10.2.3). Earlier results in this direction can be found in [100, 103, 102].

1.5.2 Artificial particle systems in data sciences

Nowadays, the development of data sciences has pushed the development of ever more
efficient algorithms. Typical tasks such as sampling or filtering are motivated by Monte
Carlo problems and will be discussed in Chapter 6. For the sake of completeness, other
important examples of particle methods in optimization and machine learning are discussed
below, but will not be further addressed in this thesis (see however the last section of [76]).
All these computational problems are challenging, in particular due to the curse of
dimensionality, to the high computational cost of naive methods or to the difficulty of
finding a satisfactory theoretical framework to prove the convergence of the algorithms.
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To cope with these problems, various metaheuristic methods based on the simulation of
systems of particles have been developed. Inspired by the biological models presented
previously, the idea is to design artificial interaction mechanisms to be used to solve
difficult numerical problems. The motivation is twofold: on the one hand, particle systems
are easy to simulate and on the other hand, the mean-field theory gives a natural theoretical
foundation for the convergence proof of the methods.

Particle based Monte Carlo methods

In the Bayesian analysis framework, a critical issue is the construction of posterior
distributions. These probability distributions are most often not known in a closed
form and may be difficult to evaluate (because they are obtained as the output of a
computationally expensive code). As a consequence, a difficult but crucial task is the
generation of i.i.d. random numbers X1, . . . , XN distributed according to an arbitrary
posterior distribution, usually denoted by π. Historically, this so-called sampling problem
has been solved by the renowned Metropolis-Hastings algorithm [256, 255, 193] or its
variants, see [289, 290, 288] for a review. Recently, new algorithms [54, 55, 134] have
been proposed based on the idea of constructing interacting samples, that is, an artificial
particle system (X1

t , . . . , X
N
t )t such that asymptotically in N and in the time variable t,

Law(X1
t , . . . , X

N
t ) ' π⊗N .

Chapter 6 will study such method based on a mean-field generalisation of the Metropolis-
Hastings algorithm. The core idea of this method is to gain efficiency by dropping the
independence between the samples. By introducing a well-chosen interaction mechanism,
it is possible to prove that asymptotically in time and N , the independence is recovered
thanks to a propagation of chaos property.

Other related works in this direction include [219, 220] which study scaling limits
of the Metropolis-Hastings. Alternatively, the recent algorithm proposed and studied
in [170, 142, 143] is based on the study of an interacting Langevin dynamics, which is an
alternative to the Metropolis-Hastings algorithm based on a diffusion process. Finally,
one may also consider non-static target distributions. This leads to so-called filtering
problems. Recent work which study such particle methods within a mean-field framework
include [129, 124]. See also [225, 96] for a survey on the more general so-called Sequential
Monte Carlo methods and to the larger monographs [126, 127, 146, 125] for the theoretical
foundations, in particular the links with mean-field theory.
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Agent Based Optimization

Optimization problems are notoriously difficult in high dimensional spaces or for multimodal
objective functions. In the 90’s, Kennedy and Eberhart [229] introduced a class of
optimization algorithms based on a the simulation of a swarm of interacting agents. The
Particle Swarm Optimization (PSO) methods are inspired by biological concepts: each
agent (or particle) follows a set of simple rules which is a mix between an individual
exploration behaviour and a collective exploitation of the swarm knowledge in order to
efficiently find and converge to the global minimum of the objective function. From
an algorithmic point of view, the algorithm is appealing by its (relative) simplicity and
its versatility as it does not requires expensive computations like the gradient of the
objective function. In the last decades, many variants and practical implementations of
the original PSO algorithm have been proposed and a full inventory of these so-called
Swarm Intelligence (SI) methods would go beyond the present review.

Although these algorithms have proved their efficiency for notoriously difficult problems,
their main drawback is their lack of theoretical mathematical foundations. Most of the SI
methods are based on metaheuristic principles which can hardly be turned into rigorous
convergence results, in particular when the number of agents involved becomes large.
In reaction to this, there has been a growing interest for the convergence analysis of SI
methods using the tools developed in the kinetic theory community for mean-field particle
systems in physics or biology.

Following these ideas, a very simple though quite efficient method called Consensus
Based Optimization (CBO) has recently been introduced by Pinneau et al. [281]. The
analytical study of the long-time behaviour of the mean-field limit of this algorithm can be
found in [64]. Partial rigorous results on the propagation of chaos property are available
in [161]. Further developments on the CBO method can be found in [66]. A review and
a comparison of recent SI methods, including the CBO method and the original PSO
algorithm, can be found in [314, 315]. The recent article [177] gives a more unifying
framework for the mean-field interpretation of PSO and CBO methods and introduces a
mean-field variant of the original PSO algorithm which, unlike the algorithm in [281], is
based on a kinetic system.

Overparametrized Neural Networks

Training neural networks can be understood as an optimization task. Whether the
commonly used algorithms converge to the good optimum is in many cases still an open
question. Recent independent works [251, 292, 302, 82] have shown that the training
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process of neural networks possesses a natural mean-field interpretation which gives new
insights towards a rigorous theoretical justification to this convergence problem.

More precisely, a (single hidden layer) neural network is characterised by a set of N
parameters, interpreted as particles. During the training task, these parameters are
adjusted to minimise a risk functional which associates a set of objects (e.g. images) to
their known labels. The most common updating procedure for the parameters is the
(noisy) Stochastic Gradient Descent (SGD) algorithm. The mean-field interpretation and
long-time convergence of this algorithm can be found in the above-mentioned works.
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Chapter 2

Scope of this work

This thesis is first motivated by the extension of the Vicsek model to an alignment model
for rigid bodies. Following the kinetic theory approach, contributions are made to the
derivation of PDE models from an individual based model and to the study of the associated
kinetic and macroscopic models. At the particle level, the framework introduced is also
adapted to the study of a swarm intelligence algorithm for sampling. For both aspects,
this thesis also addresses the problem of the efficient simulation of mean-field particle
systems.

2.1 The body-orientation dynamics model

2.1.1 Motivation and structure of SOn(R)

The main contributions of this thesis are related to the body-orientation dynamics model
first introduced in [114] and [116]. It describes the evolution of a system of particles defined
by their positions in the space R3 and their body-orientation modelled by a rotation matrix
in SO3(R) (that is, a rotation of the canonical basis denoted by (e1, e2, e3), see Figure 2.1).
The novelty of this model is to introduce an alignment (or coordination) mechanism for
the body-orientations (or body-attitudes) which extends previous works where only the
velocities of the particles were considered, as in the Vicsek model [322].

While the present work mostly focuses on theoretical aspects, it is motivated by
the study of very diverse biological and physical systems. Hemelrijck, Hildenbrandt
and Carrere [197, 196] have proposed an ethological model which takes into account
the “aerodynamics of flight” to explain the emergence of self-organised flocks of birds.
This model, which is more complex than the model studied in this thesis, is based on a
traditional pitch-roll-yaw angles description of the internal structure of the birds. The
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(a) (b) (c)

Figure 2.1: (A) The velocities of the two birds are aligned. (B) The body-
orientations of the two birds are aligned. A body-orientation matrix in SO3(R) is
depicted by its three column vectors which form a direct orthonormal basis. The
first column vector, depicted in red, is the direction of motion. (C) The velocities of
the two dolphins are aligned but not their body-orientations. The additional degrees
of freedom offered by the body-orientation framework allow one dolphin to swim
upside-down.
Original pictures released under the Creative Commons CC0 licence by pixabay. com .

present work may offer a more intrinsic point of view by considering a dynamics on the
manifold SO3(R). In another context, the synchronisation and body-attitude coordination
between spermatozoa has been shown [333] to play an important role in their motility
and eventually on the fertility of sperm. These synchronisation effects are also believed to
cause turbulence “whirlpool waves” observed in highly concentrated sperm [95] and other
living fluids. Mathematical descriptions of these phenomena have focused on the Vicsek
model and related continuum models [331, 94] but have not considered the influence of
the shape of the spermatozoa. Finally, this work may also contribute to the design of
bio-inspired swarming drones with applications for instance to the development of new
efficient research strategies in a three-dimensional space [154].

In the mathematics literature, generalisations of the Cucker-Smale and Kuramoto
models to body-oriented particles have been considered in [183] and are linked to the
study of coordination models on matrix groups [184] or more generally on Lie groups [295].
Compared to the present work, all these models are deterministic models.

Before giving a formal definition of the model, let us first give a few elements on the
structure of the space of rotation matrices in dimension n (we will mainly focus on the
case n = 3). Throughout this work, SOn(R) is seen as a (Riemaniann) submanifold of the
Euclidean space formed by n-by-n square real matrices, denoted byMn(R), endowed with
the inner product

A ·B :=
1

2
Tr(ATB), (2.1)

where Tr denotes the trace operator and AT the transpose of the matrix A ∈Mn(R). The

34

pixabay.com


norm onMn(R) associated to the inner product (2.1) will be denoted by ‖ · ‖. Moreover,
since SOn(R) has also a group structure, it is a Lie group.

Remark 2.1.1. The unusual scaling factor 1/2 in the definition of the inner product (2.1)
is chosen so that in dimension n = 3, the induced Riemaniann distance between a rotation
matrix and the identity matrix is exactly equal to the angle of the rotation. Note that
without this scaling factor, the matrix-norm induced by (2.1) is the classical Frobenius
norm.

Since this group is compact and unimodular, there exists a unique normalised Haar
measure on SOn(R) which is simply denoted by dA and which is defined by the left and
right invariance property:∫

SOn(R)

ϕ(AP )dA =

∫
SOn(R)

ϕ(PA)dA =

∫
SOn(R)

ϕ(A)dA, (2.2)

for all P ∈ SOn(R) and for all measurable test function ϕ on SOn(R).

2.1.2 Individual Based Model(s)

Let us consider N � 1 particles and let us denote their positions and body-orientations
respectively by

XN
t := (X1

t , . . . , X
N
t ) ∈ (R3)N , ANt := (A1

t , . . . , A
N
t ) ∈ SO3(R)N .

The particles evolve according to the following Piecewise Deterministic Markov Process
(PDMP) which extends the PDMP Vicsek model introduced in [141] and that was already
detailed in Section 1.2.

• To each agent i ∈ {1, . . . , N}, it is attached an increasing sequence of random times
(jump times) T i1, T i2, . . . such that the intervals between two successive times are
independent and follow an exponential law with constant parameter ν > 0 (Poisson
process). At each jump time T in, the process (X i

t)t is continuous and the process
(Ait)t is right-continuous and has a discontinuity between its left and right states
respectively denoted by Ai

T i,−n
and AiT in .

• Between two jump times (T in, T
i
n+1), the evolution is deterministic: the orientation of

agent i does not change and it moves in straight line at speed c0 > 0 in the direction
of the first column vector of the body-orientation AiT ine1, i.e. for all t ∈ [T in, T

i
n+1), it

holds that
X i
t = X i

T in
+ c0(t− T in)Aite1, A

i
t = AiT in . (2.3)
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• At T in, the post-jump body-orientation AiT in is drawn from a von Mises distribution
on SO3(R) :

AiT in ∼MMi
n
. (2.4)

Similarly to the von Mises distribution on the sphere, the von Mises distribution on
SO3(R) with parameter M ∈M3(R) is defined by the probability density function:

MM(A) :=
eM·A∫

SO3(R)
eM·A′dA′

. (2.5)

In the present case, the parameter matrix Mi
n is constructed by first computing the

local flux defined at time T i,−n by:

J in :=
1

N

N∑
j=1

K
(
|X i

T in
−Xj

T in
|
)
Aj
T i,−n

, (2.6)

having in mind that Aj
T i,−n

= AjTni for j 6= i and where K is an interaction kernel.
The choice of the matrix Mi

n as a function of J in defines different models. A natural
choice when J in is not singular, is to take

Mi
n = κAi

n, (2.7)

where κ > 0 is a concentration parameter and Ai
n is the local average body-orientation

defined as the projection of J in on SO3(R), that is the unique solution of the maxi-
mization problem:

Ai
n := argmaxA∈SO3(R) A · J in. (2.8)

A less singular choice is simply Mi
n = J in but in this case Mi

n does not necessarily
belong to SO3(R) and the shape of the associated von Mises distribution may become
much more difficult to describe, as explained below (Figure 2.2).

The von Mises distribution on SO3(R) is also known in the literature as the matrix
Fisher distribution [230, 239]. The geometrical structure of SO3(R) makes this distribution
much more complex than its analog on the sphere. Similarly to a standard normal
distribution in R, the von Mises distribution on the sphere Sd−1 is defined only by its
center V ∈ Sd−1 and a nonnegative concentration parameter. Due to the additional
degrees of freedom on SO3(R), the matrix von Mises distribution cannot be so easily
described. To give a brief overview of the possible shapes of the distribution, the first
step is to decompose to parameter matrix M as M = PDQ where P,Q ∈ SO3(R) and
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D is a diagonal matrix whose elements are called the singular values of M. Using this
decomposition (which will be called Special Singular Value Decomposition in Chapter 7)
and the invariance by translation of the Haar measure, one can reduce the problem to the
study of the distribution MD. Depending on the singular values, there is a whole range of
possible shapes as illustrated on Figure 2.2.

(a) (κ, κ, κ) (b) (κ, κ, 0) (c) (κ, 0, 0) (d) (0, 0, 0)

(e)
(κ, κ,−κ)

(f)
(κ,−κ,−κ)

(g)
(−κ,−κ,−κ)

(h)
(0, 0,−κ)

Figure 2.2: For various values of a triplet D of singular values with κ = 40, each
figure shows 105 samples of the von Mises distribution MD in a ball of radius π. The
angle of the rotation is represented by the distance of the point to the center of the
ball (and its color for better visualization). The axis of the rotation is the normalised
vector associated to the point. The x, y and z axes are respectively depicted by red,
green and blue arrows.

The simplest case happens when all the singular values are equal and nonnegative,
that is, when the parameter is a nonnegative multiple of the identity matrix. In this case
the von Mises distribution can be simply characterised by its center and a concentration
parameter. By invariance by translation, this corresponds to the case (2.7) in the PDMP
model. This is the model introduced in [114]. On the other hand, if Mi

n = J in, the
post-jump distribution heavily depends on the singular values of J in. The consequences of
this choice are studied in [111] and Chapter 7.

It should be mentioned that at least when Mi
n is defined by (2.8), the N -particle process
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could also be defined in a slightly more concise way using a system of N Poisson SDEs.
However, in the following we will not use such representation and stick to the “algorithmic”
definition of the system which has two main advantages: the first one is that it gives an
explicit simulation procedure, the second one is that it does not raise wellposedness issues
when J in becomes singular.

In [114], a similar model is proposed where the PDMP is replaced by a diffusion process,
defined by the system of 2N Stratonovich SDEs:{

dX i
t = c0A

i
se1dt,

dAit = PT
Ait

◦
(
νMi

tdt+
√

2σdBi
t

)
,

(2.9)

where (Bi
t)t are N independent Brownian motions onM3(R), ν, σ > 0 and PTA denotes

the projection on the tangent plane to a rotation matrix A ∈ SO3(R) (see Lemma 7.2.1).
Finally, the body-orientation dynamics model (PDMP and diffusion versions) is written
using quaternions instead of rotation matrices in [115, 116]. We will use the equivalence
between quaternions and rotations in Chapter 7 and in Chapter 8 in a numerical context.

2.1.3 Kinetic model

Similarly to the Vicsek model, a propagation of chaos result can be proved when
N → +∞ and leads to the study of the following BGK-type PDE for the particle
distribution ft ≡ ft(x,A) on the space R3 × SO3(R)

∂tft + c0Ae1 · ∇xf = ν(ρftMM[ft] − ft). (2.10)

A common framework for both the Vicsek model and the body-orientation model will be
described in Chapter 4 (see also Section 2.2.1). The result is rigorous when the function
M[f ] is a smooth function of the flux

JK?ft(x) :=

∫∫
R3×SO3(R)

K(x− y)Aft(y, A)dydA.

It does not include the case when

M[ft] = argmaxA∈SO3(R) A · JK?ft , (2.11)

which is not well-defined when Jft is singular. However, similarly to what has been proved
in [50], it is expected that this happens with a probability which tends to 0 when N → +∞
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on a short time interval and provided that the initial flux is not singular. This is not the
main object of the present thesis and we will most of the time study the non singular
model M[ft] = JK?ft or even

M[ft] = Jft =

∫
SO3(R)

Af(y, A)dA, (2.12)

when the interaction kernel K = δ0 is reduced to a Dirac delta. In this case, the well-
posedness of the associated PDE model is also shown in [138] and Chapter 4.

In the spatially homogeneous case and analogously to the Vicsek model, the choice (2.12)
leads to a phase transition phenomenon. In the present case, the equilibria of the BGK
operator are of the form feq = ρMJ where the matrix J ∈M3(R) is characterised by the
equation

J = ρ

∫
SO3(R)

AMJ(A)dA.

The solutions of this matrix equation as well as the long-time convergence of the solutions of
the space-homogemeous BGK equation are completely characterised in [111] and Chapter 7.
To obtain these results, the key element is the Special Singular Value Decomposition
coupled with the group isomorphism between SO3(R) and the space of unit quaternions
where antipodal points are identified. This equivalence recasts the problem into a framework
previously studied in the mathematical literature on liquid crystals [330].

Finally, when the dynamics is replaced by the diffusion process (2.9), the BGK equation
is replaced by the Fokker-Planck equation

∂tft + c0Ae1 · ∇xf = −ν∇A · (M[ft]ft) + σ∆Aft. (2.13)

The results of [111] have recently been extended to this case in [166].

2.1.4 Macroscopic model

Using a hyperbolic re-scaling, the kinetic PDE (2.10) becomes,

∂tf
ε + c0Ae1 · ∇xf

ε =
1

ε

(
ρfεMM[fε] − f ε

)
+O(ε).

A macroscopic model was obtained in [116] by letting ε → 0 following the Generalised
Collision Invariants method introduced in [122]. Assuming that the limit is of the form

f ε −→
ε→0

ρMκA,
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where ρ ≡ ρ(t, x) and A ≡ A(t, x) ∈ SO3(R) depend on t and x and where κ > 0 may
depend on ρ, it is shown in [116] and in Chapter 7 that the couple (ρ,A) satisfies (formally)
the system:

∂tρ+∇x · (c1ρΩ) = 0 (2.14a)

(∂t + c2(Ω · ∇x))Ω + PΩ⊥(c3∇x log ρ+ c4r) = 0, (2.14b)

(∂t + c2(Ω · ∇x))u− u · (c3∇x log ρ+ c4r)Ω + c4δv = 0, (2.14c)

(∂t + c2(Ω · ∇x))v − v · (c3∇x log ρ+ c4r)Ω− c4δu = 0, (2.14d)

where the rotation field A is written in terms of the basis vectors

Ω = Ae1, u = Ae2, v = Ae3.

This system is called the “Self-Organised Hydrodynamics for Body-orientation” (SOHB)
model in [114]. The constants c1, c2, c3, c4 are explicit functions of κ and c0. The vector
field r(t, x) ∈ R3 and the scalar field δ(t, x) ∈ R are defined by

r := (∇x · Ω)Ω + (∇x · u)u+ (∇x · v)v,

δ := [(Ω · ∇x)u] · v + [(u · ∇x)v] · Ω + [(v · ∇x)Ω] · u.

The operators r and δ makes the system (2.14) more complex than the analog macro-
scopic model (1.12)-(1.13) associated to the Vicsek model. In the body-orientation frame-
work, there are additional degrees of freedom given by the two vectors (u, v) which are
nonetheless subject to geometrical constraints. These constraints produce additional
pressure terms involving r and δ. It will be shown in Chapter 8 that the interplay between
the vectors Ω, u and v encoded in the operators r and δ create explicit solutions of the
system (2.14). These solutions correspond to new self-organised phenomena in collective
dynamics which are studied numerically in [106] and Chapter 8.

2.2 Systems of particles and applications

Part I of this thesis will be devoted to the study of stochastic particle systems initially
motivated by the Vicsek and body-attitude coordination models. Three different aspects
of particle systems will be discussed: their rigorous mean-field limit, their numerical
simulation and their application to sampling problems.
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2.2.1 Propagation of chaos and moderate interaction

The body-orientation dynamics model and the Vicsek model share many similarities. For
the PDMP Vicsek model introduced in [140], a rigorous propagation of chaos result was
missing. In Chapter 4 of this thesis, a common framework for a large class of piecewise
deterministic geometrically enriched models which includes both models is introduced.
The goal is to prove the propagation of chaos result which leads to various BGK-type
equations (respectively (2.10) and (1.9) for the body-orientation and Vicsek models). As
this topic is not new and many progress have been made in the last years, a short review
on propagation of chaos is included in Chapter 3. It is based on the more extensive review
article [76].

Although there already exist some methods to treat piecewise deterministic systems,
there are two main contributions in this thesis. The first one is a new coupling method at the
level of the trajectories for mean-field PDMP systems in the spirit of the renowned coupling
method of Sznitman for diffusion processes [307]. This method shows a quantitative
propagation of chaos property on any bounded time interval. This is a crucial element for
the second contribution which is a moderate interaction result. As mentioned previously
in this introduction, in moderately interacting particle systems, the interaction radius of
the particles is scaled according to the total number of particles. As this number goes
to infinity, a PDE with a purely local interaction term is obtained, which is a classical
analytical setting to study kinetic equations. The concept of moderate interaction was
introduced by Oelschläger [273] but the result in Chapter 4 is rather inspired by the work
of Jourdain and Méléard [218] who use a more analytical approach at the PDE level.

2.2.2 Simulation of mean-field particle systems and applications

In parallel to the (rigorous or formal) derivation of PDE models, another more direct
way to study particle systems is the numerical simulation of the Individual Based Model.
The derivation of PDE models is not easy, often partially formal and the mathematical
hypothesis and results are not always optimal. The direct simulation of the corresponding
IBM is often the only way to check that a PDE model is relevant, by comparing its
predictions to the output of the simulation of the IBM. Moreover, since swarming models
can exhibit a wide range of complex unexpected phenomena, a single PDE model, which
only describes a statistical behaviour, may not be able to capture all the complexity of the
particle model. The fine study and tuning of the parameters of the particle simulations
may help understanding which hypotheses should be made in order to derive the PDE
model relevant to a specific phenomenon.
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The simulation of particle systems is, at first sight, most often a relatively easy task
which makes possible the design of versatile numerical codes, well suited to analyse the
influence of the various modelling hypotheses. However, particle simulations are expensive.
Especially when the number of particles is large (say more than 104), the computational
cost may exceed the memory capability of a standard computer or become extremely time
consuming. For mean-field particle systems, the naive cost is quadratic in the number of
particles, which quickly becomes prohibitive. Many computational workarounds, often
based on approximation procedures, have been developed in the past decades to cope
with this difficulty. Some of them will be reviewed in Chapter 5. However, nowadays,
the use of massively parallelised processors (GPU) opens the way to real-time large scale
simulations which do not necessitate artificial numerical approximations. Thanks to the
recent development of high-level user friendly interfaces for GPU computing [78], the
SiSyPHE library [139] presented in Chapter 5 allows the efficient simulations of a wide
range of classical swarming models within a common framework.

Two applications of these ideas are presented in this thesis. The first one is directly
related to the body orientation model. In Chapter 8, the comparison between the particle
simulations and the prediction of the macroscopic model both validates the kinetic theory
approach and shows the existence of new unexpected phenomena. The second application
is the design of efficient particle methods for sampling problems in Chapter 6.

2.2.3 A collective Monte Carlo method

Chapter 6 of the present thesis will present a new class of sampling algorithms based on
the simulation of a system of interacting mean-field particles. This work generalises the
classical Metropolis-Hastings algorithm whose basic form is recalled below.

In order to construct independent samples from an unknown distribution π, the
Metropolis-Hastings is a sequential algorithm based on an accept-reject method: starting
from an arbitrary state X, the idea is to construct a biased random-walk which is ergodic
with respect to π. At each step, a random perturbation Y ∼ Q(·|X) of the current state X
is proposed using a random-walk kernel Q. Then, with a well-chosen probability, this
new state may be accepted as the next state or rejected in which case the current state
does not change. When the random walk kernel is symmetric, the classical choice for the
acceptance probability is min(1, π(Y )/π(X)) which means that the probability to accept
a proposed state Y is all the more high than the acceptance ratio π(Y )/π(X) is large.
Under very mild assumptions, this biased random walk is shown to be ergodic with respect
to π [253, 137, 289].
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This simple procedure is generalised in [86] and Chapter 6 to a population of N particles
XN = (X1, . . . , XN) by allowing the random-walk kernel to depend on the full state of
the system. For instance, one can propose for each particle i ∈ {1, . . . , N}, a new state:

Y i ∼ K ? µXN , (2.15)

where K is an interaction kernel, µXN the empirical measure of the system and ? denotes
the convolution product. In this case, the law of the proposition can be understood as a
mixture of all the classical random-walk Metropolis-Hastings proposal laws associated to
the N particles. Then each proposed state Y i needs to be individually accepted or rejected
depending on the generalised acceptance ratio

π(Y i)K ? µXNt (X i)

π(X i)K ? µXNt (Y i)
. (2.16)

This defines a Markov chain which is, in general, not ergodic with respect to π⊗N but
which satisfies the propagation of chaos property. As a consequence, the N particles
asymptotically behave as N independent Markov chains. Using a mesoscopic PDE
description, these Markov chains can then be shown to be ergodic with respect to π. This
generalised procedure is as versatile as the classical Metropolis-Hastings algorithm. The
convergence can be proved under mild assumptions, it can be easily adapted to various
settings and only requires to evaluate π (and not its gradient, for instance). However, it will
be shown in Chapter 6 that by taking advantage of the full knowledge of the N particles,
the convergence speed is greatly improved. Moreover, there is much freedom in the choice
of the interaction mechanism (here encoded in the choice of the proposition (2.15)) which
can be adapted to various situations. As explained in the previous section, the additional
computational cost due to the convolution operations in (2.16) may seem prohibitive but
are easily handled using a GPU implementation.

2.3 Organisation of the thesis

This thesis is divided into two main parts which follow the natural progression from the
microscopic scale to the macroscopic scale.

The first part is devoted to an analytical and numerical study of mean-field particle
systems from a probabilistic point of view. The central question is the propagation of
chaos property for various swarming models and its applications to sampling problems.
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• Chapter 3 is an introductory chapter which reviews old and recent material on the
mathematics of propagation of chaos. This chapter as well as most of the review
material presented throughout the thesis are based on the review article [76].

• Chapter 4 proves the propagation of chaos and a so-called moderate interaction
property for a large class of geometrically enriched particle systems which encompasses
the Vicsek model and the body-orientation dynamics model. It is based on the
article [138].

• Chapter 5 presents the main features of the SiSyPHE library [139] developed for the
GPU simulation of large-scale mean-field interacting particle systems.

• Chapter 6 presents a new sampling algorithm based on the simulation of a swarm of
particles as well as its convergence analysis. It is based on the article [86].

The second part of this thesis is devoted to the study of PDE models for the body-
orientation dynamics model.

• Chapter 7 is devoted to the spatially homogeneous kinetic model associated to the
body-orientation dynamics model. An appropriate choice of the target matrix leads
to phase transition phenomena. The macroscopic limit of this model is also presented.
It is based on the article [111].

• Chapter 8 is a numerical study of the macrosocopic model associated to the body-
orientation dynamics model. A new class of explicit solutions is shown and studied
using a direct simulation of the particle system. It is based on the article [106].

• Chapter 9 presents a derivation of the generalisation of the macroscopic model
associated to the body-orientation dynamics model to an arbitrary dimension. It is
based on the article [110].

Finally the concluding Chapter 10 is devoted to the future perspectives of this work.

2.4 Contribution statement

The results presented in this thesis are based on the following articles and preprints (sorted
in chronological order) that I authored or co-authored.

• The article [138] (Chapter 4) is my own work. The original idea was initially proposed
by Amic Frouvelle and the first version of the manuscript was substantially improved
following the advice of Sara Merino-Aceituno, Pierre Degond and Amic Frouvelle.
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• The article [111] (Chapter 7) is a collaboration with Pierre Degond, Amic Frouvelle
and Sara Merino-Aceituno who proposed and conceptualized the study of the BGK
model associated to the body-orientation dynamics. The methodology, investigations
and the proofs were done in collaboration with Amic Frouvelle and Pierre Degond. I
wrote a first version of the manuscript later improved by Sara Merino-Aceituno and
Pierre Degond.

• The article [86] (Chapter 6) is a collaboration with Grégoire Clarté and Jean Feydy.
The original idea and design of the algorithm are initially due to Grégoire Clarté
and myself (equal contribution). I carried out the analytical study and designed
the methodology of the proofs. The numerical code was written by Jean Feydy.
The three authors equally contributed to the design and analysis of the numerical
experiments, the development of the variants of the original algorithm as well as the
writing of the manuscript.

• The article [106] (Chapter 8) is a collaboration with Pierre Degond and Mingye Na.
The conceptualization and original idea is due to Pierre Degond. Pierre Degond and
myself equally contributed to the analytical study of the solutions and the writing of
the manuscript. A first version of the code was written by Mingye Na but I re-wrote
a more efficient GPU code used for the simulations presented in the article.

• The Python library [139] (Chapter 5) is my own work.

• The review article [76] (Chapter 3) is a collaboration with Louis-Pierre Chaintron.
We equally contributed to the choice of the content, to the organisation of the article
and preliminary drafts, and to the original ideas presented. The writing of the final
manuscript is mostly due to myself.

• The article [110] (Chapter 9) is a collaboration with Pierre Degond and Amic
Frouvelle. The derivation of the model in arbitrary dimension was initially written by
myself following a methodology designed by the three authors (equal contribution).
The generalised framework using representation theory as well as the writing of the
manuscript is due to Pierre Degond.
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Notations and conventions

For the convenience of the reader, the main notations which are used throughout the thesis
are gathered below.

Sets

C(I, E) The set of continuous functions from a time interval I = [0, T ] to a set
E, endowed with the uniform topology.

Cb(E), Ck
b (E) Respectively the set of real-valued bounded continuous functions and

the set of functions with k ≥ 1 bounded continuous derivatives on a
set E.

Dn(R) The space of n-dimensional square diagonal matrices.
D(I, E) The space of functions which are right continuous and have left limit

everywhere from a time interval I = [0, T ] to a set E, endowed with
the Skorokhod J1 topology. This is the space of the so-called càdlàg
functions. This space is also called the Skorokhod space or the path
space.

H The group of unit quaternions.
Lp(E) or Lpµ(E) The set of measurable functions ϕ defined almost everywhere on a

measured space (E, µ) such that the |ϕ|p is integrable for p ≥ 1. When
p = +∞, this is the set of functions with a bounded essential supremum.
We do not specify the dependency in µ when no confusion is possible.

Mn(R) The set of n-dimensional square real matrices.
M(E) The set of signed measures on a measurable space E.
M+(E) The set of positive measures on a measurable space E.
P(E) The set of probability measures on a space E.
Pac(E) The set of absolutely continuous probability measures on a space E.

The measure and its associated probability density function are written
indifferently µ(dx) ≡ µ(x)dx.
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Pp(E) The set of probability measures with bounded moment of order p ≥ 1

on a space E.
P̂N(E) The set of empirical measures of size N over a set E, that is measures

of the form µ = 1
N

∑N
i=1 δxi , where x

i ∈ E.
R+ The set [0,+∞).
SN The permutation group of the set {1, . . . , N}.
Sd−1 The sphere of dimension d− 1.

Generic elements and operations

A(θ,n) The rotation of angle θ ∈ [0, π] around the axis n ∈ S2.
C A generic nonnegative constant, the value of which may change

from line to line.
C(a1, . . . an) A generic nonnegative constant which depends on some fixed

parameters denoted by a1, . . . , an. Its value may change from
line to line.

diag(x) The d-dimensional diagonal matrix whose diagonal coefficients
x1, . . . , xd are the components of the d-dimensional vector x.

∇ · V The divergence of a vector field V : Rd → Rd or of a matrix
field V : Rd → Md(R), respectively defined by ∇ · V =∑d

i=1 ∂xiVi or componentwise by (∇ · V )i =
∑d

j=1 ∂xjVij.
A ·B and ‖A‖ The inner product of two matrices A,B ∈ Md(R) defined

by A · B := 1
2

∑d
i=1

∑d
j=1AijBij and the associated norm

‖A‖ :=
√
A · A.

(e1, e2, . . . , en) The canonical basis of Rn.
∇2V or HessV The Hessian matrix of a scalar field V : Rd → R defined

componentwise by (∇2V )ij = ∂2
xi,xj

V .
Id The d-dimensional identity matrix.
Id The identity operator on a vector space.
〈x, y〉 or x · y The Euclidean inner product of two vectors x, y ∈ Rd defined

by 〈x, y〉 ≡ x · y :=
∑d

i=1 x
iyi. One notation or the other may

be preferred for typographical reasons in certain cases.
Mij The (i, j) (respectively row and column indexes) component

of a matrix M .
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[w]× For a vector w = (w1, w2, w3)
T ∈ R3, the antisymmetric

matrix [w]× :=

 0 −w3 w2

w3 0 −w1

−w2 w1 0

.

P(u) or Pu⊥ The projection matrix P(u) ≡ Pu⊥ := Id − u⊗u
|u|2 on the plane

orthogonal to a vector u ∈ Rd.
PTA The projection on the tangent plane to the point A ∈ SO3(R)

defined by PTAJ = JAT−AJT

2
A.

ϕ ∈ Cb(E) A generic test function on E.
ϕN ∈ Cb(EN) A generic test function on the product space EN .
Φ ∈ Cb(P(E)) A generic test function on the set of probability measures on

E.
u⊗ v, µ⊗ ν or ϕ⊗ ψ Respectively, the matrix tensor product of two vectors u, v ∈

Rd defined componentwise by (u ⊗ v)ij = uivj; the product
measure on E×F of two measures µ, ν respectively on E and
F ; the product function on E × F defined by (ϕ⊗ ψ)(x, y) =

ϕ(x)ψ(y) for two real-valued function ϕ, ψ respectively on E
and F .

TrM The trace of the matrix M .
MT The transpose of the matrix M .
xN = (x1, . . . , xN) A generic element of a product space EN . The components

are indexed with a superscript.
xM,N = (x1, . . . , xM) The M -dimensional vector in EM constructed by taking the

M first components of xN .
x = (x1, . . . , xd)

T and |x| A generic element of a d-dimensional space and its norm. The
coordinates are indexed with a subscript. The norm of x
denoted by |x| is the Euclidean norm.

Probability and measures

K ? µ The convolution of a function K : E × F → G with a measure µ
on F defined as the function K ? µ : x ∈ E 7→

∫
F
K(x, y)µ(dy) ∈ G.

When E = F = G = Rd and K : Rd → Rd, we write K ? µ(x) =∫
Rd K(x− y)µ(dy).

δx The Dirac measure at the point x.
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µxN The empirical measure defined by µxN = 1
N

∑N
i=1 δxi where xN =

(x1, . . . , xN).
Eµ[ϕ] Alternative expression for 〈µ, ϕ〉 when µ is a probability measure. When

µ = P on (Ω,F , (Ft)t,P), the expectation is simply denoted by E.
H[ν|µ] The relative entropy (or Kullback-Leibler divergence) between two

measures µ, ν defined by H[ν|µ] :=
∫

dν
dµ

log
(

dν
dµ

)
dµ.

〈µ, ϕ〉 or 〈ϕ〉µ The integral of a measurable function ϕ with respect to a measure µ.
Law(X) The law of a random variable X as an element of P(E) where X takes

its value in the space E.
(Ω,F , (Ft)t,P) A filtered probability space. Unless otherwise stated, all the random

variables are defined on this set. The expectation is denoted by E.
σ(X1, X2, . . .) The σ-algebra generated by the random variables X1, X2, . . ..
T#µ The pushforward of the measure µ on a set E by the measurable map

T : E → F . This is a measure on the set F defined by T#µ(A ) =

µ(T−1(A )) for any measurable set A of F .
‖ · ‖TV The Total Variation (TV) norm for measures.
Wp The Wasserstein-p distance between probability measures.
X ∼ µ It means that the law of the random variable X is µ.
(Xt)t or (Zt)t The canonical process on the path space D(I, E) defined by Xt(ω) =

ω(t).
(XN

t )t or (ZN
t )t The canonical process on the product space D(I, E)N with components

XN
t = (X1

t , . . . ,X
N
t ).

Systems of particles and operators

E The state space of the particles, assumed to be at least a Polish space.
fNt The N -particle distribution in P(EN) at time t ≥ 0.
fk,Nt The k-th marginal of fNt .
fNI The N -particle distribution on the path space in P(D(I, EN )) or P(C(I, EN ))

for a time interval I = [0, T ]. We identify D(I, EN) ' D(I, E)N .
ft The limit law in P(E) at time t ≥ 0.
fI The limit law on the path space in P(D(I, E)) or P(C(I, E)).
FN
t The law of the empirical process in P(P(E)) at time t ≥ 0.
FN
I The strong pathwise law of the empirical process in P(P(D(I, E))) on the time

interval I = [0, T ].
LN The N -particle generator acting on (a subset of) Cb(EN).
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L �i ϕN The action of an operator L on (a subset of) Cb(E) against the i-th variable
of a function ϕN in Cb(EN), defined as the function in (a subset of) Cb(EN)

L �i ϕN : (x1, . . . , xN) 7→ L[x 7→ ϕN(x1, . . . , xi−1, x, xi+1, . . . , xN)](xi). The
definition readily extends to the case of an operator L(2) acting on Cb(E2) and
two indexes i < j in which case we write L(2) �ij ϕN .

µ̂Nt An alternative lighter notation for the empirical measure of a system of particles
when no confusion is possible.

(XN
t )t The N -particle process, with components XN

t = (X1,N
t , . . . , XN,N

t ) ∈ EN .
Often we write X i,N

t ≡ X i
t and (XN

t )t ≡ XN
[0,T ].

(ZNt )t An alternative notation for the N -particle process with ZNt = (Z1,N
t , . . . , ZN,N

t ).
Often used for kinetic systems where Zi

t = (X i
t , V

i
t ) with X i

t the position and
V i
t the velocity (or the body-orientation) of the i-th particle.

Acronyms and abbreviations

CMC Collective Monte-Carlo (Chapter 6)
FS Flocking State (Section 8.3)
GCI Generalised Collision Invariant (Equation (7.42))
GS Generalised topological Solution (Section 8.3)
GOP Global Order Parameter (Section 8.5.1)
HW Helical Wave (Section 8.3)
IBM Individual Based Model
KIDS Kernelised Importance-by-Deconvolution Sampling (Section 6.5.4)
MCMC Markov Chain Monte Carlo
MO Milling Orbit (Section 8.3)
MoKA Mixture of Kernels Adaptive CMC (Section 6.5.3)
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PMC Population Monte Carlo [54]
PDMP Piecewise Deterministic Markov Process
PMH Parallel Metropolis-Hastings (Section 6.5.1)
RP, RPZ, RPX Roll Polarization (Equation (8.36))
SMC Sequential Monte Carlo [128]
SSVD Special Singular Value Decomposition (Definition 7.2.7)
SOHB Self-Organised Hydrodynamics for the Body-orientation (Section 2.1.4)
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Part I

Systems of particles and propagation of
chaos
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Chapter 3

A review of models, methods and
applications

The content of this chapter is based on the following review article written in collaboration
with Louis-Pierre Chaintron

[76] L.-P. Chaintron and A. Diez. “Propagation of chaos: a review of models, methods and
applications”. arXiv preprint: arXiv:2106.14812 (2021).

While the mathematical study of the propagation of chaos property traces back to
Kac [223] and McKean [249], it has recently enjoyed some kind of revewal due to its
importance in the study of collective dynamics models. The goal of the present work
is to give a short overview of the recent advances on the subject in a unified modelling
framework.

3.1 Introduction

When Boltzmann published his most famous article [44] one century and a half ago, the
study of large systems of interacting particles was entirely motivated by the microscopic
modelling of thermodynamic systems. Although it was far from being an accepted idea at
that time, Boltzmann postulated that since a macroscopic volume of gas contains a myriad
of elementary particles, it is both hopeless and needless to keep track of each particle and
one should rather seek a statistical description. He thus derived the equation that now
bears his name and which gives the time evolution of the continuum probability distribution
(in the phase space) of a typical particle. With the H-theorem, he also extended and
justified the pioneering works of Maxwell and Clausius for equilibrium thermodynamic
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systems, paving the way alongside Gibbs for a consistent kinetic theory of gases. The
Boltzmann equation is derived from first principles under a crucial assumption, called
molecular chaos. This assumption was already known from Maxwell and is often called
the Stosszahlansatz since Ehrenfest. Informally, it translates the idea that, despite the
multitude of interactions, two particles taken at random should be statistically independent
when the total number of particles grows to infinity. It is not so clear how the appearance
of probability theory should be interpreted in this context. In the following years, the
Stosszahlansatz and its consequences (the H-theorem) were the object of a fierce debate
among physicists as they seem to break the microscopic reversibility. Beyond the scientific
debate, it has raised metaphysical and philosophical questions about the profound nature
of time and randomness [74, 88].

The rigorous justification of the work of Boltzmann and the status of molecular chaos
became true mathematical questions when Hilbert addressed them in his Sixth Problem at
the Paris International Congress of Mathematicians in 1900. Quoting Hilbert, the problem
which motivates the present work is to “[develop] mathematically the limiting processes
[. . . ] which lead from the atomistic view to the laws of motion of continua”. Our starting
point will be the seminal article of Kac [223]. More than half a century after Hilbert, Kac
gave the first rigorous mathematical definition of chaos and introduced the idea that for
time-evolving systems, chaos should be propagated in time, a property therefore called
the propagation of chaos. Kac was still motivated by the mathematical justification of
the classical collisional kinetic theory of Boltzmann for which he developed a simplified
probabilistic model. Soon after Kac, McKean [250] introduced a class of diffusion models
which were not originally part of Boltzmann theory but which satisfy Kac’s propagation of
chaos property. In the classical kinetic theory of Boltzmann, the problem is the derivation
of continuum models starting from deterministic, Newtonian, systems of particles. In
comparison, the fundamental contribution of Kac and McKean is to have shown that the
classical equations of kinetic theory also have a natural stochastic interpretation. This
philosophical shift is addressed in the enlightening introduction of Kac [224] written for
the centenary of the Boltzmann equation.

Kac and McKean introduced a new mathematical formalism, gave many insights on
the stochastic modelling in kinetic theory and proved the two building block theorems (see
Theorem 3.4.2 in this Chapter). Their works have stimulated the development of a rich
and still active mathematical kinetic theory. Keeping strong connections with the original
theory of Boltzmann, some fundamental questions raised several decades ago have been
answered only recently (see for instance [38, 168, 257]). On the other hand, systems of
interacting particles are ubiquitous in many applications now and over the last two decades,
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the tools and concepts developed in kinetic theory have somehow escaped the realm of
pure statistical physics. As explained in the introduction of this thesis, some recent new
domains of applications include mathematical biology and social sciences [21, 22, 266,
265, 109, 4, 322], data sciences and optimization [125, 126, 127, 281, 314, 177, 66, 251,
292, 302, 82, 104] or mean-field game theory [57, 56, 62, 63]. Compared to the models in
statistical physics, many aspects should be reconsidered. To cite a few examples: the basic
conservation laws (of momentum, energy. . . ) do not always hold for biological systems
and may be replaced by other types of constraints (optimization constraints, geometrical
constraints. . . ); the intrinsic randomness (or uncertainty) of the models in applied sciences
is often a crucial modelling assumption; the complexity of the interaction mechanisms
entails new analytical tools, etc. These differences have motivated many new techniques,
new insights on the question of propagation of chaos and, in the end, new results.

There are already classical review articles on propagation of chaos in the literature which
focus on different aspects. The famous course of Sznitman at Saint-Flour [307] studies
many of the most important historical probabilistic models. The probabilistic methods
are explained in details in the book [308] (in particular in the courses of Méléard [252] and
Pulvirenti [282]). More recently, the review of Jabin and Wang [207] focuses on McKean
mean-field systems and PDE applications. By its nature, the notion of chaos lies in the
interplay between probability theory and Partial Differential Equations. Both analytic and
probabilistic methods are discussed in this chapter. We also refer to the article by Hauray
and Mischler [194] which is to our knowledge, the most complete reference on Kac’s chaos
(without propagation of chaos). For deterministic systems which will not be considered
here, we refer to the very thorough reviews [205, 173].

3.2 Systems of particles, Kac’s chaos and propagation

of chaos

3.2.1 Markovian framework

Throughout this work, a particle system is defined as a Markov process (XN
t )t∈I with values

in EN where E is a Polish space, N is the number of particles and I = [0, T ], T ∈ (0,+∞]

is a time interval. Throughout this chapter, we use the notation XN
t = (X1,N

t , . . . , XN,N
t )

for the particle system and we write X i
t ≡ X i,N

t without the N superscript for the i-th
particle when no confusion is possible.

From the theory of Markov processes the probability distribution of the particle system
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at time t denoted by fNt ∈ P(EN) satisfies the (weak) Liouville equation (sometimes also
called the master equation):

∀ϕN ∈ Dom(LN),
d

dt
〈fNt , ϕN〉 = 〈fNt ,LNϕN〉, (3.1)

where LN is the infinitesimal generator of the particle system acting on a (dense) subset of
test functions Dom(LN ) ⊂ Cb(E

N ). In stochastic analysis, the (more general) pathwise law
fN[0,T ] ∈ P(D([0, T ], EN)) is sometimes preferred and is characterised as the solution of a
martingale problem. Namely, fN[0,T ] is the unique probability distribution on the Skorokhod
space of càdlàg functions D([0, T ], EN) such that for any test function ϕN ∈ Dom(LN),
the process defined by:

MϕN
t := ϕN(XN

t )− ϕN(XN
0 )−

∫ t

0

LNϕN(XN
s )ds,

is a fN[0,T ]-martingale. In this definition, the process (XN
t )t≥0 denotes the canonical process

on D([0, T ], EN) defined for any ω ∈ D([0, T ], EN) and any t ≥ 0 by XN
t (ω) = ω(t).

3.2.2 Exchangeable particle systems

The particle system is assumed to be exchangeable in the sense that fNt (resp. its pathwise
version fN[0,T ]) is a symmetric probability distribution on EN (resp. on the path space
D([0, T ], E)N ' D([0, T ], EN )). This assumption is crucial for the rest of the theory. The
structure of the space of symmetric probability measures has been much studied in the
literature (not in relation with particle systems) and it will be useful to first review some
of the key elements of the theory. Below we distinguish the case N < +∞ considered up
to now and the case N = +∞ which will be useful later.

Finite particle systems

Given a symmetric probability distribution fN ∈ Psym(EN) and for any k ≤ N , there
exists a unique k-th marginal distribution denoted by fk,N on Ek defined by:

∀ϕk ∈ Cb(Ek), 〈fk,N , ϕk〉 = 〈fN , ϕk ⊗ 1⊗(N−k)〉.

The distribution fk,N ∈ Psym(Ek) is itself a symmetric probability measure and the N -th
marginal is of course the measure fN itself. However, keeping in mind that the final goal
is to take N → +∞, one can consider for any fixed k ∈ N the limit of fk,N in P(Ek),
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which is not possible for fN directly since it belongs to a space which depends on N . In a
dynamic framework, when fNt solves the Liouville equation (3.1), for each given k ∈ N, a
natural idea is to derive an equation for the k-th marginal distribution by considering a
test function in (3.1) of the form ϕN = ϕk ⊗ 1⊗(N−k) with ϕk ∈ Cb(Ek). As the marginals
are not independent, this leads to a hierarchy of equation called the BBGKY hierarchy, see
for instance [28] and the references therein regarding the BBGKY hierarchy for mean-field
models.

Alternatively to the marginal distributions and with a more probabilistic point of view,
a system XN = (X1, . . . , XN) ∈ EN of fN -distributed random variables is equivalently
described by its (random) empirical measure

µXN =
1

N

N∑
i=1

δXi ∈ P(E), (3.2)

as this measure contains all the statistical information up to the particle numbering (a
quantitative version is stated in the Lemma 3.2.2 below). One can immediately see the
advantage of such representation: it is possible to work with only one element which belongs
to the fixed space P(E), in contrast to fN ∈ P(EN) or to the N marginal distributions.

Remark 3.2.1. To be completely rigorous, one should work in the quotient space EN/SN ,
whose elements x̄N gather all the permutations of the vector xN ∈ EN . There is the one
to one mapping:

µN : EN/SN → P̂N(E), x̄N 7→ µxN , (3.3)

where P̂N(E) denotes the space of empirical measures of size N on E. Note that the
two sets Cb(EN/SN) and Cb(P̂N(E)) are naturally identified by taking the composition
with this map. Moreover, since all the measures considered are symmetric, integration
on EN/SN is equivalent to integration on EN . This is why, with a slight abuse, the test
functions always belong to Cb(EN).

Since µXN ∈ P̂N(E) ⊂ P(E) is a random element, a somehow unfortunate complica-
tion arises for the space of observables Cb(P(E)): in this framework, test functions are
continuous bounded functions on (a subset of) the set of probability measures (endowed
with the weak topology). This is clearly more difficult to handle than usual test functions
on EN or Ek.

From the point of view of measure theory, studying the empirical measure (3.2) means
that the law fN is seen through its push-forward by the map (3.3) (seen as a map
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EN → P(E)), defined by:

FN := (µN)#f
N ∈ P(P(E)).

The following lemma shows that FN is enough to characterise fN , at least when N is
large.

Lemma 3.2.2 (Approximation rate of marginals). For k ≤ N , let the moment measure
F k,N ∈ P(Ek) be defined by:

∀ϕk ∈ Cb(Ek), 〈F k,N , ϕk〉 =

∫
P(E)

〈ν⊗k, ϕ〉FN(dν).

Then as N → +∞, it holds that:

∥∥fk,N − F k,N
∥∥

TV
≤ 2

k(k − 1)

N
. (3.4)

Coming back to the probabilistic point of view, FN is the law of the random measure
µXN where XN ∼ fN . The moment measures can thus be written

F k,N = E
[
µ⊗kXN

]
,

where this expression is understood in the weak sense, for all ϕk ∈ Cb(Ek),

〈F k,N , ϕk〉 =
〈
E
[
µ⊗kXN

]
, ϕk
〉

= E
[〈
µ⊗kXN , ϕk

〉]
.

This (elementary) lemma is known at least since [179] where it was used to prove a
propagation of chaos result (see [258, 257]). This lemma can also be seen as a finite system
version of the de Finetti theorem, see [136, Theorem 13].

Infinite particle systems and random measures

Extending the previous theory to N = +∞, an infinite system of particles can be described
either by the infinite sequence of marginal distributions (fk)k or by the sequence of random
empirical measures associated to any k sub-system of particles. However, compared to the
finite case, the relation between the two is more subtle, it is the object of famous theorems
due to de Finetti, Hewitt and Savage. Let us first cite a few preliminary results.

Given an infinite system of exchangeable particles (X i)i≥1, important measurable events
are given by two particular σ-algebras.
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Definition 3.2.3 (Symmetric and asymptotic σ-algebras). Let Csym(EN) denote the set
of symmetric continuous R-valued functions on EN which are invariant under permutations
of their arguments.

• The σ-algebra of exchangeable events (i.e. events which do not depend on any finite
permutation of the X i) is defined by:

S∞ :=
⋂
k≥1

σ
(
σ
(
ϕk(X

1, . . . , Xk), ϕk ∈ Csym(Ek)
)
, Xk+1, Xk+2, . . .

)
,

where we recall that σ(X1, X2, . . .) is the σ-algebra generated by the random variables
X1, X2, . . ..

• The asymptotic σ-algebra (whose events do not depend on any finite number of the
X i) is defined by:

A∞ :=
⋂
k≥1

σ
(
Xk+1, Xk+2, . . .

)
.

The fundamental result for exchangeable systems is the following proposition.

Proposition 3.2.4 ([241]). For exchangeable systems, the following equality holds

S∞ = A∞.

Corollary 3.2.5 (Hewitt-Savage 0-1 law). In the special case where the X i are i.i.d.
variables (and then automatically exchangeable), then any event in the σ-algebra S∞ or in
the σ-algebra A∞ has measure 0 or 1. This is known as the Kolmogorov 0-1 law for A∞
and the Hewitt-Savage 0-1 law for S∞.

Then, since we have to deal with sequences of random (empirical) measures, a few
topological results on the space P(P(E)) are needed; this motivate the following results.
A thorough discussion of the theory of random measures can be found in [101]. The most
important notion in this context is the notion of moment measure defined below.

Definition 3.2.6 (Moment measures). For k ∈ N, the k-th moment measure of a measure
π ∈ P(P(E)) is defined by:

πk :=

∫
P(E)

ν⊗kπ(dν) = Eν∼π
[
ν⊗k
]
∈ P(Ek).

This definition is understood in the weak sense, so that 〈πk, ϕk〉 = Eν∼π〈ν⊗k, ϕk〉 for any
ϕk in Cb(Ek).
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The moment measures are essential because they give useful characterisations of the
convergence and the tightness in P(P(E)).

Lemma 3.2.7. The following results hold true.

(1) A sequence (πN)N of random measures in P(P(E)) converges weakly towards π ∈
P(P(E)) if and only if

∀k ≥ 1, πkN −→
N→+∞

πk,

where the convergence is the weak convergence in P(Ek).

(2) The tightness of a sequence (πN)N in P(P(E)) is equivalent to the tightness of the
sequence (π1

N)N in P(E).

Finally, the following theorem summarises the main results due to de Finetti, Hewitt
and Savage.

Theorem 3.2.8. Let π ∈ P(P(E)). Then there exists a sequence (X i)i≥1 of E-valued
exchangeable random variables such that the following properties hold.

(1) For any k ≥ 1, (X1, . . . , Xk) has joint distribution πk.

(2) The weak limit

µ = lim
k→+∞

1

k

k∑
i=1

δXi ∈ P(E),

exists almost surely and µ is π-distributed.

(3) The random measure µ is S∞-measurable, and conditionally on S∞ the random
variables X i are independent and µ-distributed.

Conversely, if (fN)N is an infinite sequence of symmetric probability measures on EN ,
N ∈ N, which satisfy the compatibility relation for all j ≤ k,

∀ϕj ∈ Cb(Ej), 〈fk, ϕj ⊗ 1⊗(k−j)〉 = 〈f j, ϕj〉, (3.5)

then there exists a unique π ∈ P(P(E)) such that for all N :

fN = πN :=

∫
P(E)

ν⊗Nπ(dν).

The first part of the theorem is due to de Finetti and can be found in [101, Theo-
rem 11.2.1]. It states that infinite exchangeable systems are conditionally independent.
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The question of chaos and propagation of chaos deals with the case when the “conditional”
can be removed, i.e. when S∞ is trivial. The second part of the theorem is due to Hewitt
and Savage and can be found in [194, Theorem 5.1] with much more details and alternative
quantitative versions. Note that when fN = f⊗N for a given f , then π = δf and this
corresponds to the case when S∞ is trivial in the first part.

3.2.3 Chaos and propagation of chaos

The mathematical notions of chaos and propagation of chaos, as defined below, have been
introduced by Kac [223].

Definition 3.2.9 (Kac’s chaos). Let f ∈ P(E). A sequence (fN)N≥1 of symmetric
probability measures on EN is said to be f -chaotic when for any k ∈ N and any function
ϕk ∈ Cb(Ek),

lim
N→+∞

〈fN , ϕk ⊗ 1⊗N−k〉 = 〈f⊗k, ϕk〉.

It means that for all k ∈ N, the k-th marginal satisfies fk,N → f⊗k for the weak topology.

From now on, the initial distribution fN0 ∈ P(EN) of the various particle systems
considered is always assumed to be f0-chaotic for a given f0 ∈ P(E). The goal is to prove
that this initial chaoticity assumption is propagated at later times as in the following
definition.

Definition 3.2.10 (Pointwise and pathwise propgation of chaos). Let fN0 ∈ P(EN) be
the initial f0-chaotic distribution of XN

0 at time t = 0.

• Pointwise propagation of chaos holds towards a flow of measures (ft)t ∈ C(I,P(E))

when the law fNt ∈ P(EN) of XN
t is ft-chaotic for every time t ∈ I.

• Pathwise propagation of chaos holds towards a distribution fI ∈ P(D(I, E)) on the
path space when the law fNI ∈ P

(
D(I, E)N

)
of the process XN

I (seen as a random
element in D(I, E)N) is fI-chaotic.

The propagation of chaos property (pointwise or pathwise) describes the limit behaviour
of the particle system when the number of particles grows to infinity. It implies that any
subsystem (of fixed size) of the N -particle system asymptotically behaves as a system
of i.i.d processes with common law ft (note that the particles are always identically
distributed by the exchangeability assumption). This translates the physical idea that
for large systems, the correlations between two (or more) given particles which are due
to the interactions become negligible. By looking at the whole system, only an averaged
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behaviour can be observed instead of the detailed correlated trajectories of each particle.
Thus, when propagation of chaos holds true, the central question becomes the description
of the limit law ft which will be defined as the solution of a nonlinear PDE or of a nonlinear
martingale problem. The following characterization of the notion of chaos is very helpful
to precise the notion of average behaviour and to construct the limit law.

Lemma 3.2.11. Each of the following assertions is equivalent to Kac’s chaos.

(i) There exists k ≥ 2 such that fk,N converges weakly towards f⊗k.

(ii) The random empirical measure

µXN :=
1

N

N∑
i=1

δXi ,

converges in law towards the deterministic measure f , where for any N ∈ N,
XN = (X1, . . . , XN) ∼ fN .

This lemma is not surprising owing to the results outlined in Section 3.2.2. An
elementary proof can be found in [307].

3.3 Mean-field particle systems

All the particle systems discussed in this thesis belong the class of mean-field models.
These models are defined by a N -particle generator LN acting on N -particle test functions
ϕN ∈ Cb(EN) which is of the form

LNϕN(xN) =
N∑
i=1

Lµ
xN
�i ϕN(xN), (3.6)

where xN = (x1, . . . , xN) ∈ EN and given a probability measure µ ∈ P(E), Lµ is the
generator of a Markov process on E with domain F which will be either a diffusion or
a jump process. We recall that µxN = 1

N

∑N
i=1 δxi denotes the empirical measure. The

notation L �i ϕN denotes the function:

L �i ϕN : (x1, . . . , xN) ∈ EN 7→ L[x 7→ ϕN(x1, . . . , xi−1, x, xi+1, . . . , xN)](xi) ∈ R.

The limit behaviour when N → +∞ is commonly called a mean-field limit which, in
this thesis, is in most cases a propagation of chaos result. The limit law will satisfy the
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following weak nonlinear PDE

∀ϕ ∈ F , d

dt
〈ft, ϕ〉 = 〈ft, Lftϕ〉. (3.7)

There are other particle models which are not of mean-field type, in particular the
Boltzmann models, also discussed in [76]. They will only be discussed in the present thesis
as a perspective in Section 10.2.4.

McKean-Vlasov diffusion

When the generator Lµ in (3.6) is the generator of a diffusion process, the particle system
is the solution the following system of SDEs

∀i ∈ {1, . . . , N}, dX i,N
t = b

(
X i,N
t , µXNt

)
dt+ σ

(
X i,N
t , µXt

)
dBi

t, (3.8)

for i ∈ {1, . . . , N} where (Bi
t)t areN independent Brownian motions and the drift function b

and diffusion matrix σ are of the form

b : Rd × P(Rd)→ Rd, σ : Rd × P(Rd)→Md(R).

The mean-field limit N → +∞ is given by the nonlinear Fokker-Planck equation

∂tft(x) = −∇x · {b(x, ft)ft}+
1

2

d∑
i,j=1

∂xi∂xj{aij(x, ft)ft}, (3.9)

where a(x, µ) := σ(x, µ)σ(x, µ)T. This is the law of the nonlinear McKean-Vlasov process
(X t)t which solves the following nonlinear SDE:

dX t = b
(
X t, ft

)
dt+ σ

(
X t, ft

)
dBt. (3.10)

where Bt is a Brownian motion and ft = Law(X t). The wellposedness of (3.10) is proved
under Lipschitz assumptions on b and σ in various settings in [250, Section 3], [307,
Theorem 1.1], [252, Theorem 2.2] or [61, Theorem 1.7]. The denomination nonlinear (or
more precisely, nonlinear in the sense of McKean) refers to the fact that the SDE (3.10)
depends on the law ft of the process that it defines.
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Mean-field jump process

The N -particle process is defined by a generator of the form (3.6) where given µ ∈ P(E),
Lµ is the generator of a jump process of the form

Lµϕ(x) = λ(x, µ)

∫
E

{ϕ(y)− ϕ(x)}Pµ(x, dy).

It describes a system of N jump processes, driven by N independent Poisson processes
with jump rate

λ : E × P(E)→ R+, (x, µ) 7→ λ(x, µ).

The law of a particle after a jump is given by the jump measure:

P : E × P(E)→ P(E), (x, µ) 7→ Pµ(x, dy).

Once again, at the particle level, both the jump rate and the post-jump distribution may
depend on the whole system through the empirical measure.

One expects that in the limit N → +∞, the law ft of a particle will satisfy the evolution
equation (3.7) which, in this case, reads:

d

dt
〈ft, ϕ〉 =

∫∫
E×E

λ(x, ft){ϕ(y)− ϕ(x)}Pft(x, dy)ft(dx), (3.11)

for all ϕ ∈ Cb(E). Note that one can easily add a piecewise deterministic component to
this process by prescribing a deterministic flow between the jumps. Two important cases
are given in the following examples.

Example 3.3.1 (BGK type model). In kinetic theory the state space is E = Rd × Rd

and the N particles are given by Zi
t = (X i

t , V
i
t ) with X i

t the position and V i
t the velocity

of particle i at time t. Without external force, it is natural to expect that the particles
evolve deterministically and continuously between two jumps as

dX i
t = V i

t dt, dV i
t = 0.

Moreover, the post-jump distribution and the jump rate often do not depend specifically
on the pre-jump velocity of the jumping particle but only on its position and on the
distribution of particles. Thus we take:

Pµ((x, v), dx′, dv′) = δx(dx
′)⊗Mµ,x(v

′)dv′,
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where given µ ∈ P(E) and x ∈ Rd, Mµ,x is a probability density function. In this case,
Equation (3.7) becomes:

d

dt
〈ft, ϕ〉 = 〈ft, v · ∇xϕ〉+

∫∫
Rd×Rd

λ(x, ft){ϕ(x, v′)− ϕ(x, v)}Mft,x(v
′)dv′ft(dx, dv),

and its strong form reads:

∂tft(x, v) + v · ∇xft(x, v) = λ(x, ft)
(
ρft(x)Mft,x(v)− ft(x, v)

)
,

where the spatial density of the particles at time t is defined by ρft(x) :=
∫
Rd ft(x, v)dv.

When Mft,x is the Maxwellian distribution

Mft,x(v) =
ρf

(2πT )d/2
exp

( |v − u|2
2T

)
,

with (ρfu, ρf |u|2 +ρfT ) =
∫
Rd(v, |v|2)ft(x, v)dv, then this equation is called the Bhatnagar-

Gross-Krook (BGK) equation [34]. It is used in mathematical physics as a simplified model
of rarefied gas dynamics (for a detailed account of the subject, we refer the interested
reader to the reviews [108] and [324] or to the book [75]).

It is sometimes useful to distinguish a class of mean-field jump models that we call
parametric models which are defined by a jump measure of the form

Pµ(x, dy) =
(
ψ(x, µ, ·)#ν

)
(dy),

where ν ∈ P(Θ) is a probability measure on a fixed parameter space Θ and

ψ : E × P(E)×Θ→ E.

In this case, for all test function ϕ ∈ Cb(E),∫
E

ϕ(y)Pµ(x, dy) =

∫
Θ

ϕ
(
ψ(x, µ, θ)

)
ν(dθ).

One of the main advantages is that the N -particle process associated to a parametric model
admits a natural SDE representation using the formalism of Poisson random measures.

Example 3.3.2 (SDE representation for parametric models). Let us assume for all
θ ∈ Θ, the function ψ(·, ·, θ) : E × P(E) → E is Lipschitz for the distance on E

and the Wasserstein - 1 distance on P(E), with a Lipschitz constant L(θ) > 0 and a
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function L ∈ L1
ν(Θ). This (classical) hypothesis will ensure the wellposedness of the SDE

representations of both the particle system and its nonlinear limit, see [5, Section 3.1]
and [175, Theorem 1.2 and Theorem 2.1]. To each particle i ∈ {1, . . . , N} is attached
an independent Poisson random measure N i(ds, du, dθ) on [0,+∞)× [0,+∞)×Θ with
intensity measure ds⊗ du⊗ ν(dθ) where dt and du denote the Lebesgue measure. The N
independent random measures N i play a comparable role to the N independent Brownian
motions which define a McKean-Vlasov diffusion in (3.8). In the present case, the mean-
field jump N -particle process is the solution of the following system of SDEs driven by the
measures N i

X i
t = X i

0 +

∫ t

0

a(X i
s)ds

+

∫ t

0

∫ +∞

0

∫
Θ

{
ψ
(
X i
s− , µXN

s−
, θ
)
−X i

s−

}
1(

0,λ
(
Xi
s−
, µXN

s−

)](u) N i(ds, du, dθ). (3.12)

This is for instance a common modelling framework for many models of interacting neurons
[5, 163, 105]. Similarly to the McKean-Vlasov case, the mean-field limit can be obtained
by simply replacing in this equation the empirical measure by the limit law.

3.4 Proving propagation of chaos

Since the seminal work of McKean [250], later extended by Sznitman [307], a very popular
method of proving propagation of chaos for mean-field systems is the so-called synchronous
coupling method (Section 3.4.1). Over the last years, some alternative coupling methods
have been proposed to handle either weaker regularity or to get uniform in time estimates
under mild physically relevant assumptions (Section 3.4.2). Alternatively to these SDE
techniques, the empirical process can be studied using stochastic compactness methods
[306, 176], leading to (non quantitative) results valid for mixed jump-diffusion models
(Section 3.4.3). A more analytical point of view on the empirical measure process, originally
due to Grünbaum [179], has been recently developed by [258, 257] (Section 3.4.4). Finally,
recent works focus on large deviation techniques, in particular the derivation of entropy
bound from Girsanov transform [208, 235]. This allows interactions with a very weak
regularity or with a very general form (Section 3.4.5).
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3.4.1 McKean’s theorem and the synchronous coupling method

When a trajectorial description of the particle system is available, the coupling method
initiated by McKean [250] and Sznitman [307] consists in comparing the trajectories of the
particle system with the trajectories of a system of N i.i.d processes with common law ft.

Definition 3.4.1 (Chaos by coupling the trajectories). Let be given a final time T ∈ (0,∞],
a distance dE on E and p ∈ N. Propagation of chaos holds by coupling the trajectories
when for all N ∈ N there exist

• a system of particles (XN
t )t with law fNt ∈ P(EN) at time t ≤ T ,

• a system of independent processes
(
XN
t

)
t with law f⊗Nt ∈ P(EN) at time t ≤ T ,

• a number ε(N, T ) > 0 such that ε(N, T ) −→
N→+∞

0,

such that (pathwise case)

1

N

N∑
i=1

E
[
sup
t≤T

dE
(
X i
t , X

i
t

)p] ≤ ε(N, T ), (3.13)

or (pointwise case)
1

N

N∑
i=1

sup
t≤T

E
[
dE
(
X i
t , X

i
t

)p] ≤ ε(N, T ). (3.14)

Note that (3.13) implies (3.14). The bound (3.14) implies:

sup
t≤T

Wp

(
fNt , f

⊗N
t

)
≤ ε(N, T ) −→

N→+∞
0,

where Wp denotes the Wasserstein-p distance on P(EN) defined for µ, ν ∈ EN by:

Wp(µ, ν) := inf
π∈Π(µ,ν)

(
1

N

N∑
i=1

∫
EN×EN

|xi − yj|pπ(dxN , dyN)

)1/p

,

and Π(µ, ν) is the set of all probability measures on EN × EN with marginals µ and ν.
It implies the propagation of chaos in the sense of Definition 3.2.10 since the topology
induced by the Wasserstein distance is stronger than the topology of the weak convergence
of probability measures (for more details on the use of the Wasserstein distance in this
context, see for instance [194, 328, 326] or [76] and the references therein).

The following fundamental theorem originally due to McKean proves such coupling
bound for the diffusion process (3.8).
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Theorem 3.4.2 (McKean). Let the drift and diffusion coefficients in (3.8) be defined by

∀x ∈ Rd,∀µ ∈ P(Rd), b(x, µ) := b̃
(
x,K1 ? µ(x)

)
, σ(x, µ) = σ̃

(
x,K2 ? µ(x)

)
, (3.15)

where K1 : Rd × Rd → Rm, K2 : Rd × Rd → Rn, b̃ : Rd × Rm → Rd and σ̃ : Rd × Rn →
Md(R) are globally Lipschitz and K1, K2 are bounded. Then pathwise chaos by coupling
in the sense of Definition 3.4.1 holds for any T > 0, p = 2, with the synchronous coupling

X i,N
t = X i

0 +

∫ t

0

b̃
(
X i,N
s , K1 ? µXNs

(
X i,N
s

))
ds+

∫ t

0

σ̃
(
X i,N
s , K2 ? µXNs

(
X i,N
s

))
dBi

s, (3.16)

and

X i,N
t = X i

0 +

∫ t

0

b̃
(
X i,N
s , K1 ? fs

(
X i,N
s

))
ds+

∫ t

0

σ̃
(
X i,N
s , K2 ? fs

(
X i,N
s

))
dBi

s. (3.17)

The name “synchronous” comes from the fact that the Brownian motion (Bi
t)t in (3.16)

and (3.17) is the same for the two processes. More precisely, the trajectories satisfy:

1

N

N∑
i=1

E
[
sup
t≤T

∣∣X i
t −X i

t

∣∣2] ≤ ε(N, T ),

where the convergence rate is given by

ε(N, T ) =
c1(b, σ, T )

N
ec2(b,σ,T )T , (3.18)

for some absolute constants C, C̃, CBDG > 0 not depending on N, T ,

c1(b, σ, T ) := CT
(
T‖K1‖2

∞‖b̃‖2
Lip + CBDG‖K2‖2

∞‖σ̃‖2
Lip

)
, (3.19)

and

c2(b, σ, T ) := C̃
(
T
(
1 + ‖K1‖2

Lip

)
‖b̃‖2

Lip + CBDG

(
1 + ‖K2‖2

Lip

)
‖σ̃‖2

Lip

)
. (3.20)

As the synchronous coupling idea will be at the basis of the propagation of chaos result
in Chapter 4, we present two proofs of this result. The first one is the original proof due
to McKean [250]. The second one is due to Sznitman [307]. Sznitman’s proof is a slightly
shorter and more general version of McKean’s proof. We chose to include McKean’s
original argument for three reasons. First it gives an interesting and somehow unusual
probabilistic point of view on the interplay between exchangeability and independence (see
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Section 3.2.2). This is an underlying idea for all the models presented in this review which
is made very explicit in McKean’s proof. Secondly, although the computations in both
proofs are very much comparable, McKean’s proof is philosophically an existence result
while Sznitman’s proof is based on the wellposedness result stated in [307, Theorem 1.1].
Finally, it seems that McKean’s proof has been somehow forgotten in the community or is
sometimes confused with Sznitman’s proof which in turn has become incredibly popular.
McKean’s argument was first published in [249] and then re-published in [250]. Both
references are not easy to find nowadays and it is probably the source of the confusion
between the two proofs.

Proof (McKean). The originality of this proof is that the nonlinear process is not introduced
initially. It appears as the limit of a Cauchy sequence of coupled systems of particles with
increasing size. Let (Bi

t)t, i ≥ 1 be an infinite collection of independent Brownian motions
and for N ∈ N we recall the notation

XN
t =

(
X1,N
t , . . . , XN,N

t

)
∈ (Rd)N ,

where (X i,N
t )t solves (3.16). The idea is to prove that the sequence (in N) of processes

(X1,N
t )t is a Cauchy sequence in L2

(
Ω, C([0, T ],Rd)

)
and then to identify the limit as the

solution of (3.17). The proof is split into several steps.

Step 1. Cauchy estimate

Let M > N and let us consider the coupled particle systems XN and XM where the N
first particles in XM have the same initial condition as X1,N , . . . , XN,N and are driven by
the same Brownian motions B1, . . . BN . Using (3.16) and the Burkholder-Davis-Gundy
inequality it holds that for a constant CBDG > 0,

E
[
sup
t≤T

∣∣X1,M
t −X1,N

t

∣∣2] ≤ 2T

∫ T

0

E
∣∣∣b(X1,M

t , µXMt

)
− b
(
X1,N
t , µXNt

)∣∣∣2dt

+ 2CBDG

∫ T

0

E
∣∣∣σ(X1,M

t , µXMt

)
− σ

(
X1,N
t , µXNt

)∣∣∣2dt. (3.21)

For the first term on the right-hand side of (3.21), we write:

E
∣∣∣b(X1,M

t , µXMt

)
− b
(
X1,N
t , µXNt

)∣∣∣2 ≤ 2E
∣∣∣b(X1,M

t , µXMt

)
− b
(
X1,M
t , µXN,Mt

)∣∣∣2
+ 2E

∣∣∣b(X1,M
t , µXN,Mt

)
− b
(
X1,N
t , µXNt

)∣∣∣2, (3.22)
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where XN,M
t =

(
X1,M
t , . . . , XN,M

t

)
∈ (Rd)N . Each of the two terms on the right-hand side

of (3.22) is controlled using (3.15), the Lipschitz assumptions and the fact that the Xj,M

are identically distributed. For the first term, expanding the square gives:

E
∣∣∣b(X1,M

t , µXMt

)
− b
(
X1,M
t , µXN,Mt

)∣∣∣2
≤ ‖b̃‖2

Lip E
∣∣∣ 1

M

M∑
j=1

K1

(
X1,M
t , Xj,M

t

)
− 1

N

N∑
j=1

K1

(
X1,M
t , Xj,M

t

)∣∣∣2
≤ ‖b̃‖2

Lip

(
1

M
+

1

N
− 2

N

MN

)
E
∣∣∣K1

(
X1,M
t , X2,M

t

)∣∣∣2
+ ‖b̃‖2

Lip

(
M − 1

M
+
N − 1

N
− 2

M(N − 1)

MN

)
×

× E
[
K1

(
X1,M
t , X2,M

t

)
·K1

(
X1,M
t , X3,M

t

)]
≤ 2

(
1

N
− 1

M

)
‖K1‖2

∞‖b̃‖2
Lip.

For the second term, the Lipschitz assumptions leads to:

E
∣∣∣b(X1,M

t , µXN,Mt

)
− b
(
X1,N
t , µXNt

)∣∣∣2
≤ 2‖b̃‖2

Lip E
[∣∣X1,N

t −X1,M
t

∣∣2
+
∣∣∣ 1

N

N∑
j=1

K1

(
X1,M
t , Xj,M

t

)
− 1

N

N∑
j=1

K1

(
X1,N
t , Xj,N

t

)∣∣∣2]
≤ 2

(
1 + 2‖K1‖2

Lip

)
‖b̃‖2

Lip E
∣∣X1,N

t −X1,M
t

∣∣2.
The same estimates hold for the diffusion term on the right-hand side of (3.21) with σ
instead of b and K2 instead of K1. Gathering everything thus leads to:

E
[
sup
t≤T

∣∣X1,M
t −X1,N

t

∣∣2] ≤ ( 1

N
− 1

M

)
c1(b, σ, T ) + c2(b, σ, T )

∫ T

0

E
∣∣X1,N

t −X1,M
t

∣∣2dt

where c1 and c2 are defined by (3.19) and (3.20). Using (a generalisation of) Gronwall
lemma, it follows that:

E
[
sup
t≤T

∣∣X1,M
t −X1,N

t

∣∣2] ≤ ( 1

N
− 1

M

)
c1(b, σ, T )ec2(b,σ,T )T . (3.23)

Step 2. Cauchy limit and exchangeability
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The previous estimate implies that the sequence of random variables (X1,N)N is a
Cauchy sequence in L2(Ω, C([0, T ],Rd)). Since this space is complete, this sequence has a
limit denoted by X1 ≡ (X1

t )t. Applying the same reasoning for any k ∈ N, there exists
an infinite collection of processes Xk, defined for each k ≥ 1 as the limit of (Xk,N)N .
These processes are identically distributed and their common law depends only on (X i

0)i≥1

and (Bi)i≥1 which are independent random variables. Moreover, knowing (X1
0 , B

1) and
for any measurable set B, any event of the type {X1 ∈ B} belongs to the σ-algebra of
exchangeable events generated by the random variables (X i

0)i≥2 and (Bi)i≥2. Since these
random variables are i.i.d, Hewitt-Savage 0-1 law states that this σ-algebra is actually
trivial. It follows that X1 is a functional of X1

0 and B1 only. The same reasoning applies
for each Xk and hence the processes Xk are also independent.

Step 3. Identification of the limit

At this point, propagation of chaos is already proved and it only remains to identify
the law of the Xk

t as the law of the solution of (3.17). To do so, McKean defines for
i ∈ {1, . . . , N} the processes

X̃ i,N
t = X i

0 +

∫ t

0

b
(
X i
s, µXNs

)
ds+

∫ t

0

σ
(
X i
s, µXNs

)
dBi

s,

where XN
t = (X1

t , . . . , X
N
t ). From the independence of the processes and by the strong

law of large numbers, the right hand side converges almost surely as N → +∞ towards
the right hand side of (3.17) with fs being the law of X i

s (which is the same for all i).
Moreover, direct Lipschitz estimates lead to

E
[
sup
t≤T

∣∣X̃ i
t −X i

t

∣∣2] ≤ C

N
,

where C is a constant which depends only on T , ‖K1‖Lip, ‖K2‖Lip. By uniqueness of the
limit, it follows that X i

t satisfies (3.17). Moreover, the bound (3.18) is obtained by taking
the limit M → +∞ in (3.23).

The following famous proof is due to Sznitman [307] in the case where σ is constant
and with p = 1 in Definition 3.4.1. The following (direct) adaptation to the model of
Theorem 3.4.2 can be found in [221, Proposition 2.3].

Proof (Sznitman). With a more direct approach, the strategy is to introduce both the
particle system and its (known) limit given respectively by (3.16) and (3.17) and to estimate
directly the discrepancy between the two processes. Using the Burkholder-Davis-Gundy
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inequality, it holds that for a constant CBDG > 0,

E
[
sup
t≤T

∣∣X i
t −X i

t

∣∣2] ≤ 2T

∫ T

0

E
∣∣∣b(X i

t, ft
)
− b
(
X i
t , µXNt

)∣∣∣2dt

+ 2CBDG

∫ T

0

E
∣∣∣σ(X i

t, ft
)
− σ

(
X i
t , µXNt

)∣∣∣2dt. (3.24)

The drift term on the right-hand side of (3.24) is split into two terms as follows:

E
∣∣∣b(X i

t, ft
)
− b
(
X i
t , µXNt

)∣∣∣2 ≤ 2E
∣∣∣b(X i

t, ft
)
− b
(
X i
t, µXNt

)∣∣∣2
+ 2E

∣∣∣b(X i
t, µXNt

)
− b
(
X i
t , µXNt

)∣∣∣2. (3.25)

For the first term on the right-hand side of (3.25), the assumption (3.15) and the Lipschitz
assumptions give:

E
∣∣∣b(X i

t, ft
)
− b
(
X i
t, µXNt

)∣∣∣2 ≤ ‖b̃‖2
Lip E

∣∣∣K1 ? ft(X
i
t)−

1

N

N∑
j=1

K1(X i
t, X

j
t)
∣∣∣2

=
‖b̃‖2

Lip

N2
E
∣∣∣ N∑
j=1

{
K1 ? ft(X

i
t)−K1(X i

t, X
j
t)
}∣∣∣2.

Expanding the square, it leads to:

E
∣∣∣b(X i

t, ft
)
− b
(
X i
t, µXNt

)∣∣∣2 ≤ 4‖b̃‖2
Lip‖K1‖2

∞

N

+
‖b̃‖2

Lip

N2

∑
k 6=`

E
[(
K1 ? ft(X

i
t)−K1(X i

t, X
k
t )
)
·
(
K1 ? ft(X

i
t)−K1(X i

t, X
`
t)
)]
.

When k 6= `, using the fact that Xk and X` are independent gives:

E
[(
K1 ? ft(X

i
t)−K1(X i

t, X
k
t )
)
·
(
K1 ? ft(X

i
t)−K1(X i

t, X
`
t)
)]

= 0,

In conclusion,

E
∣∣∣b(X i

t, ft
)
− b
(
X i
t, µXNt

)∣∣∣2 ≤ 4‖b̃‖2
Lip‖K1‖2

∞

N
. (3.26)

For the second-term on the right-hand side of (3.25), the Lipschitz assumptions give:

E
∣∣∣b(X i

t, µXNt

)
− b
(
X i
t , µXNt

)∣∣∣2 ≤ C‖b̃‖2
Lip

(
1 + ‖K1‖2

Lip

)
E
∣∣X i

t −X i
t

∣∣2. (3.27)
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The same estimates hold when b and K1 are replaced by σ and K2. Gathering everything
leads to:

E
[
sup
t≤T

∣∣X i
t −X i

t

∣∣2] ≤ 1

N
c1(b, σ, T ) + c2(b, σ, T )

∫ T

0

E
∣∣X i

t −X i
t

∣∣2dt

≤ 1

N
c1(b, σ, T ) + c2(b, σ, T )

∫ T

0

E
[
sup
s≤t

∣∣X i
s −X i

s

∣∣2]dt.
The conclusion follows by Gronwall lemma.

McKean’s theorem can be directly generalised to more general, yet Lipschitz, settings,
see for instance [5] where the authors consider a mixed jump-diffusion process with more
general coefficients. A similar result with a more elementary method will also be presented
in Chapter 4 for a PDMP process.

There are mainly two directions to improve the result of McKean’s theorem: the
first one is to consider weaker than globally Lipschitz interactions, the second one is to
prove that the result holds uniformly in time. For the former, there are at least two
general approaches. In [40] the authors prove that one can consider only locally Lipschitz
interaction functions (3.15) with polynomial growth provided that high moment estimates
can be proved. See also [153] for a similar result for PDMPs. A second approach is a
cut-off approach in order to approximate singular or purely local systems. When the size
of the cutoff is scaled with N , this kind of result is called moderate interaction following
the terminology introduced by Oelschläger [273] and improved in [221]. A large part of
Chapter 4 will be devoted to the question of moderate interaction for geometrically enriched
PDMP systems. Regarding the question of uniform in time propagation of chaos using
the synchronous coupling method, the main reference is the seminal work of Malrieu [245]
which deals with gradient diffusion systems, that is when σ is constant and b is of the
form b(x, µ) = −∇V (x)−∇W ?µ(x) where V,W are two potentials which satisfy (strong)
convexity assumptions. This model is linked to the study of the granular media equation
[27, 26, 70, 71, 41] and has been widely studied in the last two decades as a prototypical
model where uniform in time propagation of chaos may or may not hold due to phase
transition phenomena. On this subject, see the recent works [133, 132] and the references
therein, as well as the next section.

3.4.2 Other coupling methods

The uniform in time version of McKean’s theorem can also be proved by considering
other coupling techniques than the synchronous coupling. A recent and fruitful idea is the
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reflection coupling originally developed in [151, 152]. Instead of taking the same Brownian
motion in the two processes (3.16) and (3.17), the idea is to consider that one Brownian
motion is a reflection of the other with respect to a well chosen hyperplane. Using Itō’s
formula, this change will add a new correction term which can be used to control the final
Gronwall estimate. This idea has been put into practise in [150] which extends the work of
[245] by weakening the regularity and convexity hypotheses. Finally, the two recent works
[294] and [130] are based on a classical result in gradient flow theory to prove uniform in
time propagation of chaos and convergence to equilibrium results for gradient systems.
The article [294] shows that this approach actually provides a unifying and more analytical
framework for all coupling methods.

3.4.3 Stochastic compactness methods

Compactness methods are based on the empirical measure characterisation given by
Lemma 3.2.11. It reduces the problem to the convergence in law of a sequence of random
probability measures, that is the convergence of a sequence of laws which belong to
P(P(E)). This space does not depend on N but it is in turn much more delicate to handle
than E. The stochastic analysis approach is based on the adaptation of the classical
martingale arguments [217] to this extended setting. The first works in this direction trace
back to Tanaka [309] and Sznitman [305] for questions related to the Boltzmann equation.
The case of mean-field jump and diffusion processes is treated in particular in [176, 252].
The main arguments are summarised below.

(1) In stochastic analysis, a particle is seen as a random process, i.e. a random element of
the Skorokhod space D([0, T ], E). The empirical measure µXN

[0,T ]
of a particle system

XN
[0,T ] ∈ D([0, T ], E)N is therefore a random element of P(D([0, T ], E)) and its law

will be denoted by FN
[0,T ] ∈ P(P(D([0, T ], E))).

(2) The key element of the proof is the tightness of the sequence (FN
[0,T ])N although it

usually follows from the adaptation of classical tightness criteria.

(3) Prokhorov theorem then ensures the existence of a limit point π ∈ P(P(D([0, T ], E))).
The π-distributed limit points are then shown to satisfy a limit martingale problem.
This is the stochastic analog of a nonlinear PDE (it is actually more general).

(4) The conclusion follows by proving the uniqueness of the limit martingale problem (this
implies that π is a Dirac delta at this point).
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Note that an alternative, weaker, point of view is to see the empirical measure as a
measure-valued process, that is a random element of D([0, T ],P(E)). The previous line of
arguments remains the same but the convergence holds in the space P(D([0, T ],P(E))).
This result is usually called a functional law of large numbers in this context. An example
will be presented in the last section of Chapter 4. Finally an even weaker point of view is
the pointwise version: at each time t, the law of the empirical measure belongs to P(P(E))

and this defines a curve with values in P(P(E)), that is an element of C([0, T ],P(P(E))).
The recent article [69] is based on this point of view and a gradient-flow characterisation
of McKean-Vlasov gradient systems.

3.4.4 Semi-group approach

In a series of recent works [258, 257], Mischler, Mouhot and Wennberg introduced a novel
very general approach based on the fine study of the generator of the empirical measure
process. This approach is inspired by the seminal work of Grünbaum [179]. This is also a
pointwise approach which takes as a starting point the law FN

t ∈ P(P(E)) of the empirical
measure at each time t ∈ [0, T ]. The idea is to compare FN

t with the law F
N

t of the process
St(µXN0 ) where (St)t is the nonlinear solution semi-group associated to the limit PDE and
µXN0 is the initial random empirical measure of N i.i.d. f0-distributed random variables.
This law is expected to be close to the true solution ft = St(f0) using stability estimates
on the limit PDE and Lemma 3.2.2. Taking a test function Φ ∈ Cb(P(E)), the two laws
FN
t and FN

t define two dual semi-groups T̂N,t and T∞,t acting on Cb(P(E)) by

〈FN
t ,Φ〉 =

∫
EN

T̂N,tΦ(µxN )f⊗N0

(
dxN

)
,

〈FN

t ,Φ〉 =

∫
EN

T∞,tΦ(µxN )f⊗N0

(
dxN

)
:=

∫
EN

Φ
(
St
(
µxN

))
f⊗N0

(
dxN

)
.

The goal is to prove the convergence of the semi-groups T̂N,t → T∞,t. In a classical setting,
the convergence of a sequence of semi-groups acting on a set of test functions over a
Banach space is solved by Trotter [316] by proving the convergence of the generators.
While a notion of generator associated to T̂N,t can be easily defined, it is not the case
for T∞,t because P(E) is only a metric space and not a Banach space. The rigorous
definition of this generator is one of the main contributions of [258, 257] and it is based
in particular on a notion of differentiability on the space of probability measures. The
main abstract theorems [258, Theorem 2.1] and [257, Theorem 3.1] can be applied to
a wide range of particle systems by reducing the problem to the proof of a detailed set
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of abstract assumptions which ensure (among other things) the well-posedness of the
generator associated to T∞,t.

In parallel to the work of [257, 258], various similar in spirit semi-group approaches
have also recently been developed in particular in the mean-field game community. All
these approaches use at some point a tailored notion of differentiability in the space of
measures. For recent developments, see for instance [81, 79, 131] and the references therein.

3.4.5 Large deviation methods and entropy bounds

Kac’s chaos can be seen as a kind of weak law of large numbers, as it implies the weak
convergence:

〈µXN , ϕ〉 − EXN
[
ϕ
(
X1,N

)]
−→

N→+∞
0.

The main difference with the classical law of large numbers is that the random variables
XN are only exchangeable and not independent. When a strong law of large numbers
holds, it is natural to look at the fluctuations of 〈µXN , ϕ〉 by establishing some weak
central limit theorem. Nonetheless, one can look at this issue the other way round, trying
to deduce some weak law of large numbers from a fluctuation result. Indeed, the usual
central limit theorem implies a weak version of the law of large numbers, although the
latter is classically proven using quite different tools. In the seminal article [23], the
authors improve earlier results from [234] and [43] on Large Deviation Principles (LDP)
for Gibbs measure and obtain as a byproduct a pathwise propagation of chaos result for
McKean-Vlasov diffusion processes. While this result is very abstract and the assumptions
are not easy to check in practise, it also introduces a fruitful idea which is the link between
the notion of relative entropy, as defined below, and the propagation of chaos. In [23], the
relative entropy between the N -particle distribution and its tensorized limit appears as a
kind of rate functional.

Definition 3.4.3 (Entropy, Fisher information). Let E be a Polish space. Given two
probability measures µ, ν ∈ P(E ) (or more generally two measures), the relative entropy
and Fisher information are respectively defined by

H(ν|µ) :=

∫
E

dν

dµ
log

(
dν

dµ

)
dµ, I(ν|µ) :=

∫
E

∣∣∣∣∇ log

(
dν

dµ

)∣∣∣∣2dµ,

where dν/dµ is the Radon-Nikodym derivative. When the two measures are mutually
singular, by convention, the relative entropy and Fisher information are set to +∞.

In the subsequent article [24], a strengthened result is obtained thanks to the following
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lemma which links entropy bound and Kac’s chaos in Total Variation norm. It is a direct
consequence of the Pinsker inequality and the Csiszar inequality [97].

Lemma 3.4.4. Let E be a Polish space and let fN ∈ P(E N) and f ∈ P(E ). For every
nonnegative integer k(N) ≤ N , it holds that

1

2

∥∥fk(N),N − f⊗k(N)
∥∥2

TV
≤ H

(
fk(N),N

∣∣f⊗k(N)
)
≤ k(N)

N
H
(
fN |f⊗N

)
,

where ‖ · ‖TV is the Total Variation norm (which induces a topology stronger than the
topology of the weak convergence of probability measures).

Thanks to this lemma, one can see that a bound on H(fN |f⊗N) implies Kac’s chaos.
For the McKean-Vlasov diffusion (3.8), the following lemma gives a way to bound the
relative entropy between the N -particle distribution and its mean-field limit. The first
pathwise inequality is a consequence of Girsanov theorem [227, Chapter 3, Theorem 5.1].
The second one can be formally obtained by direct computations.

Lemma 3.4.5 (Pathwise and pointwise entropy bounds). Let T > 0 and I = [0, T ]. For
N ∈ N, let fNI ∈ P(C([0, T ], (Rd)N)) be the law of the McKean-Vlasov diffusion (XN

t )t

defined by (3.8) with b : Rd × P(Rd) → Rd and σ = Id, and let fNt ∈ P((Rd)N) its time
marginal at time t ∈ [0, T ]. Let fI ∈ P(D([0, T ],Rd)) be the pathiwse law of the limit
nonlinear McKean-Vlasov diffusion (3.10) and let ft ∈ P(Rd) be its time marginal at time
t ∈ [0, T ].

• For any k ≤ N it holds that

H
(
fk,NI |f⊗kI

)
≤ k

2
E
[∫ T

0

∣∣b(X1
t , µXNt

)
− b(X1

t , ft)
∣∣2dt

]
. (3.28)

• For every α > 0 it holds that

d

dt
H
(
fNt |f⊗Nt

)
≤ α− 1

2
I
(
fNt |f⊗Nt

)
+
N

2α
E
[∣∣b(X1

t , µXNt
)
− b(X1

t , ft)
∣∣2]. (3.29)

This lemma shows that the relative entropy is actually bounded by observables of the
particle system without any particular regularity assumption on the drift b. These ideas are
exploited in particular in [208, 180] and [235, 209] respectively for McKean-Vlasov systems
with low regularity and with a very general and abstract interaction coefficient b. Following
these works, recent articles have further deepened these relative entropy methods and
successfully applied them to models with singular interactions. For recent developments,
see for instance [48, 236, 311] and the references therein.
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Chapter 4

Propagation of chaos and moderate
interaction for a piecewise deterministic
system of geometrically enriched
particles

The content of this chapter is based on the following article

[138] A. Diez. “Propagation of chaos and moderate interaction for a piecewise deterministic
system of geometrically enriched particles”. Electron. J. Probab. 25 (2020).

While the main application of this work will be the system of body-oriented particles
described in the introduction, the framework introduced encompasses much more general
geometrically-enriched systems such as the Vicsek model [140, 321].

4.1 Introduction

The goal of this chapter is to prove a rigorous convergence result from a large class of
geometrically enriched PDMP particle models towards purely local BGK equations. The
prototypical model is the PDMP Vicsek model defined in Section 1.2.2 of the introduction
of this thesis. Unlike the version of the model introduced in [140], we will consider in this
chapter the choice κ(J) = |J | so that, with the notations of the introduction,

κ(J in)Vi
n = J in. (4.1)
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From a modelling point of view, in this non-normalised model, when a jump occurs, the
bigger the norm of the flux, the more peaked the von Mises distribution is and therefore
the new orientation of the agent is (expectedly) closer to the local normalised average
orientation. From a mathematical point of view, the normalised version of the model,
which is studied in [140], is more singular, as the normalised average orientation is not
defined when the flux (1.3) is equal to zero. On the contrary, with the present choice (4.1),
if the flux vanishes, then the agent will simply draw a new orientation uniformly on the
sphere. It has also been shown in [113] that complex behaviours and in particular phase
transitions only appear in models with a non-normalised flux. Without this singularity
problem, the aim of this chapter is to prove the well-posedness of the BGK PDE (1.9) and
to rigorously justify its derivation from the IBM by taking the limit (in a certain sense)
when N tends to infinity and K → δ0.

In order to also encompass the body-orientation model defined in Section 2.1.2 of the
introduction, one will actually consider more general geometrically enriched PDMP models
where the orientation of the agents is an element of an abstract compact Riemannian
manifold M : the choice M = Sd−1 gives the Vicsek model and the choice M = SO3(R)

gives the body-orientation dynamics model.
The strategy followed in this chapter is two-fold. First, the coupling method described

in Section 3.4.1 of the previous chapter is extended to the piecewise deterministic setting:
a quantitative propagation of chaos property is proved for a geometrically enriched system
of PDMPs where particles interact with their neighbours within a fixed interaction kernel.
Then, following the approach of [221] the goal will be to prove a moderate interaction
property. As explained in the introduction of this thesis (Section 1.3), it states that under
an appropriate rescaling of the size of the neighbourhood of the agents with respect to the
total number of agents, the interaction can be made purely local, which means that we
can take K = δ0 in the BGK equation (1.9). This rescaling is achieved by taking in the
IBM an observation kernel of the form:

KN(|x|) =
1

εdN
K0

( |x|
εN

)
where K0 is a fixed observation kernel and εN → 0 slowly enough. This result will follow
from the explicit bound in N obtained in the proof of the propagation of chaos and from
classical compactness arguments to pass to the limit inside the BGK equation “with kernel
interaction” when KN → δ0. This will require to prove ad hoc regularity properties on the
solution of the BGK equation in the geometrically enriched specific setting considered (in
particular various properties related to equicontinuity and stability under translations of
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the sequence of solutions associated to the sequence of kernels).
The terminology “moderate interaction” comes from [273] where propagation of chaos

and moderate interaction properties are proved using a different approach, based on
martingale arguments. As explained in [221], in the model studied by Oelschläger, the
random part is given by a constant diffusion matrix which does not depend on the current
state of the system (i.e. of the empirical measure of the agents). This is not the case in
most models of collective dynamics and in particular in the models studied in the present
chapter. However, in a space homogeneous setting, we give an alternative proof of the
propagation of chaos property based on martingale arguments. Let us also mention that
martingales techniques have also recently been used in [165] to prove propagation of chaos
for a PDMP Cucker-Smale model.

The organisation of the chapter is as follows. The first section introduces the general
geometrical framework which encompasses the PDMP Vicsek model and its extensions
(Section 4.2.1). In this framework, the IBM and its kinetic version are defined and
studied respectively in Section 4.2.3 and Section 4.2.4. The main results are stated in
Section 4.2.5, in particular Theorem 4.2.13 (propagation of chaos) and Theorem 4.2.15
(moderate interaction). Section 4.3 is devoted to the proof of the former. The latter is
proved in Section 4.4 together with regularity results for the solution of the BGK equation.
Finally, Section 4.5 presents an alternative approach based on martingale techniques for a
spatially homogeneous model.

4.2 Abstract framework and main results

4.2.1 Assumptions and definitions

From now on we will use the following functional set up.

1. Let (M , g) be a compact finite dimensional Riemannian manifold. The Riemannian
distance induced by g is denoted by d. On the product space Rd ×M we take the
metric

d̃
(
(x1,m1), (x2,m2)

)
:= |x1 − x2|+ d(m1,m2)

and we write for short d̃ ≡ d when there is no possible confusion. The volume
form associated to g is assumed to be normalised and will be denoted by dm (i.e.∫

M
dm = 1). We will also assume that M is isometrically embedded in a Euclidean

space E where the inner product is denoted by · and the norm by |·|. This embedding
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is never a loss of generality thanks to Nash’s embedding theorem [267]. We will also
assume without loss of generality that for all m ∈M , |m| ≤ 1.

2. Let Φ : M → Rd be a velocity map which is a continuous and λ-Lipschitz map for a
given constant λ ≥ 0.

3. Let K be a smooth observation kernel on Rd, that is to say a radial smooth bounded
Lipschitz function which tends to zero at infinity (typically a smoothened version of
the indicator of a ball centred at the origin) such that K ≥ 0 and

∫
Rd K(x)dx = 1.

Since K is radial, in order to alleviate the notations, we write indifferently K(x) ≡
K(|x|).

4. Let MJ be an interaction law, defined for any parameter J ∈ E as a probability
density function on M which satisfies the following assumptions.

Assumption 4.2.1 (Locally bounded). There exists a function α = α(a) such that
for any a > 0 and any J ∈ E with |J | ≤ a, it holds that

‖MJ‖L∞(M ) ≤ α(a). (4.2)

Assumption 4.2.2 (Locally Lipschitz). There exists a function L = L(a) such that
for any a > 0 and any J ∈ E with |J | ≤ a, it holds that

|MJ(m1)−MJ(m2)| ≤ L(a)d(m1,m2). (4.3)

Assumption 4.2.3 (Flux Lipschitz). There exists a function θ = θ(a) such that for
any a > 0 and any J, J ′ ∈ E with |J |, |J ′| ≤ a, it holds that

‖MJ −MJ ′‖L∞(M ) ≤ θ(a)|J − J ′|. (4.4)

Remark 4.2.4. The Lipschitz regularity assumptions (for the interaction kernel and for
the interaction law) are classical for mean-field type results (see [307]). The present
work essentially focuses on the extension of classical results and techniques to the PDMP
framework with geometrical constraints and the question of lower regularity, as outlined
in Chapter 3, will not be addressed.

In order to define interaction rules between the agents we now define two objects:
the flux of a measure which will be a way of constructing an average orientation from a
distribution of orientations and the observation measure, the purpose of which will be to
define the local average orientation around a point in the physical space Rd.
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• The flux of a positive measure µ ∈M+(M ) on M is defined by

Jµ :=

∫
M

mµ(dm) ∈ E. (4.5)

The interaction law relative to a positive measure µ ∈ M+(M ) is defined as the
probability density function MJµ on M and will be denoted only by Mµ in the
following.

• Given a probability measure p on Rd ×M , we define the observation measure by
taking the convolution product of p with the observation kernel K: its purpose is to
define the local orientation with respect to p around a point x ∈ Rd. In particular p
can be either the empirical measure of a system of processes given by an IBM or the
solution of a BGK equation in a kinetic model.

Definition 4.2.5 (Observation measure). Let p ∈ P(Rd ×M ) and x ∈ Rd. The
observation measure K ? p(x) ∈M+(M ) is defined by

∀ϕ ∈ Cb(M ), 〈K ? p(x), ϕ〉 :=

∫∫
Rd×M

K(x− y)ϕ(m)p(dy, dm).

Note that K ? p : x ∈ Rd 7→ K ? p(x) ∈M+(M ) defines a smooth map for the total
variation topology onM+(M ). The flux and interaction law will be denoted in this
case:

JK?p(x) ≡ JK?p(x) and MK?p(x)(m) ≡MK?p[x](m). (4.6)

If p is a probability density function in L∞(Rd ×M ), then the previous definition
makes sense in the degenerate case K = δ0, and we define

∀ϕ ∈ Cb(M ), 〈p(x, ·), ϕ〉 :=

∫
M

ϕ(m)p(x,m)dm.

The flux and interaction law will be denoted in this case:

Jp(x,·) ≡ Jp(x) and Mp(x,·)(m) ≡Mp[x](m).

To conclude this section, we point out that the assumptions on the interaction law
can be reinterpreted as regularity bounds in the space of probability measures when the
interaction law comes from a measure on M . In particular, since

W1(Mµ,Mν) ≤ ‖Mµ −Mν‖TV = ‖Mµ −Mν‖L1(M ) ≤ ‖Mµ −Mν‖L∞(M ),
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the flux-Lipschitz bound (4.4) implies that for p1, p2 ∈ Pac(Rd ×M ) and x, x′ ∈ Rd :

W1(MK?p1 [x],MK?p2 [x′]) ≤ Cθ
(
‖K‖L∞

)
‖K‖Lip

(
|x− x′|+W1(p1, p2)

)
, (4.7)

where W1 denotes the Wasserstein-1 distance on P(Rd ×M ) or P(M ) indifferently.

4.2.2 Application to the Vicsek and body-orientation models

This general setting encompasses the two following examples derived from the Vicsek
model.

• In the d-dimensional continuous Vicsek model described in the introduction of this
chapter, the Riemannian manifold is taken to be equal to the sphere Sd−1, viewed as
a submanifold of Rd endowed with its canonical Euclidean structure. The velocity
map Φ is then the canonical injection Sd−1 ↪→ Rd.

• In the three dimensional Body-Orientation model studied in [111] described in
the introduction of this thesis, the Riemannian manifold is taken to be equal
to SO3(R) viewed as a submanifold of M3(R) endowed with the inner product
A · B := 1

2
Tr(ATB). The velocity map is the projection A ∈ SO3(R) 7→ Ae1 ∈ R3

where e1 is a fixed vector (the first vector of a reference frame).

In both cases, in the previous works [140, 111], the interaction between the agents is
given by a von Mises distribution. This family of probability laws has first been introduced
for circular statistics on the circle and on the sphere [246]. It can be extended to a family of
probability distributions on SO3(R) (it is then sometimes referred as the von Mises–Fisher
matrix distribution [247, 239]) and more generally to a family of probability distributions
on any compact embedded manifold. This defines an interaction law which satisfies the
Assumptions 4.2.1, 4.2.2, 4.2.3 as shown in the following proposition.

Proposition 4.2.6. Let us define for J ∈ E the von Mises distribution MJ on M by:

MJ(m) :=
eJ ·m

Z (4.8)

where Z is a normalisation constant. This defines an interaction law which satisfies
Assumptions 4.2.1, 4.2.2, 4.2.3 with regularity constants

α(a) = e2a, L(a) = ae2a and θ(a) = e2a + e4a.

Proof. Let a > 0 and J, J ′ ∈ E be such that |J |, |J ′| ≤ a.
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1. For any m ∈M it holds that |J ·m| ≤ a so since the exponential function on R is
non decreasing it holds that:

eJ ·m ≤ ea and Z :=

∫
M

eJ ·m
′
dm′ ≥ e−a.

From which we deduce that

‖MJ‖L∞(M ) ≤ e2a =: α(a). (4.9)

2. Let m1,m2 ∈M . Using the mean-value inequality on the compact segment [e−a, ea]

and the fact that M is isometrically embedded into E, we obtain that:

|MJ(m1)−MJ(m2)| ≤ e2a|J ·m1 − J ·m2| ≤ ae2ad(m1,m2) =: L(a)d(m1,m2).

3. Let m ∈M . It holds that:

|MJ(m)−MJ ′(m)| ≤ 1

Z |e
J ·m − eJ

′·m|+ eJ
′·m

ZZ ′ |Z − Z
′|

where
Z :=

∫
M

eJ ·mdm and Z ′ =
∫

M

eJ
′·mdm.

Using again the mean-value inequality and the bound (4.9), we obtain:

|MJ(m)−MJ ′(m)| ≤ (e2a + e4a)|J − J ′| =: θ(a)|J − J ′|.

As described in the introduction, for the Vicsek and Body-orientation cases, an agent
interacts with its neighbours by sampling a new orientation from a von Mises distribution,
the parameter of which reflects the local average orientation of the other agents. Two
cases have to be considered depending on how “local” the interaction is.

1. The first case corresponds to the interaction at the level of the IBM: the density of
the agents is given by a probability measure µ on Rd ×M (typically the empirical
distribution of the agents) and the interaction law for an agent at position x ∈ Rd is
the von Mises distribution (4.8) with parameter J equal to the flux of the observation
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measure K ? µ(x), namely

MJ ≡MJK?µ(x) ≡MK?µ[x].

In this case, the regularity constants in Assumptions 4.2.1, 4.2.2, 4.2.3 are functions
of ‖K‖L∞ since |JK?µ(x)| ≤ ‖K‖L∞ .

2. The second case corresponds to the interaction at the kinetic level when we let
K → δ0 : the density of agents is given by a probability density function f (typically
the solution of a BGK equation) which we assume to be bounded in the L∞ norm
by a constant a > 0. The interaction law at position x ∈ Rd is then the von Mises
distribution (4.8) with parameter J equal to the flux of the purely local observation
measure f(x, ·) :

MJ ≡MJf(x,·) ≡Mf [x].

4.2.3 Individual Based Model

In the abstract framework described in Subsection 4.2.1, the main focus of this article will
be the study of the following IBM which is a direct generalisation of the PDMP Vicsek
model [140].

An agent i ∈ {1, . . . , N} is described at time t by a couple Zi,N
t = (X i,N

t ,mi,N
t ) ∈

Rd ×M of position and orientation. The evolution of the trajectories are given by the
following Piecewise Deterministic Markov Process (PDMP) :

• Let (Sn)n be a sequence of independent holding times which follow an exponential
law of parameter N (their expectation is 1/N). The jump times are denoted by
Tn := S1 + . . .+ Sn. We set S0 = T0 = 0.

• Let (In)n a sequence of independent indexes which follow a uniform law on {1, . . . , N}.

• Between two jump times on [Tn, Tn+1), the system evolves deterministically:

∀t ∈ [Tn, Tn+1), ∀i ∈ {1, . . . , N},

 X i,N
t = X i,N

Tn
+ (t− Tn)Φ

(
mi,N
t

)
mi,N
t = mi,N

Tn

. (4.10)

• At Tn+1 a jump occurs for the agent In which draws a new orientation according to
the interaction law:

mIn,N
Tn+1
∼MK?µ̂N

T−n+1

[
XIn,N

T−n+1

]
, (4.11)
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where in order to keep lighter notations, the empirical measure at time t is denoted
in this chapter by

µ̂Nt :=
1

N

N∑
i=1

δ(Xi,N
t ,mi,Nt ),

and

Zi,N

T−n+1

=
(
X i,N

T−n+1

,mi,N

T−n+1

)
:=
(
X i,N
Tn

+ Sn+1Φ
(
mi,N
Tn

)
,mi,N

Tn

)
∈ Rd ×M .

Remark 4.2.7. Owing to [47, Chapter 8, Section 1.3], this definition is equivalent to the
one in the introduction where each agent has an internal Poisson process.

4.2.4 Kinetic model: the BGK equation. Well-posedness results.

The kinetic model associated to the IBM described in Subsection 4.2.3 is given by the
following BGK equation (see Theorem 4.2.13 below for more details on how the IBM is
related to the kinetic model):

∂tf + Φ(m) · ∇xf = ρfMK?f [x]− f (4.12)

where f = ft(dx, dm) is a time dependent probability measure on Rd ×M and ρft(dx)

is the first marginal of ft, i.e. ρft(dx) :=
∫

M
ft(dx, dm). For the sake of clarity, in the

following we will write:

GK
ft(dx, dm) ≡ ρft(dx)MK?ft [x](m)dm.

When ft has a density, i.e. ft ∈ Pac(Rd×M ), we will write with a slight abuse of notations:

GK
ft(x,m) ≡ ρft(x)MK?ft [x](m)

which is a probability density function on Rd ×M .

Lemma 4.2.8. Let f, g ∈ Pac(Rd ×M ), then it holds that

‖GK
f −GK

g ‖L1(Rd×M ) ≤
(
α
(
‖K‖L∞

)
+ ‖K‖L∞θ

(
‖K‖L∞

))
‖f − g‖L1(Rd×M ) (4.13)

Proof. Since the GK
f and GK

g are a product of two quantities, the L1 norm of the difference
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can be split into two parts:∫∫
Rd×M

|GK
f −GK

g |(x,m) dxdm =

∫∫
Rd×M

|ρf (x)MK?f [x](m)− ρg(x)MK?g[x](m)|dxdm

≤
∫∫

Rd×M

|ρf (x)− ρg(x)|MK?f [x](m)dxdm

+

∫∫
Rd×M

ρg(x)|MK?f [x](m)−MK?g[x](m)|dxdm.

Since for all x ∈ Rd, |JK?f(x)| ≤ ‖K‖L∞ , the first integral on the right-hand side can be
bounded by

α(‖K‖L∞)

∫∫
Rd×M

|ρf − ρg|dxdm

using Assumption 4.2.1. For the second integral on the right-hand side, using (4.4), it
holds that:∫∫

Rd×M

ρg(x)|MK?f [x](m)−MK?g[x](m)|dxdm

≤ θ(‖K‖L∞)

∫∫
Rd×M

ρg(x)|JK?f (x)− JK?g(x)|dxdm

= θ(‖K‖L∞)

∫
Rd
ρg(x)|JK?f (x)− JK?g(x)|dx

where we have used that
∫

M
dm = 1. Then, we note that |m| ≤ 1 so the previous bound

gives:∫∫
Rd×M

ρg(x)|MK?f [x](m)−MK?g[x](m)|dxdm

≤ θ(‖K‖L∞)

∫∫
Rd×M

ρg(x)|K ? f(x,m)−K ? g(x,m)|dxdm.

By Definition 4.2.5 of the observation measure, we obtain:∫∫
Rd×M

ρg(x)|MK?f [x](m)−MK?g[x](m)|dxdm

≤ θ(‖K‖L∞)

∫∫
Rd×M

ρg(x)K(x− y)|f(y,m)− g(y,m)|dxdydm.

To conclude, we use the fact that g is a probability measure so that the last integral on
the right-hand side can be bounded by ‖K‖L∞‖f − g‖L1(Rd×M ). The result follows.

A mild-solution to (4.12) is defined as an element f ∈ C
(
[0, T ],P(Rd ×M )

)
which
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satisfies for all ϕ ∈ Cb(Rd ×M ):

〈ft, ϕ〉 = e−t〈Ttf0, ϕ〉+

∫ t

0

e−(t−s)〈Tt−sGK
fs , ϕ〉 ds, (4.14)

where Tt is the free-transport operator:

〈Ttµ, ϕ〉 :=

∫∫
Rd×M

ϕ(x+ tΦ(m),m)µ(dx, dm). (4.15)

Similarly, in the degenerate case K = δ0, we consider

∂tf + (Φ(m) · ∇x)f = ρfMf [x]− f (4.16)

where f = ft(x,m) is a time dependent probability density in L∞(Rd×M ) and ρft(dx) is
the first marginal of ft. For the sake of clarity, in the following we will write:

Gft(dx, dm) ≡ ρft(dx)Mft [x](dm).

Lemma 4.2.9. Let a > 0 and let f, g ∈ L∞ ∩ Pac(Rd ×M ) be two probability density
functions such that ‖f‖L∞ , ‖g‖L∞ ≤ a. Then

‖Gf −Gg‖L∞(Rd×M ) ≤ (α(a) + aθ(a))‖f − g‖L∞(Rd×M ) (4.17)

and
‖Gf −Gg‖L1(Rd×M ) ≤ (α(a) + aθ(a))‖f − g‖L1(Rd×M ) (4.18)

Proof. The result follows as before from (4.2) and (4.4) by noticing that for all x ∈ Rd,
|Jf (x)| ≤ a and |Jf (x)− Jg(x)| ≤ ‖f − g‖L∞ .

The well-posedness of (4.12) and (4.16) is given by the two following propositions.
They are based on Duhamel’s formula and on a fixed point argument.

Proposition 4.2.10 (Well-posedness of (4.12)). For all f0 ∈ Pac(Rd×M ) and all T > 0,
there exists a unique solution of (4.12) in C

(
[0, T ],Pac(Rd×M )

)
with initial condition f0.

Moreover if t 7→ f 1
t and t 7→ f 2

t are two solutions of (4.12) with respective initial conditions
f 1

0 ∈ Pac(Rd ×M ) and f 2
0 ∈ Pac(Rd ×M ) then

sup
t∈[0,T ]

‖f 1
t − f 2

t ‖L1(Rd×M ) ≤ ‖f 1
0 − f 2

0‖L1(Rd×M )e

(
α
(
‖K‖L∞

)
+‖K‖L∞θ

(
‖K‖L∞

))
T .
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Proof. Let f0 ∈ Pac(Rd ×M ) and T > 0 and let us define the map:

T : C
(
[0, T ],Pac(Rd ×M )

)
→ C

(
[0, T ],Pac(Rd ×M )

)
by

T (g)(t, x,m) := e−tf0(x− tΦ(m),m) +

∫ t

0

e−(t−s)GK
gs

(
x− (t− s)Φ(m),m

)
ds.

We prove that T is a contraction. Let g1, g2 ∈ C
(
[0, T ],Pac(Rd ×M )

)
. One has:∫∫

Rd×M

|T (g1)− T (g2)|(t, x,m) dxdm ≤
∫ t

0

e−(t−s)
∫∫

Rd×M

|GK
g1
s
−GK

g2
s
|(x,m) dxdm ds.

The Lipschitz bound (4.13) leads to:

sup
t∈[0,T ]

‖T (g1)(t)−T (g2)(t)‖L1 ≤
(
α
(
‖K‖L∞

)
+‖K‖L∞θ

(
‖K‖L∞

)) ∫ t

0

sup
u∈[0,s]

‖g1
u−g2

u‖L1 ds,

which proves that an iteration of T is a contraction and therefore T has a unique fixed
point. This fixed point is a (mild) solution of (4.12). The stability estimate follows
similarly by Gronwall lemma.

Remark 4.2.11. The well-posedness result Proposition 4.2.10 is stated in an absolutely
continuous framework (i.e. for probability density functions rather than probability
measures) and a solution is defined as a fixed point of the map T . The associated probability
measure (i.e ft(x,m)dxdm) is a mild solution of (4.12) as defined by (4.14). However, it
should be possible to adapt this proof to give the well-posedness in C

(
[0, T ],P(Rd ×M )

)
where P(Rd ×M ) is endowed with the total variation norm (which is the L1 norm for
probability density functions). The result is then similar to the one obtained in [260,
Proposition 2] (by probabilistic coupling arguments) or in [53] (by Duhamel’s formula and
a fixed point argument). In the following, only the absolutely continuous framework will
be considered.

For the well-posedness of (4.16), we consider the space L∞ ∩ Pac(Rd ×M ) which is a
closed subspace of L∞ ∩L1(Rd×M ) and therefore complete for the norm ‖ · ‖L∞ + ‖ · ‖L1

which will be denoted for short by ‖ · ‖L1∩L∞ .

Proposition 4.2.12 (Well-posedness of (4.16)). Let f0 ∈ L∞ ∩ Pac(Rd ×M ) such that
‖f0‖L∞ < a for a given a > 0. Then there exists a time T > 0 and a unique solution
of (4.16) in C

(
[0, T ], L∞ ∩ Pac(Rd ×M )

)
with initial condition f0. Moreover if t 7→ f 1

t
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and t 7→ f 2
t are two solutions of (4.16) with respective initial conditions f 1

0 and f 2
0 such

that ‖f 1
0‖L∞ , ‖f 2

0‖L∞ < a for the same a > 0 then

sup
t∈[0,T ]

‖f 1
t − f 2

t ‖L1∩L∞ ≤ ‖f 1
0 − f 2

0‖L1∩L∞ec(T )

where c(T ) is a constant which depends only on T .

Proof. Let f0 ∈ L∞ ∩ Pac(Rd ×M ). Let a > 0 such that ‖f0‖L∞ < a. Let Ba the ball of
radius a in C

(
[0, T ], L∞ ∩ Pac(Rd ×M )

)
where T > 0 will be specified later and for the

norm ‖h‖ = supt∈[0,T ] ‖h(t)‖L∞ . We consider the map:

T : Ba → Ba

defined by:

T (g)(t, x,m) := e−tf0(x− tΦ(m),m) +

∫ t

0

e−(t−s)Ggs

(
x− (t− s)Φ(m),m

)
ds.

Using the bound (4.2), one has for g ∈ Ba:

|T (g)(t, x,m)| ≤ e−t‖f0‖L∞ + (1− e−t)aα(a)

and the map T is therefore well defined for T > 0 small enough to ensure that for all
t ∈ [0, T ]:

e−t‖f0‖L∞ + (1− e−t)aα(a) ≤ a.

Namely T is well defined for

T ≤ log

(
aα(a)− a

aα(a)− ‖f0‖L∞

)
where we can assume without loss of generality that α(a) ≥ 1. We prove that T is a
contraction. Let g1, g2 ∈ Ba. One has:

|T (g1)− T (g2)|(t, x,m) ≤
∫ t

0

e−(t−s)∣∣Gg1
s
−Gg2

s

∣∣(x− (t− s)Φ(m),m
)
ds.

Using the Lipschitz bounds (4.17) and (4.18) one has:

sup
t∈[0,T ]

‖T (g1)(t)− T (g2)(t)‖L∞ ≤ (α(a) + aθ(a))

∫ t

0

‖g1
s − g2

s‖L∞ds,
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and

sup
t∈[0,T ]

‖T (g1)(t)− T (g2)(t)‖L1 ≤ (α(a) + aθ(a))

∫ t

0

‖g1
s − g2

s‖L1ds,

and therefore, an iteration of T is a contraction and therefore T has a unique fixed
point which is a solution of (4.16). The stability estimate follows similarly by Gronwall
lemma.

4.2.5 Main results

Let Zi,N
t = (X i,N

t ,mi,N
t ) ∈ Rd ×M , i ∈ {1, . . . , N} be a system of PDMP defined by the

IBM described in Subsection 4.2.3.

Theorem 4.2.13 (Propagation of chaos). Let f0 ∈ Pac(Rd ×M ). Let ft be the solution
of (4.12) at time t > 0 with initial condition f0. Assume that initially the agents are
independent and identically distributed with respect to the law f0.

1. For all t > 0, it holds that:

E[W1(µ̂Nt , ft)] −→
N→+∞

0 (4.19)

where

µ̂Nt :=
1

N

N∑
i=1

δ(Xi,N
t ,mi,Nt ).

2. Let f 1,N
t ∈ P(Rd ×M ) be the law at time t > 0 of any agent. Then for all t > 0 it

holds that:

W1(f 1,N
t , ft) ≤ C

e(2λ+
σ(K)
N )t√‖K‖L∞
‖K‖Lip

√
N

exp
(
tσ(K)e

σ(K)
N

)
, (4.20)

where C > 0 is a constant which depends only on M and d and

σ(K) := 2θ
(
‖K‖L∞

)
‖K‖Lip.

The convergence result (4.19) and [307, Proposition 2.2] imply the ft-chaoticity in the
sense of Definition 3.2.10 of the law (in P((Rd×M )N )) of the system (Zi,N

t )t, i ∈ {1, . . . , N}
as stated in the following corollary.

Corollary 4.2.14. Let k ∈ N and let fk,Nt denote the law of any k agents of the system
(Zi,N

t )t, i ∈ {1, . . . , N} at time t. Assume that initially the agents are independent and
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identically distributed with respect to the law f0. Then for every k-tuple of bounded
continuous functions φ1, . . . φk on Rd ×M it holds that:∫

(Rd×M )k
φ1(x1,m1) . . . φk(xk,mk)f

k,N
t (dx1, dm1, . . . , dxk, dmk)

−→
N→+∞

(∫
Rd×M

φ1(x,m)ft(x,m)dxdm

)
× . . .×

(∫
Rd×M

φk(x,m)ft(x,m)dxdm

)
where ft is the solution of (4.12) at time t > 0 with initial condition f0.

The bound (4.20) is similar to the bound obtained in [221, Proposition 2.3] for the
classical McKean-Vlasov system. Moreover it is explicit in terms of the norm of K. In
particular, it is possible to take a kernel which depends on the number of agents N . In
the following, we will consider a sequence of kernels:

KN(x) :=
1

εdN
K

(
x

εN

)
,

where εN → 0 and K is a smooth observation kernel. Without loss of generality, we
can assume that the infinite and Lipschitz norms of K are equal to 1. In particular the
sequence (KN)N is an approximation of the unity (meaning that KN → δ0 as N → +∞)
and the bound (4.20) is still relevant provided that εN → 0 slowly enough. This type
of interaction is called moderate following the terminology of [221, 273]. Based on this
explicit bound and on regularity results for the sequence of solutions associated to the
sequence of kernels (see in particular Lemma 4.4.1), we will prove the following theorem.

Theorem 4.2.15 (Moderate interaction). Let a > 0 and T > 0 such that (4.16) is well
posed on C([0, T ], Ba) where Ba is the ball of radius a > 0 in L∞ ∩ Pac(Rd ×M ). Let
f0 ∈ Ba. Let us define the sequence of rescaled interaction kernels:

KN(x) :=
1

εdN
K

(
x

εN

)
where εN → 0 slowly enough so that:

exp
(

2Tθ(ε−dN )ε
−(d+1)
N

)
√
N

−→
N→+∞

0. (4.21)

Let f 1,N
t be the law at time t < T of any agent defined by the PDMP (4.10), (4.11)
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with the interaction kernel KN .Then it holds that:

f 1,N
t −→

N→+∞
ft,

where ft is the solution of (4.16) at time t < T and where the convergence is the weak
convergence of measures.

Remark 4.2.16. In the Vicsek and Body-orientation cases, one has θ(ε−dN ) = ec/ε
−d
N . In

order to fulfill Hypothesis (4.21), we have to take εN ∼ log log(N)−1/d. From a physical
point of view, this is not a satisfactory order of magnitude even for very large values
of N . Moreover εN decays much slower than N−α with α ∈ (0, 1) which is the result
obtained in [273] in a much simpler setting with constant diffusion. Similarly as in [221],
the estimate obtained here should therefore be understood as a purely theoretical result
needed to obtain rigorously the purely local BGK equation and is not claimed to be
optimal.

Remark 4.2.17. Both theorems rely on the fact that, despite its nonlinearity, the interaction
is regular enough (Lipschitz assumptions) to prove the well-posedness of the kinetic PDEs.
As mentioned in the introduction we could also consider another version of this model
where the flux is “normalised” which consists in taking instead of a flux J ∈ E its projection
on the manifold M . This case is much more singular and is left for future work. See
however the approach of [50, 160, 169] for well-posedness results on the “normalised” Vicsek
model.

4.3 Propagation of chaos (proof of Theorem 4.2.13)

This section is devoted to the proof of Theorem 4.2.13. It is based on a coupling argument
as in [307]. More precisely we define N independent so-called McKean processes such that
their common law satisfies (4.12) (also known as McKean-Vlasov processes or Distribution
Dependent processes in the literature for diffusion models [152, 318, 329, 259] and in
Section 3.3). We then use a coupling between each one of the N particles described in
Subsection 4.2.3 with each one of the N McKean processes to control the expectation of
the distance between their paths over time. To obtain this control, firstly, we couple the
time of the jumps between the processes and secondly, we use an optimal coupling between
the laws of the new orientations of the particle processes and the McKean processes to
control the expectation of the distance between the two paths at a jump. At each jump
time, the expectation of the distance between a particle process and its associated McKean
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process is bounded by the sum of the average distance between each pair of particle and
McKean processes just after the previous jump and an error term which tends to zero
when N tends to +∞. The control of the expectation of the distance between their paths
over time then follows from a discrete Gronwall type inequality.

Proof (of Theorem 4.2.13). We first define N independent copies of a so-called McKean
process Zt with which the processes on the agents will be coupled.

Step 1. McKean processes and coupling

The McKean process is the PDMP defined by:

• a homogeneous Poisson process of rate 1, with holding times (Sn)n and jumping
times

T n := S1 + . . .+ Sn,

• the deterministic flow φt : Rd ×M → Rd ×M for t ≥ 0:

φt(x,m) = (x− tΦ(m),m),

• the transition probability at time T n:

QTn
(x,m) := δx ⊗MK?f

T
−
n

[x],

where f
T
−
n

:= TSnfTn−1
= fTn−1

◦ φSn and ft is the solution at time t of (4.12).

The well definition of the McKean process follows from the wellposedness of (4.12)
(Proposition 4.2.10) as in [307, Theorem 1.1]. It is defined in such a way that its law
satisfies (4.12).

For i ∈ {1, . . . , N} let (Z
i

t)t be an independent copy of the McKean process. The
positions and orientation components are denoted by Zi

t = (X
i

t,m
i
t). Let us define the

holding times (Sn)n and jumping times (Tn)n resulting from merging the Poisson processes
associated to the N independent copies of the McKean process. It defines a homogeneous
Poisson process of rate N [47, Section 8.1.3]. In particular, the holding times Sn are
independent and follow an exponential law of parameter N (their expectation is 1/N).
Let us also define (In)n the sequence of indexes in {1, . . . , N} such that the process In is
responsible for the n-th jump. The In form a sequence of i.i.d. uniform random variables
on {1, . . . , N}.

Let us define a system of N PDMP (Zi
t)t, i ∈ {1, . . . , N}, on Rd×M , with components

denoted by Zi
t = (X i

t ,m
i
t), as follows.
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• Initially for all i ∈ {1, . . . , }, Zi

0 = Zi
0.

• The jump times (Tn) and the indexes (In) are given above.

• The processes follow the deterministic flow φ between two jump times.

• At time Tn, the new orientation mIn
Tn

of ZIn
Tn

is defined by:

mIn
Tn

:= s
(
mIn
Tn

)
,

where mIn
Tn

is the orientation of ZIn
Tn at time Tn and s : M →M is a Borel map such

that:
s#MK?f

T−n

[
X
In
T−n

]
= MK?µ̂

T−n

[
XIn
T−n

]
and s is an optimal transport map between the two distributions. In particular it
implies that the random variable mIn

Tn
is distributed according to MK?µ̂

T−n

[
XIn
T−n

]
(conditionally to FT−n ) and

E
[
d
(
mIn
Tn
,mIn

Tn

) ∣∣∣FT−n ] = W1

(
MK?f

T−n

[
X
In
T−n

]
,MK?µ̂

T−n

[
XIn
T−n

])
(4.22)

where the σ-algebra FT−n is defined below.
The existence of such optimal transport map is given by [77] or [158, Theorem 1] (Monge

problem, see [328] or [77]) and unicity can be recovered under additional assumptions
which will not be needed here.

Remark 4.3.1. In [116, Section 3.3] an explicit transport map is introduced: in the SO3(R)-
framework a transport map from a von Mises distribution of parameter A1 ∈ SO3(R) to a
von Mises of parameter A2 ∈ SO3(R) is given by

A 7→ AT
1AA2.

We define the following filtrations:

Gn := σ(S1, . . . , Sn),

Ft := σ
(
Zi
s, Z

i

s | 0 ≤ s ≤ t, i ∈ {1, . . . , N}
)
,

and we will write:
FT−n := FTn−1 ∨ σ(Sn) ∨ σ(In).
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In particular,
Gn ⊂ FT−n .

Step 2. Control of the jumps

In this step, we bound the expectation of the distance between the processes at the
jump time Tn, knowing the system at time Tn−1 and the holding time Sn. By definition of
the processes, the couples of position and orientation

ZIn
Tn

= (XIn
Tn
,mIn

Tn
) and Z

In
Tn = (X

In
Tn ,m

In
Tn

)

of the particle In and its associated McKean process satisfy:

E
[
d
(
ZIn
Tn
, Z

In
Tn

)∣∣∣FT−n ] ≤ ∣∣XIn
T−n
−XIn

T−n

∣∣+W1

(
MK?µ̂N

T−n

[
XIn
T−n

]
,MK?f

T−n

[
X
In
T−n

])
≤ (1 + λSn)d

(
ZIn
Tn−1

, Z
In
Tn−1

)
+W1

(
MK?µ̂N

T−n

[
XIn
T−n

]
,MK?f

T−n

[
X
In
T−n

])
(4.23)

where we used (4.22) in the first inequality and the fact that the flow is λ-Lipschitz in the
second inequality.

The last W1-distance is split into three parts.

W1

(
MK?µ̂N

T−n

[
XIn
T−n

]
,MK?f

T−n

[
X
In
T−n

])
≤ W1

(
MK?µ̂N

T−n

[
XIn
T−n

]
,MK?µ̂N

T−n

[
X
In
T−n

])
+W1

(
MK?µ̂N

T−n

[
X
In
T−n

]
,MK?µN

T−n

[
X
In
T−n

])
+W1

(
MK?µN

T−n

[
X
In
T−n

]
,MK?f

T−n

[
X
In
T−n

])
(4.24)

Where µNt is the empirical measure of the nonlinear processes:

µNt :=
1

N

N∑
i=1

δ
Z
i
t
.

For the first term on the right-hand side of (4.24), we use (4.7) and the fact that the
dynamics is deterministic on the time interval [Tn−1, Tn), this leads to the following

95



estimate:

W1

(
MK?µ̂N

T−n

[
XIn
T−n

]
,MK?µ̂N

T−n

[
X
In
T−n

])
≤ θ
(
‖K‖L∞

)
‖K‖Lip

∣∣XIn
T−n
−XIn

T−n

∣∣
≤ θ
(
‖K‖L∞

)
‖K‖Lip(1 + λSn)d

(
ZIn
Tn−1

, Z
In
Tn−1

)
.

Similarly for the second term on the right-hand side of (4.24):

W1

(
MK?µ̂N

T−n

[
X
In
T−n

]
,MK?µN

T−n

[
X
In
T−n

])
≤ θ
(
‖K‖L∞)‖K‖LipW1(µ̂N

T−n
, µN

T−n
)

≤ θ
(
‖K‖L∞)‖K‖Lip

1

N

N∑
i=1

d
(
Zi
T−n
, Z

i

T−n

)
≤ θ
(
‖K‖L∞)‖K‖Lip(1 + λSn)

1

N

N∑
i=1

d
(
Zi
Tn−1

, Z
i

Tn−1

)
.

The third term on the right-hand side of (4.24) does not involve the processes Zi
t and

will be considered as an error term. Using (4.4), it holds that

W1

(
MK?µN

T−n

[
X
In
T−n

]
,MK?f

T−n

[
X
In
T−n

])
≤ θ
(
‖K‖L∞)

∣∣∣JK?µN
T−n

(
X
In
T−n

)
− JK?f

T−n

(
X
In
T−n

)∣∣∣
=: θ

(
‖K‖L∞)eIn

T−n
.

In addition, for all i 6= In, it holds that

E
[
d
(
Zi
Tn , Z

i

Tn

)∣∣∣FT−n ] ≤ (1 + λSn)d
(
Zi
Tn−1

, Z
i

Tn−1

)
.

Gathering everything and from (4.23) it leads to

E[YTn|FT−n ] ≤ (1 + λSn)YTn−1

+ θ
(
‖K‖L∞

)
‖K‖Lip(1 + λSn)d

(
ZIn
Tn−1

, Z
In
Tn−1

)
+ θ
(
‖K‖L∞)‖K‖Lip(1 + λSn)

1

N

N∑
i=1

d
(
Zi
Tn−1

, Z
i

Tn−1

)
+ θ
(
‖K‖L∞)eIn

T−n

where

Yt :=
N∑
i=1

d
(
Zi
t , Z

i

t

)
.
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Taking the conditional expectation with respect to Gn gives:

E[YTn|Gn] ≤ (1 + λSn)E[YTn−1|Gn−1] + (1 + λSn)
σ(K)

N
E[YTn−1|Gn−1]

+ θ
(
‖K‖L∞)E

[
eIn
T−n

∣∣∣Gn], (4.25)

where we have used that Sn is Gn-measurable and the independence relations : In ⊥ FTn−1 ,
In ⊥ Gn and In ∼ U(1, . . . , N) which imply that

E
[
d
(
ZIn
Tn−1

, Z
In
Tn−1

) ∣∣∣Gn] =
1

N
E
[
YTn−1 |Gn

]
,

and since Gn = Gn−1 ∨ σ(Sn) and Sn ⊥ FTn−1 the tower property [332, Section 9.7.(i)]
implies,

E
[
YTn−1|Gn

]
= E

[
YTn−1 |Gn−1

]
.

Step 3. Control of the error term

We are now looking for a uniform bound on the error term which depends only on N .
Recall that,

eIn
T−n

=

∣∣∣∣∣ 1

N

N∑
j=1

K
(
X
In
T−n
−Xj

T−n

)
mj

T−n
−
∫∫

Rd×M

K
(
X
In
T−n
− x
)
mfT−n (x,m)dxdm

∣∣∣∣∣ .
Let us define:

b
(
Z
i

T−n
, Z

j

T−n

)
:= K

(
X
i

T−n
−Xj

T−n

)
mj

T−n
−
∫∫

Rd×M

K
(
X
i

T−n
− x
)
mfT−n (x,m)dxdm.

These quantities are uniformly bounded:∣∣∣b(Zi

T−n
, Z

j

T−n

)∣∣∣ ≤ C‖K‖L∞

and satisfy (by pairwise independence of the McKean processes):

E
[
b
(
Z
i

T−n
, Z

j

T−n

) ∣∣∣Zi

T−n

]
= 0. (4.26)
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The Cauchy-Schwarz inequality implies

E
[
eIn
T−n

∣∣∣Gn]2

= E

[∣∣∣∣∣ 1

N

N∑
j=1

b
(
Z
In
T−n
, Z

j

T−n

)∣∣∣∣∣ ∣∣∣Gn
]2

≤ E

 1

N2

(
N∑
j=1

b
(
Z
In
T−n
, Z

j

T−n

))2 ∣∣∣Gn


=
1

N2

N∑
j,k=1

E
[
b
(
Z
In
T−n
, Z

j

T−n

)
b
(
Z
In
T−n
, Z

k

T−n

) ∣∣∣Gn] .
And because of the centering property (4.26) and the pairwise independence, if In 6= j and
In 6= k:

E
[
b
(
Z
In
T−n
, Z

j

T−n

)
b
(
Z
In
T−n
, Z

k

T−n

) ∣∣∣Gn] = E
[
b
(
Z
In
T−n
, Z

j

T−n

)
E
[
b
(
Z
In
T−n
, Z

k

T−n

) ∣∣∣ZIn
T−n
, Z

j

T−n

] ∣∣∣Gn]
= 0,

which implies that there are only O(N) non-zero terms in the sum. Since these terms are
uniformly bounded, we deduce:

E
[
eIn
T−n

∣∣∣Gn] ≤ C

√
‖K‖L∞
N

. (4.27)

Remark 4.3.2. Note that in the second step we use only the bound (4.7) which is weaker
than the assumption (4.4). The assumption (4.4) is only crucial in this proof to obtain
the control of the error term in 1/

√
N . However, a similar conclusion could be reached

by applying more general quantitative results on the convergence in Wasserstein distance
of the empirical measures of i.i.d random variables towards their common law, see for
example [162]. This approach would require the adaptation of the existing results to
our geometrical framework and we therefore choose to assume (4.4) and use the more
straightforward computation presented in step 3 as in [307] and since it corresponds to
the models [111, 140].

Step 4. Gronwall lemma

From the (4.25) and (4.27) we conclude that for all n ≥ 1,

E[YTn|Gn] ≤ (1 + λSn)

(
1 +

σ(K)

N

)
E[YTn−1|Gn−1] + C

θ
(
‖K‖L∞

)√
‖K‖L∞√

N
(4.28)

and Y0 = 0. This is a discrete Gronwall-type inequality and using the inequality 1+x ≤ ex,
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it can be seen by induction that for all n ≥ 1:

E[YTn|Gn] ≤ C
θ
(
‖K‖L∞

)√
‖K‖L∞√

N

n−1∑
k=0

e
σ(K)
N

k+(λ+
σ(K)
N )(Tn−Tn−k). (4.29)

Step 5. Conclusion : bound at time t > 0

In order to bound E[Yt], we first look for a bound on E[YTNt ] where

Nt = sup{n ∈ N, Tn ≤ t}.

The random variable Nt has a Poisson distribution of parameter Nt [47, Chapter 8.1.2]
and in particular P(Nt = n) = (Nt)n

n!
e−Nt. Since everything is deterministic on [TNt , t), we

will then use the fact that:
E[Yt] ≤ (1 + λt)E[YTNt ]. (4.30)

Using the relation (4.29), we first have:

E[YTn1Nt=n] = E
[
E
[
YTn1Nt=n

∣∣Gn+1

] ]
= E

[
1Nt=nE

[
YTn
∣∣Gn+1

] ]
= E

[
1Nt=nE

[
YTn
∣∣Gn] ]

≤ C
θ
(
‖K‖L∞

)√
‖K‖L∞√

N
E

[
n−1∑
k=0

e
σ(K)
N

k+(λ+
σ(K)
N )t

1Nt=n

]

≤ C
θ
(
‖K‖L∞

)√
‖K‖L∞√

N
e(λ+

σ(K)
N )t e

σ(K)n
N

e
σ(K)
N − 1

P(Nt = n)

And therefore,

E
[
YTNt

]
=
∞∑
n=0

E[YTn1Nt=n]

≤ C
θ
(
‖K‖L∞

)√
‖K‖L∞√

N

e(λ+
σ(K)
N )t

e
σ(K)
N − 1

∞∑
n=0

e
σ(K)
N

nP(Nt = n)

≤ C
θ
(
‖K‖L∞

)√
‖K‖L∞√

N

e(λ+
σ(K)
N )t

e
σ(K)
N − 1

exp
(
Nt
(

e
σ(K)
N − 1

))
.
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Finally, from this last expression and expression (4.30) we conclude that

1

N
E[Yt] ≤ (1 + λt)

1

N
E
[
YTNt

]
≤ C

θ
(
‖K‖L∞

)√
‖K‖L∞√

N

e(2λ+
σ(K)
N )t

N
(

e
σ(K)
N − 1

) exp
(
Nt
(

e
σ(K)
N − 1

))
(4.31)

where we have used the fact that 1 + λt ≤ eλt. To prove the first point of Theorem 4.2.13
we notice that

E[W1(µ̂Nt , ft)] ≤ E[W1(µ̂Nt , µ
N
t )] + E[W1(µNt , ft)]

≤ 1

N
E[Yt] + E[W1(µNt , ft)]

where the bound between the two empirical measures is a consequence of the Kantorovich
dual formulation of the Wasserstein distance. Since E[W1(µ

N
t , ft)]→ 0 as N → +∞ by

independence of the McKean processes, the result follows from (4.31).
The second point of Theorem 4.2.13 follows from the definition of the Wasserstein

distance which implies that

W1(f 1,N
t , ft) ≤

1

N
E[Yt].

The final bound is obtained from the right-hand side of (4.31) and the fact that for all
x ≥ 0, x ≤ ex − 1 ≤ xex.

Remark 4.3.3. The above proof is based on the same classical coupling arguments of [307]
but in a PDMP framework and using an “algorithmic” definition of the process. This type
of proof is rather elementary and allows an explicit control of the error. In the context
of jump processes, another natural approach would be to re-write the IBM as a system
of N stochastic differential equations with respect to N independent Poisson measures.
Without a specific geometrical structure as in this chapter, a very comprehensive reference
which proves propagation of chaos in this context is [5].

4.4 Moderate interaction (proof of Theorem 4.2.15)

This section is devoted to the proof of Theorem 4.2.15. We follow the approach of [221].
Given a sequence of kernels (KN)N , the goal is to apply Ascoli-Arzelà’s theorem to show
the convergence in C([0, T ], Ba) of a subsequence of the sequence of solutions of (4.12)
associated to (KN)N towards the unique solution of (4.16). To do so, we will first need
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to prove some properties on the associate sequence of solutions of (4.12) (Lemma 4.4.1)
and in particular an equicontinuity property. We will then prove a compactness result
(Lemma 4.4.3) which is an adaptation of the classical Riesz-Fréchet-Kolmogorov to our
geometrical context and which will be needed to prove the compactness of the sequence at
a fixed time (pointwise compactness, Lemma 4.4.4). The proof of Theorem 4.2.15 can be
found in Section 4.4.3.

4.4.1 First estimates

From now, we fix a > 0 and T > 0 such that (4.16) is wellposed on C([0, T ], Ba) where Ba

is the ball of radius a > 0 in L∞ ∩ Pac(Rd ×M ). A key remark is that, if g ∈ Ba then for
all N ∈ N and all x ∈ Rd,

|JKN?g(x)| ≤
∫∫

Rd×M

KN(x− y)|g(y,m)|dydm ≤ a,

since the integral of KN is equal to 1 and where we have used that
∫

M
dm = 1. As a

consequence, the solution fN of (4.12) with kernel KN and initial condition f0 belongs
to C([0, T ], Ba) as it can be seen by rewriting the proof of Proposition 4.2.12 for the
interaction law with kernel KN .

Lemma 4.4.1. The sequence (fN)N ∈ C([0, T ], Ba) satisfies the following properties.

(i) (space-translation stability) Let h ∈ Rd, then

sup
t∈[0,T ]

‖τ(h,id)f
N
t − fNt ‖L1(Rd×M ) ≤ C(a, T )‖τ(h,id)f0 − f0‖L1(Rd×M ), (4.32)

where the translation operator τ is defined for a measurable function g on Rd ×M ,
h ∈ Rd and ψ ∈ C(M ,M ) by (τ(h,ψ)g)(x,m) := g(x+ h, ψ(m)).

(ii) (tightness) There exists β > 0 such that for R > 0 sufficiently big, then

sup
t∈[0,T ]

∫∫
{|x|≥R}×M

fNt (x,m)dxdm ≤ C(T )

∫∫
{|x|≥R−βT}×M

f0(x,m)dxdm. (4.33)

(iii) (equicontinuity) Let t ∈ [0, T ) and h > 0 sufficiently small, then

‖fNt+h − fNt ‖L1(Rd×M ) ≤ C(a, T )
(
‖Thf0 − f0‖L1(Rd×M ) + ε(h)

)
, (4.34)

where ε(h)→ 0 uniformly in h and Th is the free-transport operator defined by (4.15).
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Proof. Recall that fN is given by Duhamel’s formula:

fNt (x,m) = e−tf0(x− tΦ(m),m)

+

∫ t

0

e−(t−s)ρfNs (x− (t− s)Φ(m))MKN?fNs
[x− (t− s)Φ(m)](m) ds.

Or equivalently:

fNt = e−tTtf0 +

∫ t

0

e−(t−s) Tt−sG
K
fNs

ds,

where
GK
f (x,m) := ρf (x)MKN?f [x](m).

(i) Since τ(h,id)Tt = Ttτ(h,id) and τ(h,id)G
K
f = GK

τ(h,id)f
, the conclusion follows from the

stability estimate obtained by Duhamel formula by using the Lipschitz bound (4.18)

‖GK
f −GK

g ‖L1(Rd×M ) ≤ (α(a) + aθ(a))‖f − g‖L1(Rd×M )

and Gronwall’s lemma.

(ii) For a given R > 0∫∫
{|x|≥R}×M

fNt (x,m)dxdm = e−t
∫∫
{|x|≥R}×M

f0(x− tΦ(m),m)dxdm

+

∫ t

0

e−(t−s)
∫∫
{|x|≥R}×M

GK
fNs

(x− (t− s)Φ(m),m)dxdm ds.

We define for 0 ≤ s ≤ t and for R > 0 sufficiently big:

INR (s) :=

∫∫
{|x|≥R−β(t−s)}×M

fNs (x,m)dxdm

where β > 0 is such that |Φ(m)| ≤ β for all m ∈M . For fixed m ∈M and s ∈ [0, t],
with the change of variables x 7→ x− (t− s)Φ(m), it holds that:∫

|x|≥R
GK
fNs

(x− (t− s)Φ(m),m)dx =

∫
|x+(t−s)Φ(m)|≥R

ρfNs (x)MKN?fNs
[x](m)dx

≤
∫
|x|≥R−β(t−s)

ρfNs (x)MKN?fNs
[x](m)dx,

where the last inequality comes from the fact that {x, |x + (t − s)Φ(m)| ≥ R} ⊂
{x, |x| ≥ R− β(t− s)}. Integrating this expression on M and using the fact that
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MKN?fNs
[x] is a probability density function, we obtain:∫∫

{|x|≥R}×M

GK
fNs

(x− (t− s)Φ(m),m)dx ≤ INR (s).

Then, since e−t ≤ 1, it holds that

INR (t) ≤ INR (0) +

∫ t

0

INR (s)esds

from which we can conclude using Gronwall lemma that:

INR (t) =

∫∫
{|x|≥R}×M

fNt (x,m)dxdm ≤ C(t)

∫∫
{|x|≥R−βt}×M

f0(x,m)dxdm

≤ C(t)INR (0).

(iii) We have:

‖fNt+h − fNt ‖L1(Rd×M ) ≤ e−t‖Thf0 − f0‖L1(Rd×M )

+

∫ t

0

e−(t−s)‖ThGK
fNs
−GK

fNs
‖L1(Rd×M ) + ε(|h|)

where ε(|h|) → 0 and depends only on a and T (it comes from the terms e−(t+h)

instead of e−t and the integral between t and t+ h). Then it holds that

‖ThGK
fNs
−GK

fNs
‖L1(Rd×M )

=

∫∫
Rd×M

∣∣∣ ∫
M

fNs (x− hΦ(m),m′)MKN?fNs
[x− hΦ(m)] (m)

− fNs (x,m′)MKN?fNs
[x] (m)dm′

∣∣∣dxdm

≤
∫

M

{∫∫
Rd×M

∣∣∣fNs (x− hΦ(m),m′)MKN?fNs
[x− hΦ(m)] (m)

− fNs (x,m′)MKN?fNs
[x] (m)

∣∣∣dm′dx}dm
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And it holds that for a given m ∈M :∫∫
Rd×M

∣∣∣fNs (x− hΦ(m),m′)MKN?fNs
[x− hΦ(m)] (m)

− fNs (x,m′)MKN?fNs
[x] (m)

∣∣∣dm′dx
≤ α(a)

∥∥(τ(−hΦ(m),id)f
N
s )− fNs

∥∥
L1(Rd×M )

+ Caθ(a)

∫∫
Rd×M

∫∫
Rd×M

KN(y)
∣∣fNs (x− hΦ(m)− y,m′′)

− fNs (x− y,m′′)
∣∣|m′′|dydm′′dxdm′.

Since |m′′| ≤ 1 and
∫

M
dm′ = 1, by switching the integrals in x and in y (Fubini’s

theorem), with the change of variable x′ = x − y and since the integral of KN is
equal to 1, it holds that:∫∫

Rd×M

∫∫
Rd×M

KN(y)
∣∣fNs (x− hΦ(m)− y,m′′)− fNs (x− y,m′′)

∣∣ |m′′|dydm′′dxdm′

≤
∥∥τ(−hΦ(m),id)f

N
s − fNs

∥∥
L1(Rd×M )

.

Gathering everything and using the space-translation stability property, we obtain:

‖ThGK
fNs
−GK

fNs
‖L1(Rd×M ) ≤ c(a, T )

∫
M

‖τ(−hΦ(m),id)f0 − f0‖L1(Rd×M )dm,

where c(a, T ) > 0 is a constant which depends only on a, T > 0 and M . This
last term vanishes uniformly on h by the dominated convergence theorem and the
continuity of the shift operator in L1 (as it can be seen by approximation by smooth
functions [12, p.79]).

Remark 4.4.2. These properties can be understood at the level of the processes Zt. In
particular, we can deduce some of them from [260]:

• Since τ(h,id) commutes with all the operators, the space-translation stability follows
from the stability result [260, Theorem 3].

• For the equicontinuity, since everything is Markovian, we can consider the two
nonlinear processes starting from f0 and fh. Their laws at time t are respectively ft
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and ft+h. The stability result [260, Theorem 3] shows that:

‖ft+h − ft‖TV ≤ C(a, T )‖fh − f0‖TV.

To conclude, it is enough to write:

‖fh − f0‖TV ≤ ‖Thf0 − f0‖TV + ‖fh − Thf0‖TV

and to notice that:

‖fh − Thf0‖TV ≤ P(there is a jump on [0, h]) = O(h).

4.4.2 A compactness result

We first state a compactness lemma, which is the analog of the Riesz-Fréchet-Kolmogorov
theorem in a Riemannian setting. The proof can be found in Appendix 4.A. The ideas of
the proof come from [195, Chapter 2]. When ω and Ω are two open sets in a metric space,
we write ω ⊂⊂ Ω when ω ⊂ Ω, ω ⊂ Ω and ω is compact where ω is the closure of ω in the
ambiant metric space.

Lemma 4.4.3. Let F ⊂ L1(Rd ×M ) be a bounded subset which satisfies the following
properties.

1. For all ε > 0, there exists R > 0 such that:

∀f ∈ F ,
∫∫
{|x|≥R}×M

f(x,m)dxdm < ε.

2. For all ε > 0 and for all ω ⊂⊂ Ω ⊂M open sets, there exists η > 0 such that for
any smooth function φ : ω → Ω which satisfies

∀m ∈ ω, d(φ(m),m) < η,

and for all h ∈ Rd such that |h| < η, it holds that:

∀f ∈ F ,
∫∫

Rd×ω
|f(x+ h, φ(m))− f(x,m)|dxdm < ε.

Then F is relatively sequentially compact in L1(Rd ×M ).
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Using this lemma, it can be shown that for every t ∈ [0, T ], the sequence (fNt )N is
compact in L1(Rd ×M ).

Lemma 4.4.4 (Pointwise compactness). Let t ∈ [0, T ] be a given time. Then the sequence
(fNt )N of solutions of (4.12) associated to the sequence of kernels (KN)N is compact
in L1(Rd ×M ).

Proof. To prove this result, we will show that the family (fNt )N satisfies the conditions
to apply Lemma 4.4.3. Firstly we see that the family is bounded in L1 : for all N ∈ N,
‖fNt ‖L1(Rd×M ) = 1. Secondly thanks to the tightness result (4.33) the family satisfies the
first point of Lemma 4.4.3. Finally we are left with proving that the family satisfies the
second point in Lemma 4.4.3. The conclusion is then a direct consequence of Lemma 4.4.3.
The rest of this proof is devoted to showing that the family (fNt )N satisfies condition 2 of
Lemma 4.4.3.

Let h ∈ Rd, ω ⊂⊂ Ω ⊂M open sets and ψ : ω → Ω a continuous function. Recall the
Duhamel’s formula:

fNt = e−tTtf0 +

∫ t

0

e−(t−s) Tt−sG
K
fNs

ds

where the free-transport operator Tt is defined by (4.15) and the (h, ψ)-translation is
defined by:

τ(h,ψ)f(x,m) := f(x+ h, ψ(m)).

To show that the family (fNt )N fulfills condition 2 in Lemma 4.4.3, we have to bound:

‖τ(h,ψ)f
N
t − fNt ‖L1(Rd×ω) ≤ e−t‖τ(h,ψ)Ttf0 − Ttf0‖L1(Rd×ω)

+

∫ t

0

e−(t−s)‖τ(h,ψ)Tt−sG
K
fNs
− Tt−sG

K
fNs
‖L1(Rd×ω) ds

≤ e−t‖τ(h,ψ)f0 − f0‖L1(Rd×ω)

+ e−t‖τ(h,ψ)Ttf0 − Ttτ(h,ψ)f0‖L1(Rd×ω)

+

∫ t

0

e−(t−s)‖τ(h,ψ)G
K
fNs
−GK

fNs
‖L1(Rd×ω) ds

+

∫ t

0

e−(t−s)‖τ(h,ψ)Tt−sG
K
fNs
− Tt−sτ(h,ψ)G

K
fNs
‖L1(Rd×ω) ds

=: I1 + I2 + I3 + I4 (4.35)

where we have used that the free-transport operator is an L1-isometry. We now bound
each of the four terms in the right hand side.
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• (Term I1) For smooth compactly supported f0, it follows by the dominated conver-
gence theorem that:

‖τ(h,ψ)f0 − f0‖L1(Rd×ω) → 0

when h→ 0 and ψ → id (for the uniform convergence topology on M ). This limit
still holds for any f0 ∈ L1(Rd × ω) by density in the L1 norm of smooth compactly
supported functions and the fact that the translation operator is an isometry.

• (Term I2) By similar arguments,

‖τ(h,ψ)Ttf0 − Ttτ(h,ψ)f0‖L1(Rd×ω)

=

∫∫
Rd×ω

∣∣Ttf0(x+ h, ψ(m))− (τ(h,ψ)f0)(x− tΦ(m),m)
∣∣ dxdm

=

∫∫
Rd×ω

∣∣f0

(
x+ h− tΦ

(
ψ(m)

)
, ψ(m)

)
− f0 (x+ h− tΦ(m), ψ(m))

∣∣ dxdm

=

∫∫
Rd×ω

∣∣f0

(
x− t

(
Φ
(
ψ(m)− Φ(m)

)
, ψ(m)

)
− f0(x, ψ(m))

∣∣ dxdm

converges to 0 as h→ 0 and ψ → id since Φ is Lipschitz.
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• (Term I3) We write the third term as:

‖τ(h,ψ)G
K
fNs
−GK

fNs
‖L1(Rd×ω)

=

∫∫
Rd×ω

∣∣∣ ∫
M

fNs (x+ h,m′)MKN?fNs
[x+ h]

(
ψ(m)

)
− fNs (x,m′)MKN?fNs

[x](m)dm′
∣∣∣dxdm

≤
∫

M

∫∫
Rd×ω

|fNs (x+ h,m′)− fNs (x,m′)|MKN?fNs
[x+ h]

(
ψ(m)

)
dxdmdm′

+

∫
M

∫∫
Rd×ω

fNs (x,m′)
∣∣MKN?fNs

[x+ h]
(
ψ(m)

)
−MKN?fNs

[x](m)
∣∣ dxdmdm′

≤ α(a)‖τ(h,id)f
N
s − fNs ‖L1(Rd×M )

+

∫
M

∫∫
Rd×ω

fNs (x,m′)
∣∣MKN?fNs

[x+ h]
(
ψ(m)

)
−MKN?fNs

[x]
(
ψ(m)

)∣∣ dxdmdm′

+

∫
M

∫∫
Rd×ω

fNs (x,m′)
∣∣MKN?fNs

[x]
(
ψ(m)

)
−MKN?fNs

[x](m)
∣∣ dxdmdm′

≤ α(a)‖τ(h,id)f
N
s − fNs ‖L1(Rd×M )

+ a

∫
Rd

∥∥MKN?fNs
[x+ h]−MKN?fNs

[x]
∥∥
L∞(M )

dx

+ L(a) sup
m∈ω

d(ψ(m),m)

where we have used the fact that for all N ∈ N and all t ∈ [0, T ], ‖fNt ‖L∞(Rd×M ) ≤ a

where a > 0 is fixed (see beginning of Subsection 4.4.1). Using the bound (4.4),
Fubini’s theorem and the fact that the integral of KN is equal to 1, it holds that∫

Rd

∥∥MKN?fNs
[x+ h]−MKN?fNs

[x]
∥∥
L∞(M )

dx

≤ θ(a)

∫
Rd

∫∫
Rd×M

KN(y)|fNs (x+ h− y,m)− fNs (x− y,m)|dydmdx

= θ(a)‖τ(h,id)f
N
s − fNs ‖L1(Rd×M )
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Finally we conclude the following estimate:

‖τ(h,ψ)G
K
fNs
−GK

fNs
‖L1(Rd×ω) ≤ (α(a) + aθ(a))‖τ(h,id)f

N
s − fNs ‖L1(Rd×M )

+ L(a) sup
m∈ω

d(ψ(m),m).

Using the space-translation stability (4.32) we deduce that this term goes to zero
when h→ 0 and ψ → id (for the uniform convergence topology on M ).

• (Term I4) We bound the fourth term:

‖τ(h,ψ)Tt−sG
K
fNs
− Tt−sτ(h,ψ)G

K
fNs
‖L1(Rd×ω)

=

∫∫
Rd×ω

∣∣∣GK
fNs

(
x− (t− s)

(
Φ
(
ψ(m)

)
− Φ(m)

)
, ψ(m)

)
−GK

fNs
(x, ψ(m))

∣∣∣ dxdm

≤
∫∫

Rd×ω

∫
M

∣∣∣fNs (x− (t− s)
(
Φ
(
ψ(m)

)
− Φ(m)

)
,m′
)

×MKN?fNs
[x− (t− s) (Φ (ψ(m))− Φ(m))]

(
ψ(m)

)
− fNs (x,m′)MKN?fNs

[x]
(
ψ(m)

)∣∣∣dm′dxdm

≤
(
α(a) + aθ(a)

) ∫
ω

∥∥τ(−(t−s)(Φ(ψ(m))−Φ(m)),id)f
N
s − fNs

∥∥
L1(Rd×M )

dm

Using the space-translation stability and the fact that Φ is Lipschitz, we conclude
that this term goes to zero when h→ 0 and ψ → id.

Finally, gathering the analysis of these four terms, we conclude that the right-hand side in
expression (4.35) converges to 0 when h → 0 and ψ → id. Therefore the family (fNt )N
fulfills condition 2 in Lemma 4.4.3, as we wanted to show.

Remark 4.4.5. This result is similar to the compact injection W 1,1(M) ↪→ L1(M) where M
is compact Riemannian manifold (this follows from Rellich-Kondrakov injection theorem
[195, Theorem 2.9] which is a consequence of Riesz-Fréchet-Kolmogorov theorem, as
Lemma 4.4.3). We can apply directly this result under stronger assumptions on f0 : if
f0 is compactly supported then it can be seen as a function on Td ×M where Td is
a sufficiently big d-dimensional torus. The tightness result (4.33) proves that fNt can
also be seen as a function on Td ×M . The space-translation stability (4.32) and the
Lipschitz bound (4.3) on the interaction law ensure that if f0 ∈ W 1,1(Td×M ) then (fNt )N
is bounded in W 1,1(Td ×M ) hence compact in L1(Td ×M ).

109



4.4.3 Proof of Theorem 4.2.15

Proof (of Theorem 4.2.15). Under hypothesis (4.21), it holds that

σ(KN)

N
−→

N→+∞
0

and the right-hand side of (4.20) (at time T ) goes to 0 as N → +∞ :

ε
d/2+1
N eT

σ(KN )
N√

N
exp

(
Tθ(ε−dN )ε

−(d+1)
N e

σ(KN )
N

)
→ 0,

where we can assume without loss of generality that ‖K‖L∞ = ‖K‖Lip = 1 which implies

‖KN‖L∞ = ε−dN and ‖KN‖Lip = ε−(d+1).

The propagation of chaos result (Theorem 4.2.13) therefore ensures that under Hypothe-
sis (4.21),

W 1(f 1,N
t , fNt ) −→

N→+∞
0,

where fNt is the solution of (4.12) with kernel KN . The Wasserstein-1 convergence implies
the weak convergence of measures. It then remains to prove that

‖fNt − ft‖L1(Rd×M ) → 0,

since it also implies the weak convergence of fNt towards ft as measures. The equiconti-
nuity property (4.34) and Lemma 4.4.4 are the two hypotheses of Ascoli’s theorem [49,
Theorem 4.25]. Therefore, we can extract a subsequence of (fN)N which converges in
C([0, T ], L1(Rd ×M )) towards f ∈ C([0, T ], L1(Rd ×M )). Note that since the sequence
is also bounded in L∞(Rd ×M ), we also have ft ∈ Ba for every t ∈ [0, T ]. It remains to
prove that the limit ft is uniquely defined as the solution of (4.16). Thanks to Duhamel’s
formula. to do so, it is enough to prove that

‖GK
fNt
−Gft‖L1(Rd×M ) → 0
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uniformly in t. This follows from:

‖GK
fNt
−Gft‖L1(Rd×M ≤ α(a)‖fNt − ft‖L1(Rd×M )

+ a

∫
Rd

∥∥∥MKN?fNt
[x]−MKN?ft [x]

∥∥∥
L∞(M )

dx

+ a

∫
Rd

∥∥MKN?ft [x]−Mft [x]
∥∥
L∞(M )

dx

≤
(
α(a) + aθ(a)

)
sup
t∈[0,T ]

‖fNt − ft‖L1(Rd×M )

+ aθ(a)

∫
M

‖KN?ft(·,m)− ft(·,m)‖L1(Rd)dm

and the last term in the right hand side goes to zero by the dominated convergence theorem,
uniformly in t by Ascoli’s theorem.

Remark 4.4.6. If f0 is compactly supported, then

W1(fNt , ft) ≤ C‖fNt − ft‖L1(Rd×M )

and the convergence of f 1,N
t towards ft actually holds in Wasserstein-1 distance.

4.5 An alternative approach in the spatially homoge-

neous case

This section is an adaptation of the proof of the mean-field limit of the isotropic 4-wave
kinetic equation with bounded jump kernel which can be found in [254, Section 4.3]. A
more general result is also proved in [76].

The aim of this section is to write the solution of the space homogeneous BGK equation:

∂tνt = Mνt − νt =: QBGK(νt),

as the mean-field limit of a system of interacting particles. Without loss of generality
we will look for a solution is in P(M ) (and not only M+(M )) since the total mass is
preserved by the equation. In the following, we will say that a P(M )-valued process (νt)t

is a weak solution of the space homogeneous BGK equation when it is continuous almost
everywhere in time and satisfies for almost every t ∈ R+ :

∀ϕ ∈ Cb(M ), 〈νt, ϕ〉 = 〈ν0, ϕ〉+

∫ t

0

Q?
BGKϕ(νs) ds,
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where for ϕ ∈ Cb(M ) and ν ∈ P(M ),

Q?
BGKϕ(ν) :=

∫
M

∫
M

{ϕ(m′)− ϕ(m)}Mν(m
′)dm′ν(dm). (4.36)

Notice that:
Q?

BGKϕ(ν) = 〈QBGK(ν), ϕ〉.

The proof of the well-posedness of such weak formulation can be found in [233, Theorem
6.1]. In the following a test function is a continuous bounded function. Notice that
since M is compact, a continuous function on M is automatically bounded.

4.5.1 Individual Based Model

Consider the N -particle (m1,N
t , . . . ,mN,N

t ) ∈MN dynamics defined by the following jump
process:

1. Let (Tn)n be an increasing sequence of jump times such that the increments are
independent and follow an exponential law of parameter N .

2. At each jump time Tn, choose a particle i ∈ {1, . . . N} uniformly among the N
particles and draw the new body-orientation mi,N

T+
n

after the jump according to the
law Mµ̂N

T−n
where the empirical measure µ̂Nt is defined by

µ̂Nt :=
1

N

N∑
i=1

δmi,Nt
.

This defines a continuous time Markov process (m1,N
t , . . . ,mN,N

t )t ∈MN with generator:

LNϕ(m1, . . . ,mN)

:=
N∑
i=1

∫
M

(
ϕ(m1, . . . ,m

′
i, . . . ,mN)− ϕ(m1, . . . ,mi, . . . ,mN)

)
Mµ

mN
(m′i) dm′i,

where

µmN =
1

N

N∑
i=1

δmi .
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4.5.2 A process on measures

Equivalently, we define a P̂N(M ) ⊂ P(M )-valued Markov process with generator:

GNφ(ν) := N

∫
M

∫
M

(
φ

(
ν − 1

N
δm +

1

N
δm′

)
− φ(ν)

)
Mν(m

′)dm′ν(dm),

where φ : P(M )→ R is a test function and

P̂N(M ) :=

{
1

N

N∑
i=1

δmi , (m1, . . . ,mN) ∈MN

}
⊂ P(M )

is the set of empirical measures of size N .

Lemma 4.5.1 (Links between the IBM and the measure-valued process). Let (mi,N
0 )i ∈

MN an initial state and

µ̂N0 :=
1

N

N∑
i=1

δmi,N0
.

It holds that:

(i) the law of any of the mi,N
t is equal to Eµ̂N0

[
µ̂Nt
]
∈ P(M ),

(ii) for all t ∈ R+,
Eµ̂N0

[
µ̂Nt
]

= Eµ̂N0
[
νNt
]
,

where νNt is the P̂N (M )-valued Markov process with generator GN and initial state µ̂N0 .

Proof. The first point is proved for example in [323, Section 1.4]. To prove the second
point let ϕ : M → R be a test function and

φ : P(M )→ R, ν 7→ 〈ν, ϕ〉.

A direct calculation shows that:

lim
t→0

Eµ̂N0
[
φ(µ̂Nt )

]
− φ(µ̂N0 )

t
= GNφ(µ̂N0 ).

This proves that Eµ̂N0
[
φ(µ̂Nt )

]
and Eµ̂N0

[
φ(νNt )

]
satisfy the Kolmogorov equations with

same initial condition. In conclusion, for all test function ϕ on M :〈
Eµ̂N0

[
µ̂Nt
]
, ϕ
〉

=
〈
Eµ̂N0

[
νNt
]
, ϕ
〉
.
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Proposition 4.5.2. Let φ : P(M ) → R be a test function and νNt the Markov process
with generator GN . It holds that

MN,φ
t := φ(νNt )− φ(νN0 )−

∫ t

0

GNφ(νNs ) ds (4.37)

and

NN,φ
t :=

(
MN,φ

t

)2

−N
∫ t

0

∫∫
M×M

{
φ

(
νNs −

1

N
δm +

1

N
δm′

)
− φ(νNs )

}2

×MνNs
(m′)dm′νNs (dm). (4.38)

are two martingales.

Proof. These two results are a direct consequence of [231, Lemma 5.1].

4.5.3 Mean-field limit

Theorem 4.5.3. Let νN0 ∈ P̂N (M ) be an initial state for the process (νNt )t with generator
GN . Assume that, as N → +∞,

∀ϕ ∈ Cb(M ), 〈νN0 , ϕ〉 −→ 〈ν0, ϕ〉.

Then, as N → +∞, the sequence (νNt )t converges weakly in D
(
[0,∞),P(M )

)
towards

(νt)t the deterministic weak solution of the space homogeneous BGK equation with initial
condition ν0, where D

(
[0,∞),P(M )

)
is the Skorokhod space of càdlàg functions from

[0,∞) to P(M ).

Proof. The proof is split into several steps.

Step 1. The sequence of the laws of the processes (νNt )t is tight in P
(
D([0,∞),P(M ))

)
.

Thanks to Jakubowski’s criterion [211, Theorem 4.6], it is enough to prove that for all
test functions ϕ : M → R, the sequence of the laws of the processes

(
〈νNt , ϕ〉

)
t
is tight in

P
(
D([0,∞),R)

)
(see [254, Lemma 4.23]). This last point is a consequence of the following

martingale estimate, for s ≤ t:

E
[

sup
s≤r≤t

|MN,φ
r −MN,φ

s |2
]
≤ 4‖ϕ‖2

∞
N

(t− s),

where
φ : P(M )→ R, ν 7→ 〈ν, ϕ〉.
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The tightness of the laws of the processes
(
〈νNt , ϕ〉

)
t
then follows from the martingale

estimates and Aldous criterion [210, Theorem VI.4.5].
Finally, by Prokhorov theorem, there exists (νt)t ∈ D([0,∞),P(M )) and we can

extract a subsequence, still denoted by (νNt )t, such that

(νNt )t −→ (νt)t,

when N →∞ for the weak-convergence of measures.

Step 2. The weak limit (νt)t is continuous in time a.e. and the convergence is uniform in
time.

For any ϕ ∈ Cb(M ), we have for almost every t ∈ R+:

|〈νNt , ϕ〉 − 〈νNt− , ϕ〉| ≤
2‖ϕ‖L∞
N

,

since there is almost surely at most one jump at a given time t ∈ R+. This proves that
(νt)t is continuous in time a.e.. As a consequence, we obtain by the continuity mapping
theorem in the Skorokhod space (see [254, Lemma 4.26]), that for almost every t ∈ R+:

sup
s≤t
|〈νNs − νs, ϕ〉| → 0.

Step 3. Passing to the limit.

Let ϕ ∈ Cb(M ) and φ : P(M )→ R defined by:

φ(ν) := 〈ν, ϕ〉.

We want to pass to the limit in the representation formula (4.37).

• We have made the assumption that

〈νN0 , ϕ〉 → 〈ν0, ϕ〉. (4.39)

• The martingale estimate (4.38) and Doob’s inequality ensure that

E
[
sup
s≤t
|MN,φ

s |2
]
≤ 4E[(MN,φ

t )2] ≤ 16‖ϕ‖2
∞t

N
→ 0. (4.40)
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• We have for all s ≤ t:∫∫
M×M

{ϕ(m′)− ϕ(m)}MνNs
(m′)dm′νNs (dm) =

∫
M

ϕ(m′)MνNs
(m′)dm′ − 〈νNs , ϕ〉.

For the second term in the right-hand side we have proved in step 2 that:

sup
s≤t
|〈νNs − νs, ϕ〉| → 0.

For the first term in the right-hand side, we use the compactness of M and the
flux-Lipschitz assumption (4.4) to bound:∣∣∣∣∫

M

ϕ(m′)MνNs
(m′)dm′ −

∫
M

ϕ(m′)Mνs(m
′)dm′

∣∣∣∣ ≤ C‖ϕ‖L∞|JνNs − Jνs|,

where C > 0 is a constant. Using the uniform convergence proved in step 2 with the
coordinates functions in the Euclidean space E (which are continuous and bounded),
we deduce that:

sup
s≤t
|JνNs − Jνs| → 0.

Finally, it holds that: ∫ t

0

GNφ
(
νNs
)

ds −→
∫ t

0

Q?
BGKϕ(νs) ds. (4.41)

Conclusion. Reporting (4.39), (4.40) and (4.41) in the representation formula (4.37), we
obtain that the weak limit (νt)t is deterministic and satisfies weakly the space homogeneous
BGK equation with initial condition ν0 ∈ P(M ):

∀ϕ ∈ Cb(M ), 〈νt, ϕ〉 = 〈ν0, ϕ〉+

∫ t

0

Q?
BGKϕ(νs) ds,

where the operator Q?
BGK is defined by (4.36). Since the limit is unique, the whole sequence

(νNt )t actually converges to (νt)t.

Corollary 4.5.4 (Convergence of the law of the IBM). Let (νt)t the weak solution of the
space homogeneous equation with initial condition ν0 ∈ P(M ). Assume that, as N → +∞,

µ̂N0 −→ ν0,

for the weak convergence of measures. Then, for almost every t ∈ R+, it holds that,
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as N → +∞,
Eµ̂N0

[
µ̂Nt
]
−→ νt.

Proof. Thanks to lemma 4.5.1, we know that the law of any particle of the IBM at time
t ∈ R+ is Eµ̂N0

[
µ̂Nt
]
and that this law is equal (in P(M )) to Eµ̂N0

[
νNt
]
. The conclusion is

therefore a consequence of Theorem 4.5.3 and [156, Theorem III.7.8].

4.6 Conclusion

We have proved a propagation of chaos property for a Piecewise Deterministic system
of agents in a geometrically enriched context. The proof of this property was based on
a coupling argument similar to the classical argument [307] for McKean-Vlasov systems.
We have also proved that the under a moderate interaction assumption, as in [221], the
interaction between the agents can be made purely local, in the sense that the size of the
neighbourhood decreases with the number of agents. The resulting kinetic equation is a
BGK equation which has been studied in [111]. Finally, an alternative approach based on
martingale arguments can be carried out in the spatially homogeneous case.
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Appendix

4.A Proof of Lemma 4.4.3

We are going to prove that there exists a Cauchy sequence in F .
By compactness, M can be covered by finitely many open sets Ωα and we can take a

finite atlas (Ωα, ϕα, ηα)α with ϕα : Ωα → ϕα(Ωα) ⊂ Rp where p is the dimension of M and
ηα is an adapted partition of the unity. For all α, on the compact set Supp ηα ⊂ Ωα, the
metric tensor is bounded in the system of coordinates corresponding to the chart (Ωα, ϕα)

which implies that there exists a constant C > 1 such that for all α and all x ∈ Supp ηα,

1

C
≤
√
|g|x ≤ C, (4.42)

where |g| denotes the determinant of the matrix, the elements of which are the components
of g in the chart (Ωα, ϕα).

For a given α, we are going to prove that the set

Fα := {(x, v) 7→ ηα(ϕ−1
α (v))f(x, ϕ−1

α (v)), f ∈ F}

is relatively compact in L1(Rd×ϕα(Ωα)). It is a consequence of Riesz-Fréchet-Kolmogorov
theorem [49, Corollary 4.27]. Let ε > 0 and R > 0, η > 0 as in the hypothesis.

• The set Fα is bounded: for all f ∈ F , it holds that∫
Rd×ϕα(Ωα)

η(ϕ−1
α (v))f(x, ϕ−1

α (v))dxdv ≤ C

∫
Rd×ϕα(Ωα)

(ηαf(x, ·)
√
|g|) ◦ ϕ−1

α dvdx

≤ C

∫∫
Rd×M

f(x,m)dxdm.

• The tightness is given by a similar argument and the first hypothesis.

• Let ω ⊂⊂ ϕα(Ωα) and let δ be the distance between ω and the boundary of ϕα(Ωα).

118



Let (h, u) ∈ Rd ×Rp such that |h| < η and |u| < min(η′, η′′) where η′ and η′′ will be
defined later. It holds that:∫∫

Rd×ω
|ηα(ϕ−1

α (v + u))f(x+ h, ϕ−1
α (v + u))− ηα(ϕ−1

α (v))f(x, ϕ−1
α (v)|dxdv

≤
∫∫

Rd×ω
|ηα(ϕ−1

α (v))f(x+ h, ϕ−1
α (v + u))− ηα(ϕ−1

α (v))f(x, ϕ−1
α (v)|dxdv

+

∫∫
Rd×ω

|ηα(ϕ−1
α (v + u))− ηα(ϕ−1

α (v))||f |(x+ h, ϕ−1
α (v + u))dxdv.

For the second term on the right-hand side:∫∫
Rd×ω

|ηα(ϕ−1
α (v + u))− ηα(ϕ−1

α (v))||f |(x+ h, ϕ−1
α (v + u))dxdv ≤ ε

for |u| < η′ where η′ is smaller than δ/2 and than the ε-modulus of uniform continuity
of ηα ◦ϕ−1

α on the compact set constructed by enlarging ω by δ/2. For the first term
on the right hand side:∫∫

Rd×ω
|ηα(ϕ−1

α (v))f(x+ h, ϕ−1
α (v + u))− ηα(ϕ−1

α (v))f(x, ϕ−1
α (v)|dxdv

≤ C

∫∫
Rd×ω

|ηα(ϕ−1
α (v))f(x+ h, ϕ−1

α (v + u))− ηα(ϕ−1
α (v))f(x, ϕ−1

α (v)|

×
√
|g| ◦ ϕ−1

α (v)dxdv

≤
∫∫

Rd×ϕ−1
α (ω)

|f(x+ h, φ(m))− f(x,m)|dxdm

where for m ∈ ϕ−1
α (ω),

φ(m) := ϕ−1
α (ϕα(m) + u) ∈ Ωα

satisfies
d(φ(m),m) ≤ η

for |u| ≤ η′′ where η′′ is smaller than δ/2 and than the η-modulus of uniform
continuity of ϕ−1

α on the compact set constructed by enlarging ω by δ/2. Finally, for
|h| < η and |u| < min(η′, η′′),∫∫

Rd×ϕα(Ωα)

|ηα(ϕ−1
α (v+u))f(x+h, ϕ−1

α (v+u))−ηα(ϕ−1
α (v))f(x, ϕ−1

α (v)|dxdv ≤ 2ε.
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Therefore we can apply Riesz-Fréchet-Kolmogorov theorem which shows that Fα is relatively
compact in L1(Rd × ϕα(Ωα)). As a consequence, there exists a Cauchy sequence in Fα.

Now consider a sequence (fn)n in F . We can extract a subsequence still denoted by (fn)n

such that for all α, the sequence (ηαfn ◦ ϕ−1
α )n is a Cauchy sequence in L1(Rd × ϕα(Ωα)).

Inequality (4.42) implies that for any α, the sequence (ηαfn)n is a Cauchy sequence in the
space L1(Rd × Ωα). Then, for any n,m ∈ N, since:

‖fn − fm‖L1(Rd×M ) ≤
∑
α

‖ηαfn − ηαfm‖L1(Rd×Ωα),

we conclude that (fn)n is a Cauchy sequence in L1(Rd ×M ) and thus converges since the
space L1(Rd ×M ) is complete.
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Chapter 5

The SiSyPHE library

This chapter summarises the main objectives and methods of the SiSyPHE library

[139] A. Diez. “SiSyPHE: A Python package for the Simulation of Systems of interacting
mean-field Particles with High Efficiency”. Journal of Open Source Software 6.65 (2021),
p. 3653.

This library was initially designed for the particle simulations presented in Chapter 8.
The documentation and source code can be found on the website

https://sisyphe.readthedocs.io/

5.1 Simulating mean-field particle systems

This chapter is concerned with the numerical simulation of large mean-field systems, that is,
McKean-Vlasov diffusion models or mean-field PDMP models as described in Section 3.3.
The difficulty of this task essentially comes from the naive high computational cost when
the number of particle is large. Particle simulations are, however, of primary interest,
first because it provides an experimental counterpart in parallel to the theoretical analysis
and secondly because the direct simulation of particle systems is at the core of Swarm
Intelligence algorithms as explained in Section 1.5.2.

In order to simulate the time-continuous models in Section 3.3, the first step is
to discretize the time. This is relatively classical for diffusive Stochastic Differential
Equations [232] although the numerical schemes may require an adaptation when the
dynamics lies on a manifold [280]. For PDMP models, deterministic schemes can be used
for the deterministic part. For the jump part, since the jumps are exponentially distributed
(with parameter λ), a simple procedure is the following: first choose a sufficiently small
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time-step ∆t, then for each particle and at each time step k∆t, draw an independent
uniformly distributed random variable U i

k on [0, 1] and then a post-jump state for the
particles i such that U i

k ≤ 1− eλ∆t, where λ > 0 is the jump rate (note that λ does not
need to be constant). In this procedure, the most difficult and computationally-demanding
step is the computation of the mean-field forces or of the post-jump state at each iteration.
For a mean-field particle system XN

t = (X1
t , . . . , X

N
t ), this leads, at each time-step k∆t,

to N computations of the form

F i
k∆t =

1

N

N∑
i=1

b(X i
k∆t, X

j
k∆t), (5.1)

for i ∈ {1, . . . , N}, where b is a given function. For collective dynamics models, the
function b is typically of the form

b(x, y) = K(|x− y|)b̃(y),

for another one-variable function b̃ and where K is an interaction kernel which specifies,
depending on the distance between the states x, y, whether the particles will interact or
not. For the body-orientation model, in the sampling step (2.4), the computation of the
flux (2.6) corresponds to the case

b
(
(x,A), (x′, A′)

)
= K(|x− x′|)A′, (5.2)

where x, x′ ∈ R3 and A,A′ ∈ SO3(R).
Since N operations are needed to compute the sum (5.1) and that this computation has

to be made for each of the N particles (or a fraction of N) at each time step, the total cost
for the simulation of the system scales as O(N2T ) where T is the total number of time-steps.
This cost may become prohibitive when N is large. The simplest implementation with two
nested loops in N may be a solution when implemented using low-level languages such as
Fortran or C++ but at the price of a higher global coding effort. High level languages which
support array programming allow more versatility but suffer from weaker performances and
strong memory bounds. For instance a natural idea would be to pre-compute the matrix(
b(X i

t , X
j
t )
)
i,j
, called in this context the kernel matrix, and then simply sum its columns.

When b is given by (5.2), this operation can also be understood as a matrix-vector product
between the matrix (K(X i

t −Xj
t ))i,j and the vector (b̃(Xj

t ))j. However, when N becomes
larger than 104, this N ×N matrix would probably not fit into the memory of a standard
computer.
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In order to cope with this prohibitive quadratic cost, several computational and
implementation methods have been proposed over the past decades. Popular and successful
methods include the ones described below. Historically, most of them have been developed
for the simulation of the N -body problem in celestial mechanics, in plasma physics and
for molecular dynamics simulations. More recently, the same problem arose independently
in machine learning.

1. (Short-range interactions). As explained in the introduction of this thesis, most
models in collective dynamics are based on short-range interactions, meaning that
each particle interacts only with its close neighbours. As a result, a majority of
pairwise interactions are actually zero or negligible and an important computation
time could be saved by simply dropping these terms out. It does require however to
find an appropriate data structure which can efficiently store the list of neighbours
for each particle. The basic idea is to use a uniform grid partition of the physical
space with a mesh equal to the interaction radius of the particles. Each particle thus
interacts at most with the particles in 3d neighbouring cells. This is the original idea
due to Verlet in the 60’s for early molecular dynamic simulations [319]. In practise,
the implementation is often rather based on the so-called cell list method (or linked
list) [200, Section 8.4.2] developed later. This latter method uses only two lists, one
of length N and the other of length the number of cells. The procedure to retrieve
the neighbours of each particle is intrinsically sequential but it can nevertheless be
easily parallelised for better performance. This simple idea leads to a drastically
reduced computational time, in particular when a particle has typically only a few
neighbours. This is a basic method presented in most Molecular Dynamics textbooks
[240, Appendix A], [164, Appendix F]. Moreover, note that when the interaction
kernel is compactly supported or for collisional processes [300], this method is exact.

2. (Super particles). On the opposite, when particles are subject to long-range
interactions, far away particles can be grouped together into one heavier super-
particle located at their center of mass. For instance, in celestial mechanics, the
gravitational force exerted by a far-away galaxy is very naturally approximated by
the force exerted by only one heavy entity rather than the sum of the gravitational
forces exerted by its constituents. Once again, the practical implementation of this
idea requires an adequate data structure to evaluate, for each particle, how the other
particles should be grouped together. Classical implementations are based on an
adaptive grid partition of the spatial domain using local meshes adapted to the
local density of particles. The actual data is encoded in a tree-like structure (called
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quadtree in dimension 2 and octree in dimension 3). A first historical implementation
is due to Appel [9] although the most renowned algorithm is due to Barnes and
Hut [18]. Finally, this method can be improved by considering directly interactions
between super-particles. This is called the Fast Multipole Method introduced by
Rokhlin and Greengard [291, 37].

3. (Kernel methods). The so-called kernel methods are commonly used in machine
learning and rely on linear algebra routines to approximate the kernel matrix and
reduce the memory usage. See for instance [334] and the references therein.

4. (Random Batch Method). The recent Random Batch Method introduced in [215]
is based on a stochastic approximation of the true particle system where only
interactions between randomly sampled subsets (called batches) of the particle system
are computed. This method has recently been used in many contexts reviewed in
the article [216] which discusses applications in molecular dynamics, data science
problems, collective and quantum dynamics simulations.

Despite all these old and recent computational techniques, the simulation of many-
particle systems remains limited by the hardware performances. In the celestial mechanics
applications reported by Appel [9] and Barnes and Hut [18] in the 80’s, the hours-long
simulations could handle about 104 particles. The seminal work of Verlet [319] simulates
less than a thousand particles subject to the Lennard-Jones potential. A similar system
was considered previously in [284] where, to obtain better performances, it is reported
that “for the most time consuming part, the program was written in machine language”.
Much better performances can of course be achieved on modern computers for much larger
systems even with a naive brute force computation. In the last decade, the development and
popularization of massively parallel Graphics Processing Units (GPU) represents a new big
step forward. However, although GPUs coupled with the computational methods discussed
above can drastically reduce the computation time by several orders of magnitude, it
comes at the price of a much intense coding effort. Fortunately, the KeOps library recently
developed by Charlier et al. [78] provides an end-user high-level solution for many kernel
operations. While the library was originally mostly intended to solve machine learning
and shape analysis problems, its core functionalities can also be directly applied to the
simulation of mean-field particle systems. In practise, the KeOps library gives a transparent
interface to efficiently compute sums like (5.1) using a GPU but within a traditional
Python code based on the PyTorch library [275]. The fundamental idea is to use a
symbolic definition of the kernel matrix, (i.e. given by a mathematical formula) which is
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well adapted to the parallel architecture of GPU chips while keeping a low memory usage.
An extensive literature review of classical methods which motivates the use of KeOps as
well as a precise technical description of the library can be found in J. Feydy’s PhD thesis
[159].

The SiSyPHE library benefits from both these hardware and software improvements
and is a direct application of these methods to the efficient simulation of particles systems
in collective dynamics. Since most of the coding effort to achieve high-performance is
(almost) directly provided by the KeOps library, it became possible to extend our original
code initially developed for the simulation of the body-orientation dynamics to a versatile
and centralized Python library for a large class of swarming models.

Remark 5.1.1. It should be emphasized that the contribution of this work is not on the
high-performance computational methods which are due to the authors of the KeOps [78]
and PyTorch [275] libraries and more generally to the CUDA ecosystem developed by
Nvidia. The SiSyPHE library was initially only motivated by the simulation of body-
oriented particle systems. However, it has been extended to a versatile and unified library
for many other collective dynamics models, following the observation that despite the
growing number of individual based models in the applied mathematics literature, very
few open source efficient codes are available. Moreover, the use of GPUs does not seem
to be a widely spread idea in the collective dynamics community despite the easy but
enormous gain in efficiency. The SiSyPHE library has therefore also been developed to
contribute to the dissemination of the method introduced in [78] in the machine learning
community to this new research area.

5.2 Usage and benchmarks

5.2.1 Features

The swarming models presented in the introduction share many common features and may
have several variants which lead to very different behaviours. In order to facilitate model
comparisons, the SiSyPHE library provides a versatile interface where all these aspects are
pre-implemented. The core element is the computation of fluxes of the form (2.6) where
the body-orientation may be replaced by another custom state variable, typically the
velocity, as in the Vicsek model. Various functions of the flux such as the ones presented
in [113] can also be used. Moreover, the interaction kernel K can have various shapes, for
instance to take into account the angle of vision of the agents as in [90] or because it derives
from classical interaction potentials [99]. All these features are already pre-computed
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operations called targets in the documentation of SiSyPHE. Then, several interaction
mechanisms, called models, can be chosen which includes all the variants of the Vicsek
model (diffusion model [122], synchronous [321, 80] and asynchronous jumps [140] models
and body-orientation models [114]), other classical swarming models such as the D’Orsogna
model [99] as well as a toy-model of tumor growth [264]. While most of these models are
not new and although there already exist efficient implementations for a few of them [262],
the SiSyPHE library provides a centralized, uniform and open-source interface better suited
to model comparison and ambitious numerical experiments. Moreover, the computational
improvement offered by the KeOps library speeds up traditional methods by one to three
orders of magnitude.

5.2.2 Usage

The SiSyPHE library can be easily installed through PyPi and used on the free GPUs
provided by Google Colaboratory (https://colab.research.google.com/). As an ex-
ample, the following code snippet shows a typical simulation procedure for the Vicsek
model.

Listing 5.1: Example

import math

import torch

import sisyphe.models as models

from sisyphe.display import save

"""Simulation parameters"""

N = 100000 #Number of particles

L = 100. #Size of the square domain

dt = .01 #Time step

nu = 5. #Drift coefficient

sigma = 1. #Diffusion coefficient

R = 1. #Interaction radius

c = R #Speed

"""Sample the initial conditions"""

# The type of the initial condition will determine the floating point precision.

dtype = torch.cuda.FloatTensor
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# Replace by the following line for double precision tensors.

# dtype = torch.cuda.DoubleTensor

pos = L*torch.rand((N,2)).type(dtype) #Initial positions

vel = torch.randn(N,2).type(dtype)

vel = vel/torch.norm(vel,dim=1).reshape((N,1)) #Initial velocities

"""Choose a variant and create a model"""

variant = {"name" : "normalised", "parameters" : {}}

simu = models.Vicsek(

pos = pos,

vel = vel,

v = R,

sigma = sigma,

nu = nu,

interaction_radius = R,

box_size = L,

dt = dt,

variant = variant

boundary_conditions = "periodic",

block_sparse_reduction = True,

number_of_cells = 42**2)

"""Run the simulation and save the positions and velocities every 0.01 time

unit."""

T = 10, #Total simulation time

frames = np.arange(0,T,0.01)

data = save(simu, frames, ["pos", "vel"], [])

5.2.3 Benchmarks

The SiSyPHE library can be equally used on a CPU or a GPU although much better
performances are obtained with GPUs. The table below shows a comparison of the
performance for the simulation of the Vicsek model during 10 units of time with the
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parameters shown above and for the following configurations.

• The Fortran implementation due to Sébastien Motsch [262] using the Verlet list
method with double precision float numbers, run on the NextGen compute cluster
at Imperial College London.

• The CPU version of SiSyPHE with double precision tensors (float64) and the
blocksparse-reduction method (BSR, see below), run on an Intel MacBook Pro
(2GHz Intel Core i5 processor with 8GB of memory).

• The GPU version of SiSyPHE with single precision tensors (float32) with and without
the blocksparse-reduction method (BSR), run on a GPU cluster at Imperial College
London using an Nvidia GTX 2080 Ti GPU chip.

• The GPU version of SiSyPHE with double precision tensors (float64) with and without
the blocksparse-reduction method (BSR), run on a GPU cluster at Imperial College
London using an Nvidia GTX 2080 Ti GPU chip.

The block-sparse reduction method (BSR) implemented in SiSyPHE is based on the
same idea as the classical Verlet cell list method [319, 200] to speed up the computation of
short-range interactions. However, the traditional implementation is not well suited to the
KeOps framework and needs a preliminary specific “vectorization” procedure.

For each value of N (the number of particles), three values of R (the interaction radius)
are tested which correspond to a dilute regime, a moderate regime and a dense mean-field
regime. When the particles are uniformly scattered in the box, the average number of
neighbours in the three regimes is respectively ∼ 3, ∼ 30 and ∼ 300. The regime has a
strong effect on the efficiency of the Verlet list and blocksparse reduction methods. The
worst computation times are written in italic and the best ones in bold.

Fortran
SiSyPHE64

CPU BSR

SiSyPHE32

GPU

SiSyPHE32

GPU BSR

SiSyPHE64

GPU

SiSyPHE64

GPU BSR

N = 104

R = 1 19s 26s
2.1s

3.3s
13s

3.6s
R = 3 59s 29s 3.4s 3.9s
R = 10 494s 69s 3.4s 7.9s

N = 105

R = 0.3 309s 323s
29s

4.3s
973s

9.3s
R = 1 1522s 384s 4.5s 11s
R = 3 3286s 796s 4.9s 28s

N = 106

R = 0.1 >12h 6711s
2738s

22s
>12h

120s
R = 0.3 >12h 6992s 23s 135s
R = 1 >12h 9245s 26s 194s
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The GPU implementation is at least 5 times faster in the dilute regime and outperform
the other methods by three orders of magnitude in the mean-field regime with large values
of N . Without the block-sparse reduction method, the GPU implementation does suffer
from the quadratic complexity. The block-sparse reduction method is less sensitive to the
density of particles than the traditional Verlet cell list method. It comes at the price of a
higher memory cost but allows to run large scale simulations even on a CPU. On a CPU,
the performances are not critically affected by the precision of the floating-point format so
only simulations with double precision tensors are shown.

5.3 Examples

The original problem for which the SiSyPHE library was developed is the study of the
body-orientation model in a macroscopic scaling presented in Chapter 8. The two following
examples present open questions raised by the numerical simulations for two other models.

5.3.1 Band formation in the Vicsek model

The classical Vicsek model in a square periodic domain is known to produce band-like
structures in a very dilute regime. However, it is not clear that the simulations reported
in [80] can be explained by the kinetic theory approach as the system is so dilute that
each particle interacts with less than ten other particles at most. When the density
increases, no bands are observed and the system converges towards a very stable uniform
flock which is consistent with the mathematical analysis conducted in [122, 112, 160].
However, band-like structures are recovered in a mean-field regime when the interaction
is non-normalised, that is with the choice κ(J) = |J | or κ(J) = |J |/(1 + |J |) instead of
κ = constant in (1.5). This choice is known to create a phase transition phenomena [113]
in the spatially-homogeneous case.

The snapshots below (Figure 5.3.1) show the formation of a high-density travelling band
in the diffusion model (1.4) starting from a uniformly disordered state. The simulation
time is less than 30 minutes with N = 106 particles in a mean-field regime where all the
particles have at least a few hundreds of neighbours (i.e. about 0.05 seconds per time
iteration).

There is to the best of our knowledge, no mathematical analytical result known to
explain this self-organised behaviour.
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Figure 5.3.1: Four snapshots of the system at times t = 0, t = 50, t = 100 and
t = 300. The parameters of the simulation are N = 106, ν = 3, σ = 1, R = 0.01,
c0 = 0.1 and the time step is ∆t = 0.01.

5.3.2 Volume exclusion model

A simple agent-based model of tumor growth has been proposed in [264]. The agents
model spherical cells which interact by repulsing each other at short distance: their motion
is given by the system of ODEs

dX i
t

dt
= − α

Ri

N∑
j=1

K(X i
t −Xj

t )

(
1− |X

i
t −Xj

t |2
(Ri +Rj)2

)
(X i

t −Xj
t ), (5.3)

where Ri is the repulsion radius of particle i ∈ {1, . . . , N} and K is an overlapping kernel
such that K(X i

t −Xj
t ) = 1 if |X i

t −Xj
t | < Ri +Rj and K(X i

t −Xj
t ) = 0 otherwise. This

interaction derives from the logarithmic potential defined by U(s) = − log(s) + s− 1 for
s < 1 and U(s) = 0 otherwise. As a consequence, the energy functional of this system
defined by E = −1

2

∑
i,j U

(
|Xi
t−X

j
t |2

(Ri+Rj)2

)
(Ri +Rj)

2 is decaying. This observation suggests a
numerical scheme with an adaptive time-step defined in [264] with a quadratic cost in N .
Only small-scale simulations with a few hundreds of particles and a fixed repulsion radius
for all the cells are shown in [264]. The SiSyPHE library allows more ambitious simulations
with thousands of particles and various repulsion radii. Starting from a densely packed
initial condition, the following snapshot (Figure 5.3.2) shows the final state of the system.

We observe a clusterization phenomenon depending on the radii of the particles (the
black parts are composed of particles with a very small radius). There is to the best of
our knowledge no mathematical analytical result available to explain this phenomenon.
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Figure 5.3.2: Final state of the system with N = 104 particles starting from an
initial random densely packed state. The repulsion radii of the particles are uniformly
sampled between 0.1 and 1. The system (5.3) is discretized using the very demanding
adaptive scheme introduced in [264] which ensures the decay of the energy. The
simulation time is about five minutes.
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Chapter 6

Collective Monte Carlo methods

The content of this chapter is based on the following article co-authored with G. Clarté
and J. Feydy

[86] G. Clarté, A. Diez, and J. Feydy. “Collective Proposal Distributions for Nonlinear
MCMC samplers: Mean-Field Theory and Fast Implementation”. arXiv preprint:
arXiv:1909.08988 (2021).

This chapter presents a new sampling algorithm which is a mean-field generalisation
of the Metropolis-Hastings algorithm. The theoretical analysis of the algorithm follows
from the techniques developed in Chapter 4 and entropy methods at the mesoscopic level.
Numerical experiments implemented using the KeOps library [78] are also shown.

6.1 Introduction

6.1.1 Background

Monte Carlo methods are designed to estimate the expectation of an observable ϕ under a
probability measure π. They approximate the quantity of interest by an estimator of the
form

1

N

N∑
i=1

ϕ(Xi),

where Xi are independent and identically distributed (i.i.d.) random variables with law π.
The law of large numbers ensures the convergence as N → +∞ of this estimator. For
complex cases, a now classical procedure consists in constructing a Markov chain (Xi)i

with stationary distribution π. Ergodic theory results then ensure that the estimator above
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still converges, even though the Xi are not independent from each other. The Metropolis-
Hastings algorithm [256, 255, 193] provides a simple construction for such a Markov chain
that only requires to evaluate π up to a multiplicative constant. The constructed chain is
a random walk biased by an accept-reject step outlined in the introduction of this thesis
in Section 2.2.3. Its convergence properties have been thoroughly studied, for example
in [253, 137].

This well-known procedure has become a building block for more advanced samplers,
that are designed to overcome the known flaws of the Metropolis-Hastings algorithm: slow
convergence, bad mixing properties for multimodal distributions etc. Such extensions
include for instance the Wang and Landau algorithm [45], regional MCMC algorithms [93],
or non Markovian (adaptive) versions [187, 186, 11, 10] where the next proposed state
depends on the whole history of the process. The more recent PDMP samplers [157,
317] provide an alternative to the discrete-time accept-reject scheme, replacing it by a
continuous-time non reversible Markov process with random jumps. Finally, more complex
algorithms are based on the evaluation of the gradient of π, see for instance the Metropolis-
adjusted Langevin [33] and the Hamiltonian Monte Carlo algorithms [147]. All these
methods can be seen as “linear” as the next position of a single chain only depends on its
current position.

A non-Markovian alternative to Metropolis-Hastings like methods is given by Impor-
tance Sampling algorithms. By drawing i.i.d. samples from an auxiliary distribution q,
which is usually simple and called the importance distribution, an estimator can be built
using the following identity:∫

ϕ(x)π(x)dx =

∫
π(x)

q(x)
ϕ(x)q(x)dx ' 1

n

n∑
i=1

wiϕ(Xi),

where the Xi are i.i.d. with law q and the wi ∝ π(Xi)/q(Xi), are called the importance
weights. The choice of q is critical, as bad choices can lead to a degeneracy of the importance
weights. Iterative methods have been developed to sequentially update the choice of the
importance distribution, and to update the Xi now interpreted as particles that evolve
along iterations. Among these algorithms, we can cite the Sequential Importance Sampling
algorithm [174], the Population Monte Carlo (PMC) methods [145, 54, 55] or the recent
Safe Adaptive Importance Sampling (SAIS) algorithm [134]. This paradigm is in particular
well-suited to the study of filtering problems [174], leading to the development of Sequential
Monte Carlo (SMC) methods [128, 146]. A review of population-based algorithms and of
the SMC method can be found in [212].
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The SMC methodology has recently been used to design and study nonlinear MCMC
algorithms [7]. This framework can be seen as a generalisation of some non-Markovian
extensions of the Metropolis-Hastings algorithm (such as the “resampling from the past”
procedure [187, 11]) but also allows the use of a wider range of algorithmic techniques.
Examples are given in [7, 6] and are often based on the simulation of auxiliary chains.
In the present article, we show that an alternative procedure based on the simulation
of a swarm of interacting particles can also be used to approximate a nonlinear Markov
chain. This provides a multi-particle generalisation of the Metropolis-Hastings procedure.
Moreover, the various mean-field analysis techniques reviewed in Chapter 3 give a natural
theoretical framework for the convergence analysis of particle methods.

6.1.2 Objective and methods

Let π be a target measure on E ⊂ Rd, known up to a multiplicative constant and which is
assumed to have a density with respect to the Lebesgue measure. We recall that P(E)

denotes the set of probability measures on E. The goal of the present chapter is to build
a nonlinear Markov chain (X t)t on E that samples π efficiently. Given a sample X t at
iteration t, we draw X t+1 according to

X t+1 ∼ Kµt(X t, dy) ,

where the transition kernel is defined by:

Kµt(x, dy) := h(αµt(x, y))Θµt(dy|x)︸ ︷︷ ︸
accept

+
[
1−

∫
z∈E

h(αµt(x, z))Θµt(dz|x)
]
δx(dy)︸ ︷︷ ︸

reject

(6.1)

and where for t ∈ N, µt ∈ P(E) is the law of X t. In the discrete setting, this method is
implemented by Algorithm 1, detailed below. It relies on the following quantities:

• The proposal distribution, a map

Θ : E × P(E) −→ Pac
0 (E),

where Pac
0 (E) the subset of non-vanishing absolutely continuous probability measures.

For x ∈ E and µ ∈ P(E), its associated proposal probability density function is
denoted by:

Θ(x, µ)(y)dy ≡ Θµ(y|x)dy.
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Intuitively, the probability distribution Θ(x, µ) can be understood as an approxima-
tion of the target π that our method uses to propose new samples y in a neighborhood
of a point x, relying on the information that is provided by a probability measure µ.
In (6.1), µ is the law of the chain at the previous iteration. In the following µ will
be the empirical distribution associated with a system of particles. To ensure a
fast convergence of our method, both in terms of computation time and number of
iterations, the distribution Θ(x, µ) should be both easy to sample from and close to
the target distribution π. In practice, the choice of a good proposal Θ depends on
the assumptions that can be made on the distribution π. We will present several
examples in Section 6.5. A simple example to keep in mind and which will be detailed
in Section 6.5.2 is

Θµ(y|x) = K ? µ(y), (6.2)

where K is a random-walk kernel.

• For µ ∈ P(E) and x, y ∈ E, the acceptance ratio is defined by:

αµ(x, y) :=
Θµ(x|y)π(y)

Θµ(y|x)π(x)
.

This quantity expresses the relative appeals of the transition x→ y for the “model”
density Θµ(dy|x) and the ground truth target π(dy), as in classical Metropolis-
Hastings methods. Noticeably the denominator is never null because of the non-
vanishing assumption on Θ. Crucially, it can be computed even when the law of π
is only known up to a multiplicative constant and allows our method to account
for mis-matches between the proposal Θ and the distribution to sample π. Note
that in practice, for the sake of numerical stability, the acceptance ratio is often
manipulated through its logarithm:

logαµ(x, y)︸ ︷︷ ︸
“correction”

:=
[

log π(y)− log π(x)
]︸ ︷︷ ︸

appeal of x→ y for π

−
[

log Θµ(y|x)− log Θµ(x|y)︸ ︷︷ ︸
appeal of x→ y for Θµ

]
.

In the following, we will assume that π is bounded away from zero so that the
acceptance ratio is always well-defined.

• The acceptance function is a non-decreasing Lipschitz map of the form h :

[0,+∞)→ [0, 1] which satisfies

∀u ∈ [0,∞), uh(1/u) = h(u). (6.3)
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A typical example is h(u) = min(1, u). As detailed in Algorithm 1, we combine the
acceptance ratio αµ(x, y) and the acceptance function h to reject proposed samples y
that are much more appealing for Θµ(·|x) than they are for π. This necessary
correction ensures that our method samples the target π instead of the simpler
proposal distribution. On the other hand, it can also slow down the method if the
proposed samples y keep being rejected. Efficient proposal distributions should keep
the acceptance ratio high enough to ensure good mixing properties.

Non-linearity. By analogy with McKean-Vlasov diffusion processes (see Section 3.3),
we say that the transition kernel is nonlinear due to its dependency on the law of the chain
that it generates. When the proposal distribution does not depend on µt, the kernel is
linear and we obtain the general form of the classical Metropolis-Hastings kernel.

Interest of the method. The main interest of the method appears for complex dis-
tributions, that is multimodal distributions. From an MCMC point of view, the use of
a non-linear sampler removes the mixing problem which is one of the main drawbacks
of the Metropolis-Hastings algorithm. For nonlinear samplers, exponential convergence
is ensured as soon as the distribution carries weight in every mode, without having to
explore and exit each of the modes. On the contrary, the Metropolis-Hastings algorithms
may remain stuck in a single mode even with long runs. Nonlinear methods allow to
learn efficiently the relative weight of the distribution modes, which is unavailable even for
several independent runs of Metropolis-Hastings algorithm with different initialisations,
that is the most direct parallel version of Metropolis-Hastings. The numerical experiments
will confirm that nonlinear methods perform better for both exploration and convergence.

Contributions. We follow [7] and split our analysis into two steps:

1. We show that our non-linear kernel admits π as a stationary distribution and study
its asymptotic properties.

2. We present a practical implementation based on the simulation of a system of
interacting particles that enables the simulation of this kernel for different choices of
the proposal distribution.
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Input: An initial population of particles (X1
0 , . . . , X

N
0 ) ∈ EN , a maximum time

T ∈ N, a proposal distribution Θ and an acceptance function h
Output: A sample

(
X i
t

)
1≤i≤N ; 1≤t≤T

for t = 0 to T − 1 do
for i = 1 to N do

(Proposal) Draw Y i
t ∼ Θµ̂Nt

( · |X i
t) a proposal for the new state of

particle i;

(Acceptation) Compute αµ̂Nt (X i
t , Y

i
t ) =

Θ
µ̂Nt

(Xi
t |Y it )π(Y it )

Θ
µ̂Nt

(Y it |Xi
t)π(Xi

t)
;

Draw U i
t ∼ U([0, 1]);

if U i
t ≤ h

(
αµ̂Nt (X i

t , Y
i
t )
)
then

Set X i
t+1 = Y i

t ; // Accept, probability h(αµ̂Nt (X i
t , Y

i
t )).

else
Set X i

t+1 = X i
t ; // Reject, likely if αµ̂Nt (X i

t , Y
i
t ) ' 0.

end
end

end

Algorithm 1: Collective Monte Carlo (CMC)

Analytical study. Starting from an initial distribution µ0 ∈ P(E), the law µt of the
nonlinear chain at the t-th iteration satisfies

µt+1 = T [µt]

where T : P(E) → P(E) is the transition operator defined by duality in the space of
measures by:

〈T [µ], ϕ〉 :=

∫
E

ϕ(x)T [µ](dx) =

∫∫
E×E

ϕ(y)Kµ(x, dy)µ(dx), (6.4)

for any continuous bounded test function ϕ ∈ Cb(E). Thanks to the detailed balance
condition (also called micro-reversibility in the context of statistical mechanics [310]), for
all x, y ∈ E and µ ∈ P(E):

π(x)Θµ(y|x)h(αµ(x, y)) = π(y)Θµ(x|y)h(αµ(y, x)), (6.5)
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the transition operator can be rewritten:

T [µ](dx) = µ(dx) +

∫
E

π(x)Wµ(x→ y)

(
µ(dy)

π(y)
dx− µ(dx)

π(x)
dy

)
,

with Wµ(x→ y) := Θµ(y|x)h(αµ(x, y)), from which it can be easily seen that T [π] = π.
We are going to develop an analytical framework in which the convergence of the

sequence of iterations of the transition operator can be analysed. Using entropy methods,
we prove the exponential convergence towards π for a large class of proposal distributions.
We show that in an asymptotic regime to be detailed, the rate of convergence depends
only on how close from the target is the initial condition. As a byproduct, in the linear
Metropolis-Hastings case, we obtain, with a completely different technique, a convergence
result similar to the one obtained in [137].

Efficient implementation. It is not possible in general to sample directly X t from a
nonlinear kernel because the law µt is not available. However, owing to the results in
Chapter 3, a natural idea is to rely on a mean-field particle method to approximate such
samples. Starting from a swarm of N particles X1

t , . . . , X
N
t ∈ E at the iteration t, we

construct the next iteration by sampling independently for i ∈ {1, . . . , N}:

X i
t+1 ∼ Kµ̂Nt

(X i
t , dy),

where, in order to keep lighter notations, the empirical measure is denoted by

µ̂Nt :=
1

N

N∑
i=1

δXi
t
∈ P(E).

This (random) measure is used as a proxy of the distribution µt. Following the classical
propagation of chaos methodology, we show that as N goes to infinity and for each t ∈ N,
the empirical measure µ̂Nt converges towards a deterministic limit which is the t-th iterate
of the nonlinear operator T starting from µ0. Moreover, Lemma 3.2.11 shows that the N
particles are asymptotically, in N , independent thus forming an approximation of a system
of N independent nonlinear Markov chains with transition kernel (6.1).

A drawback of this approach is its high computational cost, that may scale in O(N2)

or O(N3) for some choices of the proposal Θ. To overcome this difficulty and similarly
to what has been proposed in Chapter 5, we propose an implementation based on GPU,
more precisely on the techniques developed in the KeOps library [78] by the third author.
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Outline. Section 6.2 is devoted to the convergence analysis of Algorithm 1 for a gen-
eral class of proposal distributions. The mean-field limit and the long-time asymptotic
properties are studied respectively in Section 6.3 and Section 6.4. Several variants of the
main algorithm are presented in Section 6.5. The GPU implementation of the different
algorithms is detailed in Section 6.6. Applications to various problems are presented
in Section 6.7. In the appendix, we present the complementary proofs (Appendix 6.A)
as well as variations on the results of the chapter (Appendix 6.B). We also add some
complementary remarks on the links between our method and other classical methods
(Appendix 6.C).

Throughout this chapter, we assume that π satisfies the following assumption.

Assumption 6.1.1. The support of π, denoted by E, is a compact subset of Rd. The
target distribution π is Lipschitz continuous and π does not vanish on E :

m0 := inf
E
π > 0 and M0 := sup

E
π < +∞.

6.2 Main results

Algorithm 1 gives a trajectorial approximation of the nonlinear Markov chain (X t)t with
law (µt)t defined by the transition kernel (6.1). In this section, we prove the convergence
of this algorithm under general assumptions on the proposal distribution Θ described
below. The proof of our main result is split into two steps each summarised in a theorem,
first the mean-field limit when N → +∞ (Section 6.3) and then the long-time convergence
towards π (Section 6.4).

6.2.1 Assumptions

For our theoretical results, we will need the following assumptions. The first three following
assumptions are needed to prove the many-particle limit in Section 6.3.

Assumption 6.2.1 (Boundedness). There exist two constants κ−, κ+ > 0 such that for
all µ ∈ P(E) and for all x, y ∈ E :

κ− ≤ Θµ(y|x) ≤ κ+.

Assumption 6.2.2 (L∞ Lipschitz). The map Θ : E×P(E)→ Pac
0 (E) is globally Lipschitz

for the L∞-norm on E: there exists a constant L > 0 such that for all x, y, x′, y′ ∈ E and
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for all (µ, ν) ∈ P(E)2 :

∣∣Θµ(y|x)−Θν(y
′|x′)

∣∣ ≤ L
(
W1(µ, ν) + |x− x′|+ |y − y′|

)
.

Assumption 6.2.3 (W1 non-expansive). The map Θ : E × P(E) → Pac
0 (E) is non-

expansive for the Wasserstein-1 distance: for all x, x′ ∈ E and for all (µ, ν) ∈ P(E)2,

W1

(
Θµ(dy|x),Θν(dy|x′)

)
≤ W1(µ, ν) + |x− x′|.

All the proposal distributions presented in Section 6.5 are based on a convolution
product with one or many fixed kernels. The smoothness and boundedness properties
of the proposal distribution (Assumptions 6.2.1, 6.2.2, 6.2.3) are thus inherited from the
properties of these kernels.

The next two assumptions are needed to prove the long-time convergence property in
Section 6.4.

Assumption 6.2.4. There exists η ∈ (0, 1) such that

∀u ∈ [0,+∞), h(u) ≤ η.

Remark 6.2.5. Assumption 6.2.4 is satisfied for instance for h(u) = ηmin(1, u). We make
this assumption mostly for technical reasons in order to obtain in an easy manner an
explicit convergence rate in Theorem 6.4.2. However, using compactness arguments, we
can prove that the convergence of (µt)t towards π still holds without this assumption (see
Corollary 6.B.6).

The next assumption ensures that the proposal distribution is not too “far” from π.

Assumption 6.2.6 (Monotonicity). The proposal distribution Θ satisfies the following
monotonicity property: there exists a non decreasing function

c− : [0, 1]→ (0, 1],

such that for all µ ∈ Pac
0 (E),

inf
(x,y)∈E2

Θµ(y|x)

π(y)
≥ c−

(
inf
x∈E

µ(x)

π(x)

)
.

Remark 6.2.7. Note that under Assumptions 6.1.1 and 6.2.1, Assumption 6.2.6 is always
satisfied with a constant function c− ≡ κ−/M0. Sharper results can be obtained in specific
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cases. Moreover, note that Assumptions 6.2.1, 6.2.2 and 6.2.3 are not necessary to prove
Theorem 6.4.2.

Remark 6.2.8. The monotonicity Assumption 6.2.6 is satisfied for all the “convolution
based” methods such as (6.2) outlined in the introduction and Algorithm 3 which will be
introduced later, since for m > 0, it holds that:

[∀y ∈ E, mπ(y) ≤ µ(y)] =⇒ [∀y ∈ E, mK ? π(y) ≤ K ? µ(y)],

and therefore, if the left-hand side condition holds, dividing by π(y) yields:

∀y ∈ E, K ? µ(y)

π(y)
≥ m

K ? π(y)

π(y)
.

On the right-hand side of the last inequality the ratio K ? π(y)/π(y) depends only on π
and is bounded from below, at least for small interaction kernels K, since K ? π converges
uniformly towards π as K → δ0. In the degenerate case K = δ0, we obtain c−(m) = m for
all m > 0 (see Remark 6.4.4).

6.2.2 Main result

The following theorem is our main convergence result.

Theorem 6.2.9. Let µ̂Nt = 1
N

∑N
i=1 δXi

t
be the random empirical distribution of the particle

system constructed at the t-th iteration of Algorithm 1 with an i.i.d. µ0 ∈ Pac
0 (E) distributed

initial condition. Under Assumptions 6.2.1, 6.2.2, 6.2.3, 6.2.4 and 6.2.6, there exist
C1, C2, C3 > 0 and λ ∈ (0, 1) which depend only on µ0, π and E such that for all t ∈ N,

EW1(µ̂Nt , π) ≤ C1β(N)etC2 + C3(1− λ)t/2,

where

β(N) :=


CN−1/2 if d = 1

CN−1/2 log(N) if d = 2

CN−1/d if d > 2

, (6.6)

and C > 0 is a constant which depends only on E and π. In particular β(N) → 0

as N → + ∞.

Proof. This result is deduced from Theorem 6.3.1 and 6.4.2, as it is a direct consequence
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of the triangle inequality

EW1(µ̂Nt , π) ≤ EW1(µ̂Nt , µt) + EW1(µt, π),

and the convergence results (6.8) and (6.11). In order to bound the second term on the
right-hand side, we recall that on the compact set E, the total variation norm controls the
Wasserstein-1 distance [328, Theorem 6.15].

By the Kantorovich characterisation of the Wasserstein distance [328, Remark 6.5],
this result ensures the convergence in expectation of any Lipschitz observable (and by
density of any continuous observable) in the double limit N → +∞ and t→ +∞ provided
that β(N)eC2t → 0. These results and in particular the link between N and t are mostly
of theoretical nature and often suboptimal; in practice higher convergence rates may be
obtained (see Section 6.7).

Moreover, although Theorem 6.2.9 states a geometric convergence result for the non-
linear samplers which is similar to classical convergence results for the classical (linear)
Metropolis-Hastings algorithm, the behaviours of nonlinear and linear samplers can be
very different in practise, nonlinear samplers being much more efficient. In addition to the
experiments shown in Section 6.7, Remark 6.4.4 gives a theoretical result obtained as a
consequence of Theorem 6.2.9 which illustrates this difference.

6.3 Mean field approximation

In this section, we show that the system of particles defined by Algorithm 1 satisfies the
propagation of chaos property and that the limiting law at each iteration is the law of the
nonlinear Markov chain with transition kernel satisfying (6.1). From now on, we assume
that the proposal distribution Θ satisfies Assumptions 6.2.1, 6.2.2 and 6.2.3 (see also the
discussion in Remark 6.A.4 for alternative assumptions).

The main result of this section is the following theorem.

Theorem 6.3.1 (Coupling bound). Let Θ be a proposal distribution which satisfies As-
sumptions 6.2.1, 6.2.2 and 6.2.3. Let t ∈ N. There exist a system of N i.i.d. nonlinear
Markov chains (X

i

t)t, i ∈ {1, . . . , N}, defined by the transition kernel (6.1) and a sys-
tem of N particles (X i

t)t, i ∈ {1, . . . , N}, which is equal in law to the N-particle system
constructed by Algorithm 1, such that

∀i ∈ {1, . . . , N}, E|X i

t −X i
t | ≤ β(N)etCΘ , (6.7)
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where CΘ > 0 is a constant which depends only on π and Θ and where β(N) is defined
by (6.6)

The proof of Theorem 6.3.1 is based on coupling arguments inspired by [307] and
adapted from [138] (see Chapter 4). It can be found in Appendix 6.A. This coupling
estimate classically implies the following properties (see [307] and Lemma 3.2.11).

Corollary 6.3.2 (Mean-field limit and propagation of chaos). Let Θ be a proposal dis-
tribution which satisfies Assumptions 6.2.1, 6.2.2 and 6.2.3. Let (X i

0)i∈{1,...,N} be N i.i.d.
random variables with common law µ0 ∈ P(E) ( chaoticity assumption). Let t ∈ N and
let (X i

t)i∈{1,...,N} be the N particles constructed at the t-th iteration of Algorithm 1. Let
µt = T (t)[µ0] be the t-th iterate of the transition operator (6.4) starting from µ0, that
is µt is the law of the nonlinear Markov chain defined by the transition kernel (6.1) at
iteration t. Then the following properties hold true.

1. The (random) empirical measure µ̂Nt = 1
N

∑N
i=1 δXi

t
satisfies

EW1(µ̂Nt , µt) ≤ C1β(N)etC2 , (6.8)

where C1, C2 > 0 are two absolute constants and β(N) is defined by (6.6).

2. The (random) empirical measure µ̂Nt = 1
N

∑N
i=1 δXi

t
converges in law towards the

deterministic limit :
µ̂Nt −→

N→+∞
µt.

We recall that P(E) is endowed with the topology of the weak convergence, i.e.
convergence against bounded continuous test functions. The convergence in law of a
random measure is the weak convergence in the space P(P(E)), which means that
for all test function Φ ∈ Cb(P(E)), E[Φ(µ̂Nt )]→ Φ(µt).

3. For every `-tuple of continuous bounded functions ϕ1, . . . ϕ` on E, it holds that:

∫
E`
ϕ1(x1) . . . ϕ`(x`)µ

`,N
t (dx1, . . . , dx`) −→

N→+∞

∏̀
k=1

〈µt, ϕk〉, (6.9)

where µ`,Nt is the joint law at time t of any subset of ` particles constructed by
Algorithm 1 at iteration t.

Proof. The first property follows from the triangle inequality

EW1(µ̂Nt , µt) ≤ EW1(µ̂Nt , µ
N
t ) + EW1(µNt , µt),
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where µNt = 1
N

∑N
i=1 δXi

t
is the empirical measure of the N nonlinear Markov chains

constructed in Theorem 6.3.1. The first term on the right-hand side is bounded by (6.7)
by definition of the Wasserstein distance and the exchangeability of the processes. The
second term on the right-hand side is bounded by β(N) by [162, Theorem 1]. The second
property is a classical consequence of (6.7), see [194, Section 1]. The third property is
equivalent to the second property by [307, Proposition 2.2] (see Lemma 3.2.11).

The property (6.9) corresponds to the original formulation of the propagation of chaos
(Definition 3.2.10). From our perspective, it justifies the use of Algorithm 1 and ensures
that as the number of particles grows to infinity and despite the interactions between the
particles, we asymptotically recover an i.i.d. sample. The final MCMC approximation of
the expectation of an observable ϕ ∈ Cb(E) is thus given at the t-th iteration by:

∫
E

ϕ(x)π(dx) ' 1

N

N∑
i=1

ϕ(X i
t).

Remark 6.3.3. In [220], the authors prove the propagation of chaos towards a continuous-
time (nonlinear) diffusion process for a classical random walk Metropolis-Hastings algorithm
in the product space EN where the trajectory of each of the N dimensions is interpreted
as a particle, where the target distribution π⊗N is tensorized and under a specific scaling
limit in N for the time and the size of the random-walk kernel. In this algorithm, each
move is globally accepted or rejected for the N particles whereas in Algorithm 1, the
acceptance step is individualized for each particle. One consequence is that, unlike the
algorithm in [220], for a fixed number N of particles, π⊗N is in general not a stationary
distribution of the particle system defined by Algorithm 1.

6.4 Long-time Asymptotics

In this section, we prove that π is the unique stationary measure of the nonlinear Markov
chain defined by the transition kernel (6.1) and we give a quantitative long-time convergence
result.
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6.4.1 Main result

Let (µt)t∈N be the sequence of laws of the nonlinear Markov chain defined by the transition
kernel (6.1). It satisfies the recurrence relation

µt+1 = T [µt], (6.10)

where we recall that given µ ∈ P(E), the transition operator T is defined by:

T [µ](dx) = µ(dx) +

∫
E

π(x)Wµ(x→ y)

(
µ(dy)

π(y)
dx− µ(dx)

π(x)
dy

)
,

and
Wµ(x→ y) := Θµ(y|x)h(αµ(x, y)).

Note that if the initial condition has a density with respect to the Lebesgue measure,
then µt has also a density with respect to the Lebesgue measure. In the following we make
this assumption and we write with a slight abuse of notations µt(x)dx ≡ µt(dx) for this
density. The following elementary lemma shows that the ratio µt/π is controlled by the
initial condition.

Lemma 6.4.1. For any t ∈ N, let µt ∈ Pac
0 (E) be given by the recurrence relation (6.10)

with initial condition µ0 ∈ Pac
0 (E). Then

inf
x∈E

µt(x)

π(x)
≥ inf

x∈E

µ0(x)

π(x)
, sup

x∈E

µt(x)

π(x)
≤ sup

x∈E

µ0(x)

π(x)
.

Proof. Since Wµ(x → y) ≥ 0 and
∫
E
Wµ(x → y)dy ≤ 1, this comes directly from the

relation

T [µ](x)

π(x)
=

(
1−

∫
E

Wµ(x→ y)dy

)
µ(x)

π(x)
+

∫
E

Wµ(x→ y)
µ(y)

π(y)
dy,

for all µ ∈ Pac
0 (E) and x ∈ E.

The main result of this section is the following convergence result which is a direct
consequence of the results presented in the following sections and discussed below.

Theorem 6.4.2. Let Θ be a proposal distribution which satisfies Assumption 6.2.6 and h
be an acceptance function which satisfies Assumption 6.2.4. Then there exist two (explicit)
constants C > 0 and λ ∈ (0, 1) which depend only on µ0, π and E such that

‖µt − π‖TV ≤ C(1− λ)t/2 (6.11)
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Proof. Using the fact that the Total Variation norm is equal to the L1 norm of the
probability density functions and the Cauchy-Schwarz inequality, it holds that

‖µt − π‖TV =

∫
E

|µt(x)− π(x)|dx =

∫
E

√
π
√
π

∣∣∣∣µt(x)

π(x)
− 1

∣∣∣∣ dx ≤√2H[µt|π],

where H[µt|π] is the relative entropy defined by (6.14) associated to the function φ : s 7→
1
2
(s− 1)2. The conclusion follows from Proposition 6.4.7 which provides a bound on this

quantity.

Remark 6.4.3. The last inequality between the TV norm and the square root of the relative
entropy is a simple form of a Csiszár-Kullback-Pinsker inequality, see [222, Appendix A]
and [42].

Remark 6.4.4 (Convergence rate of nonlinear samplers). In this proof, the convergence
rate λ is obtained by a crude estimate of the infimum of the jump rate Wft(x→ y). We
do not claim that this rate is optimal. In the degenerate case Θµ(y|x) = µ(y), the best
rate obtained is equal to h(1) by taking an initial condition arbitrarily close to π (see
Remark 6.2.8). In Remark 6.5.1, it is shown that these proposal distributions can be
obtained as the limit when σ → 0 of the proposal distributions Θµ(y|x) = Kσ ? µ(y)

where Kσ is a random-walk kernel with variance σ2. These proposal distributions are
the simplest nonlinear analog of the random-walk Metropolis-Hastings algorithm with
kernel Kσ (the proposal distribution in this case is Kσ ? δx(y)). However in the nonlinear
case, the convergence rate tends to a constant nonnegative value when σ → 0 while in the
random-walk Metropolis-Hastings case the convergence rate tends to 0 (see Theorem 6.B.7).

In the linear case, that is when T is the linear transition operator of the classical
random walk Metropolis-Hastings algorithm, the convergence of the sequence of iterates
of T is studied in particular in [253] and more recently in [137] using analytical spectral
methods. It is not possible to follow this strategy in the nonlinear case. In order to
motivate our strategy, let us notice that the recurrence relation (6.10) can be interpreted
as the explicit Euler discretization scheme

µt+1 − µt
∆t

= T [µt]− µt, (6.12)

of the nonlinear partial differential equation

∂tft = T [ft]− ft (6.13)

with a constant time-step ∆t = 1. The PDE (6.13) has a remarkable entropic structure
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which is detailed in Appendix 6.B and which allows to prove that ft → π as t → +∞.
Entropy methods are by now a classical tool to study the long-time properties of both linear
and nonlinear PDEs, see [222, 297]. The proof of Theorem 6.4.2 is based on the adaptation
of these ideas to the present discrete-time setting. A more detailed discussion of the links
between (6.12) and (6.13) can be found in Appendix 6.B.3. Entropy methods have been
used previously in a similar context in [219] to prove the long-time convergence of a process
obtained as the scaling limit of a particle-based Metropolis-Hastings algorithm [220]
which, unlike the present case, is a continuous-time (nonlinear) diffusion process (see
Remark 6.3.3).

6.4.2 Entropy and dissipation

For a given convex function φ : [0,+∞)→ [0,+∞) such that φ(1) = 0, the (generalised)
relative entropy H[µ|π] and dissipation D[µ|π] of a probability density µ ∈ Pac(E) with
respect to π are defined respectively by

H[µ|π] :=

∫
E

π(x)φ

(
µ(x)

π(x)

)
dx, D[µ|π] := −

∫
E

φ′
(
µ(x)

π(x)

)(
T [µ](x)− µ(x)

)
dx. (6.14)

Using the detailed balance property

π(x)Wµ(x→ y) = π(y)Wµ(y → x),

for all x, y ∈ E and µ ∈ Pac(E), it holds that

D[µ|π] =
1

2

∫∫
E×E

π(x)Wµ(x→ y)

(
µ(y)

π(y)
− µ(x)

π(x)

)(
φ′
(
µ(y)

π(y)

)
− φ′

(
µ(x)

π(x)

))
dxdy,

and thus D[µ|π] ≥ 0 by convexity of φ.
In the following, we focus on the case φ(s) = 1

2
(s − 1)2 for which we can prove the

following crucial lemma. Note also that in this case the relative entropy is equal to a
weighted L2 norm and thus dominates the Total Variation norm between probability
density functions.

Lemma 6.4.5. Let φ(s) = 1
2
(s− 1)2, then the sequence (H[µt|π])t∈N is non-increasing.

Proof. In this case,

H[µ|π] =
1

2

∫
E

π(x)

∣∣∣∣µ(x)

π(x)
− 1

∣∣∣∣2dx =
1

4

∫∫
E×E

π(x)π(y)

∣∣∣∣µ(x)

π(x)
− µ(y)

π(y)

∣∣∣∣2ddy, (6.15)
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and

D[µ|π] =
1

2

∫∫
E×E

π(x)Wµ(x→ y)

∣∣∣∣µ(y)

π(y)
− µ(x)

π(x)

∣∣∣∣2. (6.16)

Moreover, since φ(s) = 1
2
(s− 1)2 is a polynomial of order 2, the exact Taylor expansion

φ(v) = φ(u) + φ′(u)(v − u) +
1

2
φ′′(u)(v − u)2,

yields

H[µt+1|π]−H[µt|π] = −D[µt|π] +
1

2

∫
E

π(x)

∣∣∣∣µt+1(x)

π(x)
− µt(x)

π(x)

∣∣∣∣2dx. (6.17)

Using that µt+1 = T [µt] and the definition of T , it holds that∫
E

π(x)

∣∣∣∣µt+1(x)

π(x)
− µt(x)

π(x)

∣∣∣∣2dx =

∫
E

π(x)

∣∣∣∣∫
E

Wµt(x→ y)

(
µt(y)

π(y)
− µt(x)

π(x)

)
dy

∣∣∣∣2dx.

By the Cauchy-Schwarz inequality, we get

∫
E

π(x)

∣∣∣∣µt+1(x)

π(x)
− µt(x)

π(x)

∣∣∣∣2dx

≤
∫∫

E×E
π(x)Wµt(x→ y)

∣∣∣∣µt(y)

π(y)
− µt(x)

π(x)

∣∣∣∣2 ∫
E

Wµt(x→ z)dzdxdy.

Reporting into (6.17) and using (6.16) yields

H[µt+1|π]−H[µt|π]

≤ −1

2

∫∫
E×E

π(x)Wµt(x→ y)

(
1−

∫
E

Wµt(x→ z)dz

)∣∣∣∣µt(y)

π(y)
− µt(x)

π(x)

∣∣∣∣2dxdy. (6.18)

Since Wµt(x → y) ≥ 0 and
∫
E
Wµt(x → z)dz ≤ 1, the right-hand side is non negative

which concludes the proof.

6.4.3 Exponential decay of the entropy

Under the Assumptions 6.2.4 and 6.2.6, it is possible to improve the result of Lemma 6.4.5
and to prove a quantitative exponential decay result. Since the entropy is given by (6.15),
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owing to (6.18), the goal is to bound from below by a multiple of π(y) the quantity

Wµt(x→ y)

(
1−

∫
E

Wµt(x→ z)dz

)
,

for all x, y ∈ E and uniformly in t. This bound will be obtained as a consequence of
Assumptions 6.2.4 and 6.2.6. First, Assumption 6.2.6 gives the following lower bound.

Lemma 6.4.6. Let h : [0,+∞) → [0, 1] be a continuous non-decreasing acceptance
function which satisfies the relation (6.3). Let Θ be a proposal distribution which satisfies
Assumption 6.2.6. Then for all µ ∈ Pac

0 (E) and all x, y ∈ E,

Wµ(x→ y) ≥ λ(µ)π(y), λ(µ) := c−
(

inf
x∈E

µ(x)

π(x)

)
h(1) ∈ (0, 1].

As a consequence, using the fact that c− is non decreasing and Lemma 6.4.1, for any t ∈ N,
it holds that

Wµt(x→ y) ≥ λ0π(y), λ0 := c−
(

inf
x∈E

µ0(x)

π(x)

)
h(1).

Proof. Let us first prove that for any bounded interval [a, b] with a > 0, it holds that

inf
(x,y)∈[a,b]2

yh

(
x

y

)
= ah(1).

Since h is continuous non-decreasing, for each y ∈ [a, b], the function x ∈ [a, b] 7→ yh(x/y)

has a minimum in x = a. This shows that the minimum on the function (x, y) ∈ [a, b]2 7→
yh(x/y) is attained on the segment {(a, y), y ∈ [a, b]}. Since yh(a/y) = ah(y/a), the same
reasoning shows that this minimum is attained when y = a. The conclusion follows. Then,
using Assumption 6.2.6 and applying this result with a = c−

(
infx∈E

µ(x)
π(x)

)
yields

Wµ(x→ y) = Θµ(y|x)h(αµ(x, y)) =
Θµ(y|x)

π(y)
h

(
Θµ(x|y)π(y)

π(x)Θµ(y|x)

)
π(y)

≥ c−
(

inf
x∈E

µ(x)

π(x)

)
h(1)π(y).

We are now ready to prove that in this case, the relative entropy converges exponentially
fast towards zero.

Proposition 6.4.7. Under Assumption 6.2.4 and Assumption 6.2.6, there exists a constant
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λ ∈ (0, 1) such that for all t ∈ N,

H[µt|π] ≤ (1− λ)tH[µ0|π].

Proof. From the relation (6.18) and using the assumptions on h and Θ, it holds that

H[µt+1|π]−H[µt|π] ≤ −2λ0(1− η)H[µt|π].

Moreover by definition of λ0, it holds that λ0 ≤ η and thus λ := 2λ0(1 − η) < 1. We
deduce that

H[µt+1|π] ≤ (1− λ)H[µt|π],

and the conclusion follows.

6.5 Some Collective Proposal Distributions

The proposal distribution can be fairly general and so far, we have not detailed how to
choose it. Several choices of proposal distributions are gathered in this section.

This proposal should use the maximum of information coming from the value of the
target π, in order to increase the fitness of Θµ to the true distribution. However, the
proposal must also allow for some exploration of the parameter space. Here, we only
intend to present some of the possible proposals, each one having pros and cons, both on
the theoretical and practical sides. Note also that a proposal distribution can always be
constructed as a mixture of other proposal distributions.

In view of Theorem 6.3.2, we can see each of the proposal distributions presented
in this section either as a specific choice of nonlinear kernel (6.1) with its associated
nonlinear process or as its particle approximation given by Algorithm 1. From this second
perspective the proposal distribution can be seen as a specific interaction mechanism
between the particles. More specifically, it depicts a specific procedure which can be
interpreted as “information sharing” between the particles: given the positions of all the N
particles at a given time, we aim at constructing the best interaction mechanism which
will favour a specific aspect such as acceptance, convergence speed, exploration etc. By
analogy with systems of swarming particles which exchange local information (here, the
local value of the target distribution) to produce global patterns (here, a globally well
distributed sample), we call this class of proposal distributions collective. The class of
methods introduced will be referred as Collective Monte Carlo methods (CMC). On the
contrary, the nonlinear kernels introduced in [6] do not belong to this class as explained
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in Appendix 6.C.1. For each proposal we give an implementation which, starting from
population of particles (X1, . . . , XN) ∈ EN , returns a proposal Y .

Although our theoretical results (Theorem 6.3.2 and Theorem 6.4.2) are general enough
to encompass almost all of the proposal distributions described here (see Section 6.2.1),
the validity and numerical efficiency of each of them will be assessed in Section 6.7 on
various examples of target distributions.

6.5.1 Metropolis-Hastings Proposal (PMH)

Proposal distribution. The classical Metropolis-Hastings algorithm fits into our for-
malism, with

Θµ(dy|x) = q(y|x)dy,

where q is a fixed random walk kernel which does not depend on µ.

Particle implementation. In this case, Algorithm 1 reduces to the simulation of N
independent Metropolis-Hastings chains in parallel.

6.5.2 Convolution Kernel Proposal (Vanilla CMC)

Proposal distribution. As already outlined in the introduction, a first and simple
collective proposal distribution is given by the convolution:

Θµ(dy|x) = K ? µ(y)dy :=

(∫
E

K(y − z)µ(dz)

)
dy,

where K is a fixed interaction kernel, that is a (smooth) radial function which tends to
zero at infinity. Typical examples are K(x) = N (0, σ2Id) and K(x) = 1

|Bσ(0)|1Bσ(0)(x),
where σ > 0 is fixed and Bσ(0) denotes the ball of radius σ > 0 centred at 0 in Rd. Note
that the proposal distribution does not depend on the starting point x. It may happen
that the proposed state falls outside E. In this case it will be rejected since π is equal to
zero outside E. One can therefore take equivalently Θµ(dy|x) ∝ K ? µ(y)1E(y)dy. The
same remark holds for the other collective proposal distributions below.

Particle implementation. At each time step t, each particle i samples uniformly
another particle j and then draw a proposal Y i

t ∼ K(Xj
t , dy) which can be seen as a

“mutation” of Xj
t . This “resampling with mutation” procedure is somehow similar to a

(genetic) Wright-Fisher model (see for instance [155] for a review of genetic models). Since
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a “mutation” may or may not be accepted, it can be described as a biased Wright-Fisher
model.

The collective aspect is twofold: first the proposal distribution allows large scale move
on all the domain filled by the N particles; then during the acceptance step, for a particle
at position X and a proposal at Y the acceptance ratio can be understood as a measure
of discrepancy between the target ratio π(Y )

π(X)
and the observed ratio K?µ̂N (Y )

K?µ̂N (X)
between the

(average) number of particles around Y and the (average) number of particles around
X. In the linear Metropolis-Hastings case with a symmetric random-walk kernel, the
acceptance ratio only takes into account the target ratio. As a consequence, the acceptance
probability of a proposal state depends not only on how “good” it is when looking at the
values of π but also on how many particles are (or are not) already around this proposal
sate compared to the present state (and therefore on how accepting the proposal would
improve the current global state of the system).

Remark 6.5.1 (Moderate interaction, part 1). When σ → 0 we obtain the degenerate
proposal distribution Θµ(dy|x) = µ(dy) (which does not satisfy the assumption Θµ(dy|x) ∈
Pac

0 (E) in general). It would not make sense to take this proposal distribution at the particle
level in Theorem 6.3.1. However, it makes sense to consider the case Θµ(y|x) = µ(y)dy in
the nonlinear kernel (6.1) where µ ∈ Pac

0 (E). This degenerate proposal distribution still
satisfies the assumptions of Theorem 6.4.2 and could lead to a better rate of convergence
(see Remark 6.4.4). It is thus worth mentioning that this degenerate proposal distribution
can also be obtained as the many-particle limit of a system of particles under an additional
moderate interaction assumption [273, 221, 138]. See Remark 6.A.3 for additional details.

Draw uniformly j ∈ {1, . . . , N};
Draw e ∼ K;
Set Y = Xj + e;

Algorithm 2: Proposal through Convolution Kernel

6.5.3 Markovian Mixture of Kernels Proposal (MoKA)

Proposal distribution. A limitation of the Convolution Kernel Algorithm 2 is the
fixed size of the interaction kernel. A remedy is given by the following collective proposal
distribution which is a convolution with a mixture of kernels (with different sizes) with
(potentially) nonlinear mixture weights:

Θµ(dy|x) =
P∑
p=1

αp(µ)Kp ? µ(y)dy,
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A possible choice for the weights is to take a solution of the following minimisation problem:

min
α∈Sp

∫
E

φ

(∑
p αpKp ? µ(x)

π(x)

)
µ(dx), (6.19)

where Sp denotes the p-simplex and where φ is convex non-negative such that φ(1) = 0.
Typically φ(s) = s log s− s + 1. In this case, when µ = π it corresponds to minimising
the Kullback-Leibler divergence of the mixture proposal relative to π. In our experiments,
we found that optimising the quantity

∫
E
|∑p αpKp ? µ(x)− π(x)|µ(dx) leads to similar,

slightly better results. Moreover, this choice is also numerically more stable so we chose to
implement this version, that we call Markovian Mixture of Kernels (MoKA-Markov).

Another choice for the weights, which is non-Markovian, is to take αp proportional
to the geometric mean of the acceptance ratio of the particles which have chosen the
kernel p at the previous iteration. This method will be referred as Mixture of Kernels
Adaptive CMC (MoKA). It shares similarities with the D-kernel algorithm of [145] and
the arguments developed by the authors suggest that the two versions (Markovian and
MoKA) may be asymptotically equivalent. The proof is left for future work.

Particle implementation. Same as in Algorithm 2 but with an additional step to
choose a “mutation kernel” at each proposal step. The computation of the weights of the
mixture can be done in a fully Markovian way at the beginning of each iteration before
the proposal step or, in MoKA, are computed at the end of the iteration and used at the
next iteration.

In Section 6.7 we will show that this algorithm can favour initial exploration if the
particles are initially in an area of low potential.

Compute the weights α1, . . . , αP using (6.19);
Draw p ∈ {1, . . . P} with probability (α1, . . . , αP );
Draw uniformly j ∈ {1, . . . , N};
Draw e ∼ Kp;
Set Y = Xj + e;

Algorithm 3: Markovian Mixture of Kernels proposal generation

6.5.4 Kernelised Importance-by-Deconvolution Sampling (KIDS)

Proposal distribution. Algorithms based on a simple convolution operator such as
Algorithms 2 and 3 keep a “blind” resampling step. In order to improve the convergence
speed of such algorithms one may want to favour the selection of “good” states. For a
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fixed interaction kernel K, one can choose a proposal distribution of the form:

Θµ(y|x) = K ? νµ(y),

where νµ solves the following deconvolution problem with an absolute continuity constraint:

νµ = argminν�µ

∫
E

log

(
K ? ν(x)

π(x)

)
K ? ν(x)dx. (6.20)

That is, we are looking for a weight function w ≥ 0 which satisfies the constraint∫
E

w(x)µ(dx) = 1

and such that the measure defined by νµ(A) =
∫
A
w(x)µ(dx) minimises the KL divergence

above. The function w is the Radon-Nikodym derivative of ν with respect to µ. In other
words the proposal distribution focuses on the parts of the support of µ which are “closer”
to π.

Remark 6.5.2. Although this proposal distribution performs well in practise, we did not
manage to prove the regularity Assumptions 6.2.2 and 6.2.3.

Particle implementation. In the case of an empirical measure µ̂N = 1
N
δXi , the Radon-

Nikodym weight function w can simply be seen as a vector of N weights (w1, . . . , wN) ∈
[0, 1]N such that

∑
iw

i = 1 and the measure νµ̂N is thus a weighted empirical measure:

νµ̂N :=
N∑
i=1

wiδXi . (6.21)

The deconvolution procedure gives more weight to the set of particles that are already
“well distributed” according to π. These particles are thus more often chosen in the
Wright-Fisher resampling step (see Algorithm 2).

Note that although the weighted empirical measure proposal (6.21) is very reminiscent
of an Importance Sampling procedure, the computation of the weights here follows from a
completely different idea.

In practice we solve the deconvolution problem using the Richardson-Lucy algo-
rithm [286, 244] (also known as the Expectation Maximisation algorithm). See for
instance [268, Section 5.3.2] where it is proved that the iterative algorithm below converges
towards a minimiser of the Kullback-Leibler divergence (6.20) in the case of an empirical
measure µ. Note that the computation of the weights (Richardson-Lucy loop) can be done
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before the resampling step.

Set w(0)
i = 1 for all i ∈ {1, . . . , N};

for s = 0 to S − 1 do
For all i ∈ {1, . . . , N}, update the weight by:
w

(s+1)
i = w

(s)
i

∑N
j=1

π(Xj
t )K(Xi

t−X
j
t )∑N

k=1 w
(s)
k K(Xj

t−Xk
t )
;

end
Set wi = w

(S)
i for all i ∈ {1, . . . , N};

Normalize the weights (w1, . . . , wN);
Draw j ∈ {1, . . . , N} with probability wj;
Draw e ∼ K;
Set Y = Xj + e;

Algorithm 4: Kernel Importance-by-Deconvolution Sampling proposal generation

6.5.5 Bhatnagar-Gross-Krook sampling (BGK)

Proposal distribution. In Algorithms 2, 3 and 4, the proposal distribution is based
on a (mixture of) symmetric kernels: this symmetry property is reflected in the proposal
distribution and might not well represent the local properties of the target distribution.
In dimension d ≥ 2, we can adopt a different strategy by sampling proposals from a
multivariate Gaussian distribution with a covariance matrix that is computed locally. An
example is given by the following proposal distribution:

Θµ(dy|x) =

(∫
E

GΣ̂µ(z)(m̂µ(z)− y)µ(dz))

)
dy,

where
m̂µ(z) =

1∫
E
K(z − z′)µ(dz′)

∫
E

K(z − z′)z′µ(dz′), (6.22)

and

Σ̂µ(z) =
1∫

E
K(z − z′)µ(dz′)

∫
E

K(z − z′)(z′ − m̂µ(z))(z′ − m̂µ(z))Tµ(dz′), (6.23)

and where K is a fixed interaction kernel. This proposal distribution and the associated
transition operator are reminiscent of a Bhatnagar-Gross-Krook (BGK) type operator [34].

In the particular case of K(x, y) ≡ 1, we have a more simple algorithm which can
be interpreted as a Markovian version of the Adaptive Metropolis-Hastings algorithm
introduced by [187]. However such algorithm does not benefit from the appealing properties
of local samplers. Indeed, when the target distribution is multimodal, we can take more
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advantageously as interaction kernel K(x) ∝ 1|x|<σ, where the threshold σ allows the
proposal to be adapted to the local mode. Note that moving across the modes is still
possible thanks to the choice of another particle at the first step (see proposal algorithm
below). The main issue is the choice of σ that must be higher than the size of the modes
but smaller than the distance between the modes.

Particle implementation. Each particle, say X i
t samples another particle, say Xj

t .
Then we compute the local mean and covariance around Xj

t and we draw a proposal Y i
t

for X i
t according to a Normal law with the locally computed parameters. As before it may

be cheaper to compute and store all the local means and covariances before the resampling
loop.

Draw j ∈ {1 . . . , N} uniformly;
Compute κ =

∑
iK(X i

t , X
j
t ) ;

Compute the local mean m̂Xj = 1
κ

∑
iK(X i

t , X
j
t )X

i
t ;

Compute the local covariance Σ̂Xj = 1
κ

∑
iK(X i

t , X
j
t )(X

i − m̂Xj)(X i − m̂Xj)T;
Draw Y ∼ N (m̂Xj , Σ̂Xj);

Algorithm 5: BGK proposal generation

6.6 GPU implementation

The particle system defined by Algorithm 1 is of mean-field type and similarly to the
other particle systems presented in this work, the major bottleneck is the computation of
off-grid convolutions of the form:

ai =
N∑
j=1

K(X i
t , X

j
t ) bj, (6.24)

which appear in the evaluation of kernel densities on in the computation of the importance
weights in the Richardson-Lucy loop (Algorithm 4). As explained in Section 5.1, many
methods are available in the literature to cope with the apparent prohibitive quadratic
complexity of the algorithm. The simplest and most efficient implementation that we
are aware of is based on the recent GPU routines which have been developed to tackle
computations in the mould of (6.24) with maximum efficiency. These methods can be
accessed through the KeOps extension for PyTorch [276] developed by Feydy et al. [78,
159].
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These recent modern software and hardware improvements fully legitimates the use of
collective algorithms based on the real-time simulation of large populations of interacting
samples: as shown in the examples in Section 6.7, the Collective Monte Carlo methods
presented in this Chapter advantageously trade computation time (in t) for computational
cost (in N). As detailed in our documentation (https://www.kernel-operations.io/
monaco), all the tests are run on a single gaming GPU, the Nvidia GeForce RTX 2080 Ti.
With 104 to 106 particles handled at any given time, our simulations run in a handful of
seconds at most without requiring approximation procedures.

6.7 Numerical experiments

We now run experiments on several target distributions in low and moderately large
dimension. We always clip distributions on the unit (hyper)-cube [0, 1]d. We compare
our method with the Safe Adaptive Importance sampling (SAIS) from [134], which is
one of the state-of-the-art importance sampling based methods (see Section 6.C.2). We
also include as baseline a parallel implementation of Metropolis-Hastings (PMH) with a
number of parallel runs that is equal to the number of particles in our method. For all
the methods we chose a poor initialisation with N particles independently distributed
according to X i

0 = (0.9, . . . , 0.9)T + 0.1U i
0 where U i

0 ∼ U([0, 1]d).
Among the variants of our method, we show results for vanilla CMC, MoKA-CMC,

MoKA-Markov-CMC and MoKA-KIDS-CMC. Please note that we do not include the
BGK and KIDS samplers in these experiments: although we believe that the ideas behind
these methods are interesting enough to justify their presentation, we observe that they
generally do not perform as well as the other CMC variants and leave them aside for the
sake of clarity.

We compare the results in term of energy distance [287] between a true sample generated
by rejection and the population of particles at each step. As baseline, we show the average
energy distance between two i.i.d. exact samples of size N , and a 90% prediction interval
for this quantity. For two independent samples X and Y of size n and m respectively, the
energy distance is defined as:

E(X, Y ) =
2

nm

∑
i,j

|Xi − Yj| −
1

n2

∑
i,j

|Xi −Xj| −
1

m2
|Yi − Yj|,

where | · | denotes the standard Euclidean norm.
Our code and its documentation are available online at http://www.kernel-operations.
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io/monaco/ or on the GitHub page of J. Feydy.
All our experiments can be run on Google Colaboratory (colab.research.google.com)

with a GPU within a few seconds to a few minutes, depending on the method and number
of independent runs. We note that MoKA-KIDS is a slightly heavier method, as it relies on
the Richardson-Lucy iterations to optimise the deconvolution weights. We also note that
unlike our Markovian methods, the memory cost of SAIS significantly increases with the
number of iterations as particles are constantly added to the system – to the best of our
knowledge, no procedure has yet been proposed to remove particles with time. Moreover,
this algorithm also suffers from a naive high computational cost. Efficient implementations
are introduced by the authors such as the batch sampler proposed in [134]. We did not
implement these methods but rather relied on our fast GPU implementation which is
also well-adapted to SAIS and thanks to which the computation time is not a problem.
Experiments in non-Euclidean spaces such a the Poincaré hyperbolic plane and the group
of 3D rotation matrices are available online in our documentation.

6.7.1 Banana shaped distribution

Our first target is inspired by the Banana example from [134], that is made up of three
Gaussian bells with variance 0.2 and of a banana-shaped distribution. We represent a
typical run of our method and the level sets of the distribution in Figure 6.7.1.

Figure 6.7.1: Banana-shaped distribution. Level sets (red) and particles (blue)
from left to right at iterations 0, 10 and 50 of the MoKA-Markov sampler.

This distribution is renowned for being difficult to sample from, especially because of
its geometry. Our proposals are uniform proposals in balls of various diameters depending
on the method, that is not adapted to the distribution. We increase the difficulty of the
problem with a starting particle swarm that is situated outside the modes of our target.

We run each method for 80 iterations with N = 104 particles. To promote the discovery
of all modes, we run each method with an exploration proposal : a large Gaussian sample
with standard deviation 0.30 that is selected with probability 0.01 and complements the
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adaptive CMC, PMH or SAIS proposal (that is selected with probability 0.99). To generate
perturbations, the vanilla CMC, PMH and SAIS methods rely on a uniform proposal on a
ball of radius 0.10. The other methods are based on kernel selection and rely on uniform
proposals on balls of four different radii: 0.01, 0.03, 0.10 and 0.30.

In Figure 6.7.2, we present the energy distance through iterations for each of our
methods. All the methods except PMH reach the minimal distance, that is the average
distance between two exact iid samples from the target. SAIS seems to be initially the
fastest method, but its convergence speed decreases along the iterations and it reaches
a lower final distance compared to our methods. CMC is the slower of our methods,
because the kernel is not adapted in size, while the other methods are comparable with
each other. The straight line for Vanilla CMC tends to confirm the exponential speed
of the convergence that is proved in Section 6.4. The variance of the Energy Distance is
given in Table 6.7.1. SAIS seems to have a high variance, as we observed that in some of
the runs, the algorithm could not explore all the modes — we excluded these runs from
the Energy distance plot — while CMC and MoKAs have lower variances.

Figure 6.7.2: Mean energy distance to a true sample on 10 repetitions of the
algorithm for the Banana-shaped distribution (left) and the eight-dimensional example
(right). The dotted line represents the mean distance between two iid exact samples
of size N from the target, computed over 100 independent realisations. The coloured
area is the corresponding 90% prediction interval.

In Figure 6.7.3 we present a more in-depth analysis of the simulations. The acceptance
rate of the vanilla CMC sampler is close to the one of PMH, but adaptive methods perform
significantly better. This suggests that the proposal distribution that is created through
our advanced methods is indeed closer to the target distribution, which should reflect
positively on the variance of estimators. Although both MoKAs methods have a very
similar behaviour in terms of convergence speed, we note that they select very different
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weights. We believe that this is related to the L1-like energy that is optimized in our
MoKA-Markov implementation, and expect other criteria to exhibit different behaviours.
Finally, we note that SAIS presents a large variance (unlike our method which produces
consistent results across the runs). To remain fair with a method that can sometimes fail
to converge, we only show 10 of the best among 50 runs for this algorithm.

Figure 6.7.3: Convergence analysis for the Banana-shaped distribution (top row)
and the 8-dimensional Gaussian mixture (bottom row). From left to right: acceptance
rate, evolution of weights in MoKA and in MoKA-Markov.

6.7.2 Moderately large dimension

Our second target is constituted of two Gaussian distributions in dimension 8, with mean
(1/2− 1/4

√
8, 1/2 + 1/4

√
8, . . . , 1/2 + 1/4

√
8)T and (1/2 + 1/4

√
8, 1/2− 1/4

√
8, . . . , 1/2−

1/4
√

8)T, and the same variance:
√

0.05/2. This example is inspired from the classical
example introduced in [55, 134].

As the dimension increases, we also increase the number of particles to N = 105. We
do not include an exploration proposal. We use vanilla CMC, PMH and SAIS with a
single uniform proposal on a ball of radius 0.20, while the other methods based on kernel
selection are given four different radii: 0.10, 0.16, 0.24 and 0.30. Due to the curse of
dimensionality, the volumes of the balls that are induced by these radii are relatively
smaller than in the previous experiment in dimension 2: this should reduce the exploration
efficiency. We also slightly increase the number of iterations to 100.
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In Figure 6.7.2 (right), we present the evolution of the Energy Distance. In this
example, only CMC seems to reach the smallest possible distance. MoKA-KIDS first
converges quickly towards a plateau as it visits the first mode, before finding the second
one. The dimension of the problem may explain the relative failure of the adaptive
methods, as they rely on the proximity of particles that are more isolated from each other
in higher dimensional scenarios. As before (see Figure 6.7.3) MoKA-Markov and MoKA
do not seem to converge to the same limit: MoKA chooses a mixture of kernels while our
sparsity-inducing MoKA-Markov energy promotes the use of a single kernel during each
phase of the convergence. In this example, we remark that SAIS seems more stable than
in the previous experiment.

CMC MoKA MoKA-Markov MoKA-KIDS PMH SAIS
Banana-shaped 2.41e-05 2.25e-05 1.91e-05 2.04e-05 6.75e-04 6,07e-02

Gaussian 1.74e-06 2.32e-06 1.75e-06 5.29e-06 3.24e-04 1.03e-05

Table 6.7.1: Variance of the Energy distance at the last iteration for the targets.

6.8 Conclusion

Nonlinear MCMC samplers are appealing. They generalise more traditional methods and
overcome many of their flaws. Getting back to the historical development of mathematical
kinetic theory, we can advantageously simulate nonlinear Markov processes using systems
of interacting particles. This versatility enables the development of a wide variety of
algorithms that can tackle difficult sampling problems while remaining in a traditional
Markovian framework. Although the implementation may, at first sight, seem computa-
tionally demanding, we have shown that modern GPU hardware can now enable the use
of interacting particles for Monte Carlo sampling at scale.

Alongside its variants, the CMC algorithm can be implemented efficiently and leads to
striking reductions in global convergence times. It relies on pairwise interactions to best
leverage the information that is present in any given sample swarm, and thus make the
most of each evaluation of the target distribution. CMC avoids the mixing issues of classical
“one particle” methods such as Metropolis-Hastings, with a notable improvement of the
convergence and mixing speed. In particular when dealing with multimodal distributions,
where the relative weight of each mode is difficult to estimate. In practice, we thus
expect that the benefits of this improved “sample efficiency” will outweigh the (small)
computational overhead of our method for most applications.

We note that the present contribution shares similarities with some well-known and
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recent nonlinear samplers, that are often based on non-Markovian importance sampling
techniques. In the future, the joint development of Markovian and non-Markovian methods
is likely to benefit both approaches: we may for instance improve the importance weights
in SAIS-like methods as in the KIDS algorithm, or construct better proposal distributions
in CMC which incorporate knowledge of (part of) the past. The theoretical study of
such hybrid methods would however be challenging and require the development of new
analytical tools.

Finally, one may think of extending the theoretical framework introduced here to other
MCMC samplers, such as nonlinear PDMP samplers or nonlinear Langevin dynamics.
This could open new problems in nonlinear analysis and statistics, both on the theoretical
and computational sides.
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Appendix

6.A Proof of Theorem 6.3.1

Let us start with the following lemma.

Lemma 6.A.1. Let Θ be a proposal distribution which satisfies Assumptions 6.2.1, 6.2.2
and 6.2.3. Then the map

α : P(E)× E2 → R, (µ, x, y) 7→ αµ(x, y) :=
Θµ(x|y)π(y)

Θµ(y|x)π(x)
,

is Lipschitz in the Wasserstein-1 distance, in the sense that there exists a constant LΘ > 0

(which depends also on π) such that for all µ, ν ∈ P(E) and x, x′, y, y′ ∈ E, it holds that:

|αµ(x, y)− αν(x′, y′)| ≤ LΘ

(
W1(µ, ν) + |x− x′|+ |y − y′|

)
.

Proof. By the triangle inequality, it holds that:

|αµ(x, y)− αν(x′, y′)| ≤
π(y)

π(x)

∣∣∣∣Θµ(x|y)

Θµ(y|x)
− Θν(x

′|y′)
Θν(y′|x′)

∣∣∣∣+
Θν(x

′|y′)
Θν(y′|x′)

∣∣∣∣π(y)

π(x)
− π(y′)

π(x′)

∣∣∣∣ .
We bound each of the two terms on the right-hand side:

π(y)

π(x)

∣∣∣∣Θµ(x|y)

Θµ(y|x)
− Θν(x

′|y′)
Θν(y′|x′)

∣∣∣∣ ≤ π(y)

π(x)Θµ(y|x)
|Θµ(x|y)−Θν(x

′|y′)|

+
π(y)Θν(x

′|y′)
π(x)Θµ(x|y)Θµ(x′|y′) |Θµ(y|x)−Θν(y

′|x′)|

≤ LM0

m0κ−

(
1 +

κ+

κ−

)(
W1(µ, ν) + |x− x′|+ |y − y′|

)
.
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and

Θν(x
′|y′)

Θν(y′|x′)

∣∣∣∣π(y)

π(x)
− π(y′)

π(x′)

∣∣∣∣ ≤ Θν(x
′|y′)

π(x)Θν(y′|x′)
|π(y)− π(y′)|

+
Θν(x

′|y′)π(y′)

Θν(y′|x′)π(x)π(x′)
|π(x)− π(x′)|

≤ ‖π‖Lipκ+

m0κ−

(
|y − y′|+ M0

m0

|x− x′|
)
,

where ‖π‖Lip denotes the Lipschitz norm of π. Gathering everything gives the result with

LΘ =
M0

m0

(
L

κ−

(
1 +

κ+

κ−

)
+
‖π‖Lipκ+

m0κ−

)
.

Proof (of Theorem 6.3.1). The strategy of the proof of Theorem 6.3.2 will be based on
coupling arguments inspired by [307, 221], adapted from [138] and already presented in
Chapter 4. We start by the following trajectorial representation of the nonlinear Markov
chain (X t)t defined by the transition kernel (6.1).

Definition 6.A.2 (Nonlinear process). Let X0 ∼ µ0 be an initial state where µ0 ∈ P(E).
The state X t at time t ∈ N, t ≥ 1, is constructed from X t−1 and the law of X t−1 denoted
by µt−1 ∈ P(E) as follows.

1. Take a proposal a random variable Y t ∼ Θµt−1(·|X t−1)

2. Compute the ratio

αµt−1(X t−1, Y t) :=
Θµt−1(X t−1|Y t)π(Y t)

Θµt−1(Y t|X t−1)π(X t−1)
.

3. Take U t ∼ U([0, 1]) and if U t ≤ h
(
αµt−1(X t−1, Y t)

)
, then accept the proposal, else

reject it:
X t = X t−11Ut≥h(αµt−1 (Xt−1,Y t))

+ Y t1Ut≤h(αµt−1 (Xt−1,Y t))
.

From now on we consider N independent copies (X
i

t)t, i ∈ {1, . . . , N}, of the nonlinear
process defined by Definition 6.A.2. We then construct a coupled particle process (X i

t)t

such that for all i ∈ {1, . . . , N}, initially X i
0 = X

i

0 ∼ µ0 and for each time t ∈ N we take:

1. the same jump decision random variables U i
t = U

i

t ∼ U([0, 1]),
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2. optimal proposals of the form Y i
t = s(Y

i

t) where s is an optimal transport map
between Θµt−1(·|X i

t−1) and Θµ̂Nt−1
(·|X i

t−1). Since these two probability measures are
absolutely continuous with respect to the Lebesgue measure, the existence of such
optimal transport map (Monge problem) is proved for instance in [77] or [51]. By
definition, the pathwise error between the proposals can thus be controlled by

E
[
|Y i
t − Y

i

t|
∣∣Ft−1

]
= W1

(
Θµ̂Nt−1

(·|X i
t−1),Θµt−1(·|X i

t−1)
)

≤ W1

(
Θµ̂Nt−1

(·|X i
t−1),Θµ̄Nt−1

(·|X i

t−1)
)

+W1

(
Θµ̄Nt−1

(·|X i

t−1),Θµt−1(·|X i

t−1)
)

where µ̄Nt = 1
N

∑N
i=1 δXi

t
and Ft is the σ-algebra generated by the processes up to

time t ∈ N. We conclude that:

E
[
|Y i
t − Y

i

t|
∣∣Ft−1

]
≤ W1(µ̂Nt−1, µ̄

N
t−1) + |X i

t−1 −X
i

t−1|+ eNt (6.25)

where the error term eNt only depends on (the laws of) the N independent nonlinear
processes (X

i

t)t:
eNt := W1(µ̄Nt−1, µt−1).

Let t ∈ N, t ≥ 1. It holds that:

E
[
|X i

t −X
i

t|
∣∣Ft−1

]
= E

[
|Y i
t − Y

i

t|1U it≤min(hit,h
i
t)

∣∣Ft−1

]
+ |X i

t−1 −X
i

t−1|P
(
U i
t ≥ max(hit, h

i

t)
∣∣Ft−1

)
+ E

[
|X i

t − Y
i

t|1hit≤U it≤hit
∣∣Ft−1

]
+ E

[
|Y i
t −X

i

t|1hit≤U it≤hit
∣∣Ft−1

]
where we write for short:

hit ≡ h
(
αµ̂Nt (X i

t , Y
i
t )
)

and h
i

t ≡ h
(
αµt(X

i

t, Y
i

t)
)
.

we deduce that:

E
[
|X i

t −X
i

t|
∣∣Ft−1

]
≤ W1(µ̂Nt−1, µ̄

N
t−1) + 2|X i

t−1 −X
i

t−1|
+ 2M0(P(hit ≤ U i

t ≤ h
i

t

∣∣Ft−1) + P(h
i

t ≤ U i
t ≤ hit

∣∣Ft−1)) + eNt (6.26)
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The last two probabilities are bounded by E
[
|hit−h

i

t|
∣∣Ft−1

]
. Assuming that h is Lh-Lipschitz

for a constant Lh > 0, it holds that:

|hit − h
i

t| ≤ Lh

∣∣∣αµ̂t−1(X i
t−1, Y

i
t )− αµt−1(X

i

t−1, Y
i

t)
∣∣∣.

Let µ̄Nt be the empirical measure of the N nonlinear Markov processes X i

t at time t. It
holds that:

|hit − h
i

t| ≤ Lh

∣∣∣αµ̂t−1(X i
t−1, Y

i
t )− αµ̄t−1(X

i

t−1, Y
i

t)
∣∣∣

+ Lh

∣∣∣αµ̄t−1(X
i

t−1, Y
i

t)− αµt−1(X
i

t−1, Y
i

t)
∣∣∣

Using Lemma 6.A.1 we get:

|hit − h
i

t| ≤ CΘ

(
W1(µ̂Nt−1, µ̄

N
t−1) + |X i

t−1 −X
i

t−1|+ |Y i
t − Y

i

t|+ eNt

)
,

with CΘ := LhLΘ. Therefore:

E
[
|X i

t −X
i

t|
∣∣Ft−1

]
≤ (1 + CΘ)

(
|X i

t−1 −X
i

t−1|+W1(µ̂Nt−1 + µ̄Nt−1)
)

+ (1 + 2CΘ)eNt .

Let us define:

St :=
1

N

N∑
i=1

|X i
t −X

i

t|.

Summing the previous expression for i from 1 to N and dividing by N gives the following
estimate for St:

E[St|Ft−1] ≤ 2 (1 + CΘ)St−1 + (1 + 2CΘ)eNt (6.27)

where we have used the fact that

W1(µ̂Nt−1, µ̄
N
t−1) ≤ St.

Taking the expectation in (6.27), we deduce that:

E[St] ≤ (1 + CΘ)E[St−1] + CΘE[eNt ] (6.28)

where the value of the constant CΘ has been updated by CΘ ← 1 + 2CΘ.
The error term can be controlled uniformly on t using [62, Theorem 5.8] or [162]. In
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particular, since π is a smooth probability density function on a compact set, it has finite
moments of all orders and therefore it follows from [162, Theorem 1] that:

∀t ∈ N, E[eNt ] ≤ β(N) (6.29)

where β(N) is defined by (6.6).
One can easily prove by induction that:

E[St] ≤ CΘβ(N)
t−1∑
s=0

eCΘs ≤ β(N)
CΘ

eCΘ − 1
etCΘ (6.30)

By symmetry of the processes, all the quantities E[|X i
t − X

i

t|] are equal and their
common value is E[St]. The result follows.

Remark 6.A.3 (Moderate interaction, part 2). The result of Theorem 6.3.1 provides an
explicit convergence rate in terms of N . Similarly to what has been presented in Chapter 4,
this could be used to understand more precisely the moderate interaction assumption
mentioned in Remark 6.5.1. In the case Θµ(dy|x) = K ? µ(y)dy, one can take at the
particle level (i.e in Algorithm 1) an interaction kernel K ≡ KN which depends on N
and such that its size σN → 0 as N → +∞ (and thus KN → δ0). As a consequence the
constant CΘ ≡ CN

Θ in Theorem 6.3.1 would depend on N . Since we have a precise control
on β(N) we can choose σN such that the following convergence still holds:

β(N)etC
N
Θ −→

N→+∞
0.

In particular, σN should not converges to zero too fast, justifying the moderate interaction
terminology introduced in [273]. In the limit N → +∞ we then obtain that the emprirical
measure µ̂Nt converges towards the t-th iterate of the transition operator (6.4) with the
degenerate choice of proposal distribution Θf (dy|x) = f(y)dy which makes sense as soon
as f ∈ Pac

0 (E). We refer the reader to [221] and [138] for two examples of propagation of
chaos results under a moderate interaction assumption. Note that this result is mainly of
theoretical interest as it does not give sharp estimates on how slow σN should decrease to
zero.

Remark 6.A.4 (About the assumptions). In order to prove a propagation of chaos property,
it is usually assumed that the parameters of the problem are Lipschitz [307, 252]. This
corresponds to the two Lipschitz assumptions 6.2.2 and 6.2.3. Propagation of chaos in
non-Lipschitz settings is a more difficult problem as explained in Chapter 3.
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Assumption 6.1.1 and Assumption 6.2.1 should be understood as technical assumptions.
In the proof of Theorem 6.3.2, we use the fact that the acceptance ratio is Lipschitz
(Lemma 6.A.1) which follows directly from Assumptions 6.1.1, 6.2.1 and 6.2.2. However,
we could relax the compactness assumption 6.1.1 and keep the same Lipschitz property by
replacing Assumptions 6.1.1, 6.2.1 and 6.2.2 by the following assumption.

Assumption 6.A.5. The target distribution π does not vanish on E and the map

P(E)× E2 → R, (µ, x, y) 7→ gµ(y|x) :=
Θµ(y|x)

π(y)

satisfies the two following properties.

• (Boundedness). There exist two constants κ− > 0 and κ+ > 0 such that

∀(x, y) ∈ E2, κ− ≤ g(y|x) ≤ κ+.

• (Lipschitz). There exists a constant L > 0 such that

∀(µ, x, y), (ν, x′, y′) ∈ P(E)× E2,

|gµ(y|x)− gν(y′|x′)| ≤
(
W1(µ, ν) + |x− x′|+ |y − y′|

)
.

In practice, this would necessitate a precise control of the tails of π and of the
proposal distribution. It seems easier for us to check the compactness and boundedness
Assumptions 6.1.1, 6.2.1 and 6.2.2 (possibly up to truncating the support of π and replacing
it by a compact set).

6.B Continuous time version

As mentioned in Section 6.4, entropy methods are widely used in a continuous-time context,
in particular for the long-time analysis of nonlinear PDEs [222]. In this section, we define
a continuous-time version of Algorithm 1, we show that the mean-field limit towards the
solution of a nonlinear PDE and we prove the exponential long-time convergence of its
solution towards π. This last step also motivates the discrete-time analysis in Section 6.4.
Finally, the application of these ideas to the classical linear Metropolis-Hastings case
leads (formally) to a convergence result obtained earlier in [137] with other techniques
(Section 6.B.4).
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6.B.1 Continuous-time particle system

The N -particle system constructed by Algorithm 1 is a standard Markov chain which
can be turned into a continuous-time Markov process by subordinating it to a Poisson
process, as explained in [47, Chapter 8, Definition 2.2]. Namely, let (Nt)t≥0 be a Poisson
process independent of all the other random variables and with constant parameter equal
to 1. The continuous-time particle system is defined at time t ≥ 0 by X̃ i

t := X i
Nt

for
i ∈ {1, . . . , N}, where X i

Nt
is the i-th particle constructed by Algorithm 1 at iteration Nt.

For notational simplicity, in the remaining of this section, we drop the tilde notation and
simply write X i

t ≡ X̃ i
t with t ∈ [0,+∞).

The first step is the mean-field limit analog of Theorem 6.3.1 and is also very close to
Theorem 4.2.13 in Chapter 4.

Theorem 6.B.1. Let the particles X i
0 ∼ f0 be initially i.i.d. with common law f0 ∈ Pac

0 (E).
Under the assumptions of Theorem 6.3.1, the (random) continuous-time empirical measure
µ̂Nt = 1

N

∑N
i=1 δXi

t
at any time t ≥ 0 satisfies

EW1(µ̂Nt , ft) ≤ C1β(N)etC2 ,

where C1, C2 > 0 are two absolute constants, β(N) is defined by (6.6) and ft is the solution
of the nonlinear PDE

∂tft = T [ft]− ft, (6.31)

with initial condition f0.

Proof. It is enough to prove the analog of (6.7) in the time continuous framework. The
end of the proof will then follows similarly as in Corollary 6.3.2. The nonlinear process
(X t)t with law ft is defined as follows.

1. Let (Tn)n∈N the increasing sequence of jump times of the Poisson process (Nt)t with
T0 = 0 and initially X0 ∼ f0.

2. Between two jump times, at any t ∈ [Tn, Tn+1), X t = XTn .

3. At each jump time Tn, we sample a proposal random variable Y Tn ∼ ΘfTn
(·|XTn)

and accept or reject it as in Definition 6.A.2.

Then we construct two coupled systems of N independent nonlinear processes (X
i

t)t and
N particles as in the proof of Theorem 6.3.1. We define similarly St := 1

N

∑N
i=1 E|X i

t −X
i

t|.
As in the discrete time case (6.27), at any jump time Tn, it holds that

E[STn|FT−n ] ≤ 2 (1 + CΘ)STn−1 + CΘβ(N).
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Taking the conditional expectation with respect to Gn = σ(T1, T2 − T1, . . . , Tn − Tn−1), we
obtain:

E[STn|Gn] ≤ 2 (1 + CΘ)E[STn−1|Gn−1] + CΘβ(N).

And thus, for all n ∈ N,
E[STn|Gn] ≤ β(N)

CΘ

eCΘ − 1
eCΘn.

Since Nt follows a Poisson law with parameter t, it holds that:

E[STn1Nt=n] = E[E[STn1Nt=n|Gn+1]]

= E[1Nt=nE[STn|Gn]]

≤ β(N)
CΘ

eCΘ − 1
eCΘnP(Nt = n),

where the second inequality comes from the fact that the event {Nt = n} is Gn+1 measurable
and the fact that STn is independent from Tn+1 − Tn. As a consequence, since St = STNt
and P(Nt = n) = e−ttn/n!, we conclude that:

E[St] = E[STNt ] =
+∞∑
n=0

E[STn1Nt=n] ≤ β(N)
CΘ

eCΘ − 1
exp(t(eCΘ − 1)).

6.B.2 Convergence of the nonlinear process

The analog of Theorem 6.4.2 in the continuous-time setting is the following theorem.

Theorem 6.B.2 (Convergence of the Nonlinear Process). Let Θ a proposal distribution
which satisfies Assumption 6.2.6. Let f0 ∈ Pac

0 (E) and let ft be the solution at time
t ∈ [0,+∞) of the nonlinear PDE (6.31). Then for all t ≥ 0, it holds that:

‖ft − π‖TV ≤ C0e−λt,

where C0 > 0 depends only on f0 and π and where

λ := c−
(

inf
x

f0(x)

π(x)

)
h(1) > 0. (6.32)

Note that in the continuous-time case, Assumption 6.2.4 is not required.
We recall that given a convex function φ : [0,+∞)→ [0,+∞) such that φ(1) = 0, the

relative entropy H[f |π] and dissipation D[f |π] of a probability density f ∈ Pac(E) with
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respect to π are defined respectively by

H[f |π] :=

∫
E

π(x)φ

(
f(x)

π(x)

)
dx, D[f |π] := −

∫
E

φ′
(
f(x)

π(x)

)(
T [f ](x)− f(x)

)
dx.

In the continuous time framework when ft solves (6.31), the entropy and dissipation
are simply linked by the relation

d

dt
H[ft|π] = −D[ft|π] ≤ 0, (6.33)

and therefore we conclude immediately that the entropy is non increasing (which is
Lemma 6.4.5 in the discrete setting). A consequence of this fact is an alternative proof of
Lemma 6.4.1.

Lemma 6.B.3. Let ft be the solution of the integro-differential equation (6.31) with initial
condition f0 ∈ Pac

0 (E). Then

inf
x∈E

ft(x)

π(x)
≥ inf

x∈E

f0(x)

π(x)
, sup

x∈E

ft(x)

π(x)
≤ sup

x∈E

f0(x)

π(x)
.

Proof. Let us denote

m := inf
x∈E

f0(x)

π(x)
and M := sup

x∈E

f0(x)

π(x)
.

Let us take φ : [0,+∞) → [0,+∞) a convex function such that φ ≡ 0 on the segment
[m,M ] and φ > 0 elsewhere. Note that since f0 and π are both probability densities, it
holds that m < 1 and M > 1 and thus φ(1) = 0. The entropy-dissipation relation (6.33)
gives:

d

dt
H[ft|π] ≤ 0

and therefore for all t ≥ 0,
H[ft|π] ≤ H[f0|π] = 0

by definition of φ. As a consequence and since φ ≥ 0 and π > 0 on E, it holds that for all
t ≥ 0 and all x ∈ E,

φ

(
ft(x)

π(x)

)
= 0,

which implies that

∀x ∈ E, m ≤ ft(x)

π(x)
≤M.
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In order to prove Theorem 6.B.2, we follow the classical steps which are detailed for
instance in [222, Section 1.3] and can be applied to various linear and nonlinear jump and
diffusion processes.

1. Compute the dissipation D[ft|π] = − d
dt
H[ft|π].

2. Prove that the dissipation can be bounded from below by a multiple of the entropy:
for a constant λ > 0,

D[ft|π] ≥ λH[ft|π].

3. Apply Gronwall lemma to the relation d
dt
H[ft|π] ≤ λH[ft|π] to obtain the exponential

decay of the entropy:
H[ft|π] ≤ H0e−λt.

4. Show that the entropy controls the TV distance and conclude that for some constants
c, C0 > 0:

‖ft − π‖TV ≤ cH[ft|π] ≤ C0e−λt.

Proof (of Theorem 6.B.2). Let φ(s) = 1
2
(s− 1)2. Most of the computations are the same

as in the discrete-time case. From the entropy-dissipation relation (6.33), Lemma 6.B.3
and Lemma 6.4.6, it follows that

d

dt
H[ft|π] = −D[ft|π]

≤ −c
−(m)h(1)

2

∫∫
E×E

π(x)π(y)

∣∣∣∣ft(x)

π(x)
− ft(y)

π(y)

∣∣∣∣2 dxdy = −2c−(m)h(1)H[ft|π],

where m := infx∈E f0(x)/π(x). Using Gronwall’s inequality we then deduce that:

H[ft|π] ≤ H[f0|π]e−2c−(m)h(1)t.

The conclusion follows from the Cauchy-Schwarz inequality by writing

‖ft − π‖TV =

∫
E

|ft(x)− π(x)|dx =

∫
E

√
π
√
π

∣∣∣∣ft(x)

π(x)
− 1

∣∣∣∣ dx ≤√2H[ft|π],

where we have used the fact that the TV norm is equal to the L1 norm of the probability
density functions.
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Remark 6.B.4. Another natural choice for φ would be φ(s) = s log s− s+ 1. The relative
entropy is in this case equal to the Kullback-Leibler divergence. However, the dissipation
term becomes in this case:

D[ft|π] =
1

2

∫∫
E×E

Wft(x→ y)π(x)

(
ft(x)

π(x)
− ft(y)

π(y)

)
×
(

log

(
ft(x)

π(x)

)
− log

(
ft(y)

π(y)

))
dxdy,

and it is not clear that it can be bounded from below by the relative entropy. Note that
this dissipation functional is very similar to the one obtained in the study of the Boltzmann
equation (in this context, the Kullback-Leibler divergence is also called the Boltzmann
entropy). The long-time asymptotics of this equation is a long-standing problem and
the specific question of whether the dissipation controls the entropy is the object of a
famous conjecture by Cercignani [135, 325]. In our case, we know that the Kullback-Leibler
divergence is decreasing with time but all this suggests that its exponential decay could
be harder to obtain or could hold only in specific cases.

Putting together Theorem 6.B.1 and Theorem 6.B.2 leads to the following corollary
which is the continuous-time analog of Theorem 6.2.9.

Corollary 6.B.5. Under the assumptions of Theorem 6.B.1 and Theorem 6.B.2, for any
t > 0 and N > 1 it holds that

E[W1(µ̂Nt , π)] ≤ C1β(N)eC2t + C3e−λt,

where β(N) is given by (6.6), λ > 0 is given by (6.32) and C1, C2, C3 > 0 are absolute
constants.

Proof. By the triangle inequality, it holds that

E[W1(µ̂Nt , π)] ≤ E[W1(µ̂Nt , ft)] + E[W1(ft, π)].

The first term on the right-hand side is bounded by C1β(N)eC2t by Theorem 6.B.1. For
the second term on the right-hand side, we first note that on the compact set E, the total
variation norm controls the Wasserstein-1 distance [328, Theorem 6.15]. The conclusion
therefore follows from Theorem 6.B.2.
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6.B.3 Links between the discrete- and continuous-time versions

The discrete-time counterpart of the entropy-dissipation relation (6.33) is the relation (6.17).
The difference H[µt+1|π]−H[µt|π] is the discrete analog of a time derivation. The main
difference with the continuous-time entropy-dissipation relation is the additional non
negative term on the right-hand side of (6.17). The role of the technical Assumption 6.2.4
is to ensure that this non negative term remains smaller than the dissipation in order to
close the argument as in the continuous-time case. Since this term does not appear in the
continuous-time setting, Assumption 6.2.4 is not required to prove Theorem 6.B.2.

Assumption 6.2.4 is actually better understood when the discrete-time relation (6.10)
is seen as an explicit Euler discretization scheme (6.12) of the nonlinear PDE (6.31). More
precisely, the numerical scheme (6.12) can be re-written

µt+1 = µt + ∆tQ[µt], (6.34)

where
Q[µ](dx) :=

∫
E

π(x)Wµ(x→ y)

(
µ(dy)

π(y)
dx− µ(dx)

π(x)
dy

)
.

Note that T [µ] = µ +Q[µ]. In order to check that this numerical scheme preserves the
continuous-time entropy-dissipation relation (6.33), let us write for a general function the
second-order Taylor expansion:

H[µt+1|π] ' H[µt|π]−∆tD[µt|π] +
∆t2

2

∫
E

π(x)φ′′
(
µt(x)

π(x)

)∣∣∣∣Q[µt](x)

π(x)

∣∣∣∣2dx.

Since φ is a convex function, the second-order term of the Taylor expansion is non
negative but it is dominated by the non positive first-order term (equal to minus the
dissipation) for ∆t small enough. For this reason, the explicit Euler discretization scheme
does not unconditionally preserve the entropy structure of the continuous-time PDE.
Since Wµ(x→ y) = Θµ(y|x)h(αµ(x, y)), the operator Q[µ] is proportional to h and it is
equivalent to assume ∆t < 1 or h < 1. With the notations of Section 6.4.3, the time-step
is ∆t ≡ η and Assumption 6.2.4 can therefore be interpreted as a “numerical” condition
to preserve the entropy structure of the discrete scheme. We did not manage to prove
the exponential convergence of the discrete scheme when ∆t ≡ η = 1. However, it is still
possible to prove the convergence of the discrete scheme without rate and for a weaker
topology using Theorem 6.B.2 and a compactness argument.

Corollary 6.B.6 (Convergence of the discrete scheme). Let (µt)t∈N be the sequence of
probability laws defined by the recurrence relation (6.10) (i.e. by the discrete scheme (6.34)
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with ∆t = 1). Let µ0 ∈ Pac
0 (E) be the initial condition and let Θ satisfy Assumption 6.2.6.

Then it holds that µt → π as t→ +∞ for the weak convergence of probability measures.

Proof. The sequence (µt)t∈N is tight because E is compact so it admits a converging
subsequence. The limit of any converging subsequence is a fixed point of the operator T .
Since the convergence result stated in Theorem 6.B.2 does not depend on the initial
condition in Pac

0 (E), it implies that π is the unique fixed point of the operator T in Pac
0 (E)

and therefore, all the converging subsequences of (µt)t converges towards π, which implies
the convergence of the whole sequence.

6.B.4 The Metropolis-Hastings case

The following theorem revisits the main result of [137] regarding the convergence rate
of the Metropolis-Hastings algorithm, here formally proved with the entropy techniques
introduced in Section 6.B.2 and in the continuous-time setting for simplicity.

Theorem 6.B.7 (Formal). Let us consider the linear case outlined in Section 6.5.1 with
q(y|x) = Kσ(x − y), where Kσ is a fixed symmetric random walk kernel of size σ > 0

(typically a Gaussian kernel with standard deviation σ). Assume that, as σ → 0, the
random-walk kernel Kσ satisfies for any smooth function ϕ ∈ C∞(Rd):∫

E

ϕ(x)Kσ(x)dx = ϕ(0) +
1

2
σ2∆ϕ(0) + o(σ2). (6.35)

Assume that π and E are such that the following Poincaré inequality holds:∫
E

u(x)2π(x)dx−
(∫

E

u(x)π(x)dx

)2

≤ 1

λP

∫
E

|∇u|2(x)π(x)dx (6.36)

for all functions u in the weighted Sobolev space H1
π(E) and for a constant λP > 0. Then,

as σ → 0, it holds that:
‖ft − π‖TV ≤ C0e−

1
2
σ2(λP+o(1))t,

for a constant C0 > 0 which depends only on f0 and π.

Proof. The formal Taylor expansion (6.35) as σ → 0 applied to (6.33) leads to

Dφ[ft|π] =
σ2

2

∫
E

π(x)φ′′
(
ft(x)

π(x)

) ∣∣∣∣∇x

(
ft
π

)∣∣∣∣2 dx+ o(σ2). (6.37)

175



Taking φ(s) = 1
2
(s− 1)2 gives:

Dφ[ft|π] =
σ2

2

∫
E

π

∣∣∣∣∇(ftπ
)∣∣∣∣2 dx+ o(σ2).

Using the Poincaré inequality with the function u = ft/π, we obtain:

Dφ[ft|π] ≥ σ2λP
2

(∫
E

(
ft
π

)2

πdx− 1

)
+ o(σ2) = σ2λPHφ[ft|π] + o(σ2).

From the entropy-dissipation relation (6.33) and Gronwall lemma, we deduce that

Hφ[ft|π] ≤ C0e−σ
2(λP+o(1))t.

The conclusion follows from the Cauchy-Schwarz inequality as in the proof of Theorem 6.B.2.

A similar result has been obtained rigorously in [137] using linear spectral theory. In
particular, the fact that a Poincaré inequality holds depends on the regularity of the
boundary of E. In our case, the argument could be made rigorous by studying in details
the wellposedness of (6.31) in Sobolev spaces. The argument could also lead to a more
detailed analysis of the convergence rate of the Metropolis-Hastings algorithm in other
metrics. In particular, the same formal argument holds when we take φ(s) = s log(s)−s+1

in (6.37). In this case, the relative entropy is the Kullback-Leibler divergence and its time
derivative is controlled by the following dissipation:

Dφ[ft|π] =
σ2

2

∫
E

π

∣∣∣∣∣∇
√
ft
π

∣∣∣∣∣
2

dx+ o(σ2).

In order to apply Gronwall lemma and obtain the exponential decay of the Kullback-Leibler
divergence, we need the following convex Sobolev inequality:

∫
E

u(x)2 log

(
u(x)2

‖u‖2
L2
π

)
π(x)dx ≤ 1

λS

∫
E

|∇u(x)|2π(x)dx,

for all u ∈ H1
π and for a constant λS > 0. The conclusion follows by applying this inequality

to u =
√
ft/π and as before from Gronwall lemma and from the classical Csiszár-Kullback-

Pinsker inequality [222, Theorem A.2] which shows that the Total Variation norm is
controlled by the Kullback-Leibler divergence. When the above convex Sobolev inequilty
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holds, then the Poincaré inequality (6.36) also holds with λP ≥ 2λS. More details on
convex Sobolev inequalities can be found in [19] or[222, Section 2.2]. Their application
to the rigorous computation of (optimal) convergence rates for the Metropolis-Hastings
algorithm is left for future work.

6.C Related Works

6.C.1 Another Nonlinear MCMC sampler

A nonlinear kernel which does not fit into the “collective proposal” category has been
introduced in [7] and is defined by:

Kµ(x, dy) = (1− ε)KMH(x, dy) + εQµ(x, dy),

where KMH is the Metropolis-Hastings kernel and

Qµ(x, dy) =

(
1−

∫
E

α(x, u)µ(du)

)
δx(dy) + αη(x, y)µ(dy).

The function α is defined by: αη(x, y) = η(x)π(y)/(η(y)π(x)), that is, αη(x, y) is the
Metropolis ratio associated to another distribution η ∈ Pac

0 (E). In [7], the authors
investigated the case η = πα̃ for α̃ ∈ (0, 1). This kernel satisfies:∫∫

E×E
φ(y)Kη(x, dy)π(dx) =

∫
E

φ(y)π(dy).

The sampling procedure is therefore quite different as it requires an auxiliary chain to
build samples from η first in order to construct a sample from the desired nonlinear kernel.
More precisely, the authors propose the following iterative procedure to construct a couple
of Markov chains (Xt, Yt):

(Xt+1, Yt+1) ∼
(

(1− ε)KMH(Xt, dxt+1) + εQµ̂Yt
(Xt, dxt+1)

)
P (Yt, dyt+1),

where P is a (linear) Markov transition kernel with invariant distribution η and (Yt)t is a
Markov chain with transition kernel P . The empirical measure of this chain is denoted by:

µ̂Yt =
1

t+ 1

t∑
s=0

δYs .
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The final MCMC approximation of an observable ϕ is given in this case by:

∫
E

ϕ(x)π(dx) ' 1

t+ 1

t∑
s=0

ϕ(Xs). (6.38)

In this empirical sum, the successive iterations of the single chain (Xt)t are used. In
the collective proposal framework introduced in Section 6.2, the algorithm produces N
(asymptotically) independent copies of a nonlinear chain (X i

t)t, i ∈ {1, . . . , N} and we
have at our disposal a sequence of MCMC approximations of the form:

∫
E

ϕ(x)π(dx) ' 1

N

N∑
i=1

ϕ(X i
t), (6.39)

as t→ +∞. We can therefore interpret the sum (6.38) as a time average and the sum (6.39)
as an ensemble average.

6.C.2 Links with Importance Sampling Based Methods

Even though CMC does not use importance weights, it shares some similarities with
importance sampling methods, in particular SMC [128] and PMC methods [54]. As SMC
relies on tempering schemes, we will mainly focus on PMC.

According to [54], in PMC methods, without the importance correction, a regular
acceptance step — as in Metropolis-Hastings — for each mutation would lead to a simple
parallel implementation of N Metropolis-Hastings algorithm. Under the same parallel, we
can compare the mutation step in PMC with the proposal step of CMC.

In the first implementation of PMC, at each mutation step, each particle X i
t is

updated independently from the others, according to a kernel qit(·) (that can depend on t
and i), the new particle X i

t+1 is then associated with a weight proportional to the ratio
π(X i

t+1)/qit(X
i
t+1). In PMC, a mutation therefore occurs according to qit, that is only

depends on the position of the ancestor particle. In CMC, the mutation occurs according
to Θµ̂Nt

(· | X i
t), the update thus depends on the position of all the particles as Θ depends

on the empirical measure of the system µ̂Nt . This additional dependency is particularly
emphasized in the case of Algorithm 2. This corresponds to the Rao-Blackwellised version
of PMC, in which we integrate over the position of all the particles.

Recently, [134] also proposed to Rao-Blackwellise the mutation kernel in PMC while
keeping an importance sampling framework. The resulting algorithm is non-Markovian
and does not conserve the number of particles. At each iteration a batch of particles
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is added to the system according to the previous estimation of the target density. The
number of particles N grows with the number of iterations. Once a particle is added, its
position does not change, only its weight is updated along the iterations. A particle XN+1

is added according to qN =
∑

iwiKN(· | Xi), where KN is a kernel whose bandwidth
typically decreases with N and where (wi) is a vector of normalised importance weights.
The weight of XN+1 is initially proportional to the standard importance weight associated
to qN and is then updated at each iteration by re-normalisation as new particles are added
to the system. The weight of the added particle depends on all the other particles already
present in the system from the first iteration. This method shares some similarities with
ours, an important difference being that an old particle cannot be improved through time
and a “bad” particle will indefinitely remain in the system at the same place, while its
weight decreases through time, eventually increasing the computation cost.

Importance sampling based methods output unbiased estimators. For CMC, as stated
before, except for the Metropolis-Hastings proposal, each one of the methods previously
described is biased. Indeed, for a fixed number N of particles, the algorithm does not
converge to the target distribution. For a large number of particles, the algorithm
provides however a good approximation of the target density, according to Theorem 6.2.9.
In addition, as a byproduct, we can re-use this approximation to provide an unbiased
estimator by simply using the (sequence of) collective proposal distributions as importance
distributions in any importance sampling based sampler.
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Part II

Partial Differential Equation models of
body-attitude coordination
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Chapter 7

Phase transitions in the spatially
homogeneous kinetic model and
macroscopic limit

The content of the present chapter is based on the following article co-authored with P.
Degond, A. Frouvelle and S. Merino-Aceituno

[111] P. Degond, A. Diez, A. Frouvelle, and S. Merino-Aceituno. “Phase Transitions and
Macroscopic Limits in a BGK Model of Body-Attitude Coordination”. J. Nonlinear Sci.
30.6 (2020), pp. 2671–2736.

7.1 Introduction and main results

This chapter studies the long-time behaviour of the solution of the spatially homogeneous
version of the body-orientation dynamics kinetic model (2.10) with ν = 1 and M given
by (2.12), that is the equation

∂tf = ρMJf − f, Jf (t) :=

∫
SO3(R)

Af(t, A)dA, (7.1)

where the function f(t, A) only depends on the body-orientation variable and the time.
In this spatially homogeneous setting, the local density of agents previously denoted

by ρf does not depend on f in the sense that an initial density ρf0 ∈ (0,+∞) associated
to the initial condition f0 is preserved by the dynamics:

∀t ∈ R+, ρf (t) = ρf0 ,
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as it can be seen by integrating the equation over SO3(R). In all this chapter, we therefore
take ρ ∈ (0,+∞) as a fixed parameter of the problem and the initial condition f0 such that∫

SO3(R)
f0 = ρ. Note also that the well-posedness of (7.1) directly follows from Duhamel’s

formula:

f(t) = e−tf0 + ρ

∫ t

0

e−(t−s)MJf (s)ds,

since Jf is given as the solution of the following differential equation onM3(R):

d

dt
Jf = ρ〈A〉MJf

− Jf , Jf (t = 0) = Jf0 ,

as it can be seen by multiplying (7.1) by A and integrating over SO3(R).
The main results of this chapter are (informally) summarised in the following theorem

which states a phase transition phenomenon: there exist critical values of ρ which determine
the existence of various families of equilibria and the long-time convergence properties.

Theorem 7.1.1. Let f be a solution of (7.1) for a fixed density of agents ρ ∈ (0,+∞).

1. The equilibria f eq of the spatially homogeneous BGK model are either the uniform
equilibrium f eq = ρ or of the form f eq = ρMαA or f eq = ρMαp⊗q where A ∈ SO3(R),
and p, q ∈ S2 are arbitrary parameters and α ≡ α(ρ) ∈ R is a parameter which
depends on ρ through a compatibility equation to be defined later (see Section 7.3 and
Equations (7.15) and (7.16)).

2. Depending on the density of agents ρ ∈ R+, the only stable equilibria are either
the uniform equilibrium f eq = ρ or the equilibria of the form f eq = ρMαA where
A ∈ SO3(R) and where α ∈ (0,+∞) depends on ρ through a compatibility equation
to be defined later.

The first point of this theorem is detailed in Section 7.3 (see in particular Theorem 7.3.4
and Corollary 7.3.17). The second point is detailed in Section 7.4 (see in particular
Theorem 7.4.2).

The analogous phase transition problem for the spatially homogeneous kinetic Vicsek
model has been completely treated by [113] in the Fokker-Planck case (1.11). In comparison,
the BGK operator is simpler and, in the present body-orientation framework, it leads to
a complete and explicit characterisation of the behaviour of the solution. Moreover, the
techniques and results in this chapter have recently been used to treat the body-orientation
Fokker-Planck case in [166]. The main difference with the Vicsek model is the more
complex geometrical structure inherent to body-orientation models which requires specific
tools and techniques. In this chapter, it will be shown that the body-attitude coordination
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model shares structural properties with nematic alignment models of polymers, studied in
a completely different context to model liquid crystals [189, 330, 335, 14, 13]. These two
worlds will be formally linked through the isomorphism between SO3(R) and the group
of unit quaternions detailed in Section 7.3.2 and Appendix 7.A. It will lead to the first
point of Theorem 7.1.1 (the complete description of the equilibria in Section 7.3). The key
argument is a result due to [330] which studies generalisations of traditional liquid crystals
models to higher dimensions and in particular gives a classification of the equilibria of the
Smoluchowski equation for rigid, rod-like polymers. Following this work, in the present
case, one of our results is the existence of a class of equilibria which cannot be interpreted
as equilibria around a mean-body orientation. These equilibria were not known in the
previous works on the body-orientation dynamics [114, 116].

The stability of the different equilibria are studied in Section 7.4.3. We will show that
our model has an underlying gradient-flow structure which will allow us to determine
the asymptotic behaviour of the system after a reduction to an ODE in R3. This is a
specificity of the BGK model which does not hold for the other models of body-attitude
coordination [114, 116] based on a Fokker-Planck operator. This specificity allows us to
use different and simpler techniques. In particular, we will prove that the equilibria which
cannot be interpreted as equilibria around a mean body-orientation are always unstable,
which tends to justify the analysis carried out in [114] for a model where only equilibria
around a mean body-orientation were considered.

Finally in Section 7.5 we will formally derive the macroscopic models associated to
the non-spatially homogeneous equation (4.16) for the stable equilibria. This is a simple
extension of the work of [119] to the case of a density-dependent concentration parameter.

This chapter is organised as follows. The first Section 7.2 gathers preliminary technical
results on the space SO3(R) that are used throughout this chapter and the following ones.
The starting point of the present study is the computation of the equilibria of the BGK
operator in Section 7.3. Then, in Section 7.4, we will describe the asymptotic behaviour
of the system and in particular which equilibria are attained, leading to a self-organised
dynamics or not. This will be based on a specific underlying gradient-flow structure of
the BGK equation. Finally, macroscopic models for the stable equilibria are derived in
Section 7.5.
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7.2 Preliminaries: calculus in SOn(R)

This paragraph collects the main properties of the Riemannian manifold SOn(R) and other
technical results which are used in this Chapter and the subsequent ones. In this section
the dimension is denoted by n ≥ 3 but we will mainly consider the case n = 3 in the
following.

7.2.1 Tangent spaces

We start with a characterisation of the tangent spaces of the manifold SOn(R) endowed
with the Euclidean structure given by (2.1).

Lemma 7.2.1. The following properties hold true.

• The sets Sn(R) and An(R) of symmetric and antisymmetric matrices are orthogonal
for the dot product (2.1) andMn(R) = Sn(R)⊕An(R).

• For A ∈ SOn(R), the tangent space to SOn(R) at A is denoted by TA and is charac-
terised as follows:

TA = {PA, | P ∈ An(R)}.

The orthogonal projection (with respect to the inner product (2.1)) of J ∈ Mn(R)

onto TA is given by

PTAJ =
JAT − AJT

2
A.

Likewise, the orthogonal complement T⊥A is given by

T⊥A = {SA | S ∈ Sn(R)},

and the orthogonal projection of J onto T⊥A is

PT⊥A J =
JAT + AJT

2
A.

7.2.2 Changes of variable and applications

We will often need to compute integrals over SOn(R). As a consequence of the left and right
invariance of the Haar measure, for any P ∈ SOn(R), the maps A 7→ PA and A 7→ AP

are two changes of variable with unit Jacobian. Based on this observation, we will very
often use the following changes of variable.
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Definition 7.2.2 (Useful changes of variable). Let us define the following matrices:

• For i 6= j ∈ {1, . . . , n}, Dij ∈ SOn(R) is the diagonal matrix such that all its
coefficients are equal to 1 except at positions i and j where they are equal to −1.

• For i 6= j ∈ {1, . . . , n}, P ij ∈ SOn(R) is the matrix such that P ij
ii = P ij

jj = 0, P ij
kk = 1

for k 6= i, j, P ij
ij = 1 and P ij

ji = −1. The other coefficients are equal to 0.

Then we define the following changes of variable with unit Jacobian:

• A′ = DijA multiplies the rows i and j by −1. Everything else remains unchanged.

• A′ = ADij multiplies the columns i and j by −1. Everything else remains unchanged.

• A′ = DijADij multiplies the elements (k, i), (k, j) and (i, k), (j, k) by −1 for k 6= i, j.
Everything else remains unchanged

• A′ = P ijA multiplies row i by −1 and permutes the rows i and j.

• A′ = P ijA(P ij)T exchanges the diagonal coefficients (i, i) and (j, j) (and involves
other changes).

The two following lemmas are important applications of these results.

Lemma 7.2.3. Let D ∈Mn(R) be a diagonal matrix and MD the von Mises distribution
with parameter D, then the average

〈A〉MD
:=

∫
SOn(R)

AMD(A)dA

is a diagonal matrix.

Proof. Let k 6= ` and m 6= k, `. The change of variable A 7→ DkmADkm gives:∫
SOn(R)

ak` eD·A dA = −
∫

SOn(R)

ak` eD·A dA = 0,

where we have used that Dk,mDDk,m = D.

Lemma 7.2.4. For any n ≥ 3 and any J ∈Mn(R),∫
SOn(R)

(J · A)A dA =
1

2n
J.
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Lemma 7.2.5. Let n ≥ 3, n 6= 4. Let g : SOn(R)→ R such that for all A,P ∈ SOn(R),
g(A) = g(AT) = g(PAPT). For all J ∈Mn(R) we have:∫

SOn(R)

(J · A)Ag(A) dA = aTr(J)In + bJ + cJT,

for given a, b, c ∈ R depending on g and on the dimension, the expressions of which can be
found in the proof.

The proof of these lemmas and other technical results about SO3(R) and SOn(R) are
postponed to Appendix 7.B.

7.2.3 Volume forms in SO3(R)

When an explicit calculation will be needed, we will use one of the two following parametri-
sations of SO3(R) which give two explicit expressions of the normalised Haar measure in
dimension 3.

• To a matrix A ∈ SO3(R) there is an associated angle θ ∈ [0, π] and a vector n ∈ S2

such that A is the rotation of angle θ around the axis n. Rodrigues’ formula gives a
representation of A knowing θ and n = (n1, n2, n3) :

A = A(θ,n) = I3 + sin θ[n]× + (1− cos θ)[n]2× = exp(θ[n]×), (7.2)

where

[n]× :=

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 . (7.3)

Note that it holds that
[n]2× = n⊗ n− I3.

If f(A(θ,n)) = f̄(θ,n) the volume form of SO3(R) is given by:∫
SO3(R)

f(A) dA =
2

π

∫ π

0

sin2(θ/2)

∫
S2

f̄(θ,n) dn dθ.

The sphere S2 can be parametrised with the following usual system of coordinates at
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any point n = (n1, n2, n3)T : 
n1 = sinψ cosϕ,

n2 = sinψ sinϕ,

n3 = cosψ,

where ψ ∈ [0, π] and ϕ ∈ [0, 2π]. The volume form for the sphere is then given by:

dn =
1

4π
sinψdψdϕ.

• We have the following one to one map :

Ψ :

∣∣∣∣∣ SO2(R)× S2 −→ SO3(R)

(A, p) 7−→ M(p)Aa
(7.4)

where

Aa :=

(
A 0

0 1

)
∈ SO3(R),

and for p = (sinφ1 sinφ2, cosφ1 sinφ2, cosφ2)T in spherical coordinates φ1 ∈ [0, 2π]

and φ2 ∈ [0, π], we define:

M(p) :=

 cosφ1 sinφ1 cosφ2 sinφ1 sinφ2

− sinφ1 cosφ1 cosφ2 cosφ1 sinφ2

0 − sinφ2 cosφ2

 ∈ SO3(R).

The matrix Aa performs an arbitrary rotation of the first 2 coordinates and the
matrix M(p) ∈ SO3(R) maps the vector e3 to p ∈ S2. A matrix A ∈ SO3(R) can
thus be written as the product: cosφ1 sinφ1 cosφ2 sinφ1 sinφ2

− sinφ1 cosφ1 cosφ2 cosφ1 sinφ2

0 − sinφ2 cosφ2


 cos θ sin θ 0

− sin θ cos θ 0

0 0 1


where φ1, θ ∈ [0, 2π] and φ2 ∈ [0, π]. With this parametrisation:

∫
SO3(R)

f(A)dA =
1

2π

∫ 2π

0

∫
S2

f

M(p)

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 dθ dp, (7.5)
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and the volume form on the sphere is given by:

dp =
1

4π
sinφ2 dφ1 dφ2.

This parametrisation can be extended in any dimension and comes from the Lie groups
quotient:

SOn(R)

SOn−1(R)
∼= Sn−1.

7.2.4 Singular Value Decomposition (SVD)

We recall the following classical result proved for instance in [283, Section 1.9].

Proposition 7.2.6 (Singular Value Decomposition, SVD). Any matrix M ∈Mn(R) can
be written:

M = PDQ

where P,Q ∈ On(R) are orthogonal matrices and D is diagonal with nonnegative coefficients
listed in decreasing order.

In order to use the properties of the Haar measure, we will need the matrices P and Q
to belong to SO3(R) (not only O3(R)). We therefore define another decomposition, called
the Special Singular Value Decomposition (SSVD) in the following.

Definition 7.2.7 (SSVD in SO3(R)). A Special Singular Value Decomposition (SSVD) of
a matrix M ∈M3(R) is a decomposition of the form

M = PDQ

where P,Q ∈ SO3(R) and D = diag(d1, d2, d3) with

d1 ≥ d2 ≥ |d3|.

We recall that diag : R3 → M3(R) denotes the map which transforms a vector
x = (x1, x2, x3)T into a diagonal matrix D with component Dii = xi. The existence of a
SSVD follows from Proposition 7.2.6. Starting from a SVD

M = P ′D′Q′,

the SSVD can be constructed as follows.
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• If detM > 0, either P ′, Q′ ∈ SO3(R) and the SVD is a SSVD or P ′, Q′ have both
negative determinant and in this case we can take

P = P ′D̃, Q = D̃Q′ and D = D′

where D̃ = diag(1, 1,−1).

• If detM < 0, either P ′ ∈ SO3(R) or Q′ ∈ SO3(R) (only one of them). Assume
without loss of generality that Q′ ∈ SO3(R). Then we can take:

P = P ′D̃, D = D̃D and Q = Q′.

• If detM = 0, then the last coefficient of D′ is equal to 0 so D̃D′ = D′ and D′D̃ = D′.
We can take D = D′. If P ′ /∈ SO3(R) we can take P = P ′D̃ and if Q′ /∈ SO3(R) we
can take Q = D̃Q′.

Remark 7.2.8. As for the polar decomposition and the standard SVD, the matrix D is
always unique. However the matrices P and Q may not be unique.

The subset D ⊂ M3(R) of the diagonal matrices which are the diagonal part of a
SSVD is the cone delimited by the image by the isomorphism diag of the three planes
{d1 = d2}, {d2 = d3} and {d2 = −d3} in R3 and depicted in Figure 7.3.2 :

D = diag(d1, d2, d3) ∈ D if and only if d1 ≥ d2 ≥ |d3|. (7.6)

In other words, the existence of a SSVD shows that any matrix is in the orbit of a
diagonal matrix D ∈ D for the action of SO3(R)×SO3(R), where for a matrixM ∈M3(R),
the orbit Orb(M) ⊂M3(R) is defined by:

Orb(M) := {PMQ, P,Q ∈ SO3(R)}. (7.7)

In many cases, we will use this property to reduce a problem on M3(R) to a simpler
problem on D .

7.3 Equilibria of the BGK operator

In this section we determine the equilibria for the BGK operator:

QBGK(f) := ρMJf − f, (7.8)
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that is to say the distributions f such that QBGK(f) = 0. In Section 7.3.1 we characterise
these equilibria (Theorem 7.3.4) and show that for them to exist, compatibility equations
must be fulfilled. These compatibility equations depend on the density ρ. Therefore, for
different values of the density ρ, there exist different equilibria. These will be determined
in Section 7.3.2 by studying the compatibility equations. A full description of the equilibria
of the BGK operator is finally given in Corollary 7.3.17.

7.3.1 Characterisation of the equilibria and compatibility equa-

tions

The main result of this section is Theorem 7.3.4 which gives all the equilibria of the BGK
operator (7.8). Before stating and proving it, we will need the following lemma which is
the analog of Lemma 4.4 in [114]. The proof of this lemma is an application of the results
presented in Section 7.2.

Lemma 7.3.1 (Consistency relations). The following holds:

(i) There exists a function c1 = c1(α) defined for all α ∈ R such that for all A ∈ SO3(R),

〈A〉MαA = c1(α)A. (7.9)

The function c1 can be explicitly written c1(α) = 1
3

{
(2 cos θ+ 1)

}
α
where {·}α denotes

the mean with respect to the probability density

θ ∈ [0, π] 7−→ sin2(θ/2)eα cos θ∫ π
0

sin2(θ′/2)eα cos θ′ dθ′
. (7.10)

(ii) Consider the set B ⊂M3(R) defined by:

B :=

B = P

 1

0

0

Q, P,Q ∈ SO3(R)

 = {p⊗ q, p, q ∈ S2}.

There exists a function c2 = c2(α) defined for all α ∈ R such that for all B ∈ B,

〈A〉MαB
= c2(α)B. (7.11)

The function c2 can be explicitly written: c2(α) = [cosφ]α, where [·]α denotes the
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mean with respect to the probability density

ϕ ∈ [0, π] 7−→ sinϕ e
α
2

cosϕ∫ π
0

sinϕ′ e
α
2

cosϕ′ dϕ′
. (7.12)

Remark 7.3.2. The relevance of the set B will become apparent in Proposition 7.3.12.

Proof. (i) Using the left invariance of the Haar measure, it is enough to prove the result
for A = I3, since

〈A〉MαA =

∫
SO3(R)

AeαA·A dA∫
SO3(R)

eαA·A dA
= A

∫
SO3(R)

ATAeαA
TA·I3 dA∫

SO3(R)
eαATA·I3 dA

= A〈A〉MαI3
.

When A = I3, Lemma 7.2.3 first ensures that 〈A〉MαI3
is diagonal, then the change

of variable A′ = P 12A(P 12)T (see Definition 7.2.2) shows that:

〈a11〉MαI3
= 〈a22〉MαI3

.

Proceeding analogously with the other coefficients we have that 〈A〉MαI3
is propor-

tional to I3, i.e. there exists c1 = c1(α) ∈ R such that

c1(α)I3 = 〈A〉αI3 . (7.13)

The parametrisation of SO3(R) using Rodrigues’ formula (7.2) then gives the explicit
expression of c1 by taking the trace in Equation (7.13) and using that for A = A(θ,n),
Tr(A) = 2 cos θ + 1.

(ii) As before, using the left and right invariance of the Haar measure it is enough to
prove the result for B = diag(1, 0, 0). Now if D = diag(a, b,−b) for a, b ∈ R, then the
change of variable A 7→ P 23A(P 23)T followed by the change of variable A 7→ D23A

(see Definition 7.2.2) show that∫
SO3(R)

a22eD·A dA = −
∫

SO3(R)

a33eD·A dA,

which proves with lemma 7.2.3 that 〈A〉MD
is diagonal of the form diag(ã, b̃,−b̃)

for ã, b̃ ∈ R. Similarly, if D = diag(a, b, b) then 〈A〉MD
is of the form diag(ã, b̃, b̃).

These two results prove that 〈A〉MαB
is proportional to B, i.e. there exists c2 =

c2(α) ∈ R such that (7.11) holds. The parametrisation of SO3(R) coming from the
isomorphism (7.4) then gives the explicit expression of c2 by taking B = diag(1, 0, 0)

191



in Equation (7.11). First, using the change of variable A 7→ P 13A(P 13)T it holds
that,

c2(α) =
1

Z

∫
SO3(R)

a11e
α
2
a11 dA =

1

Z

∫
SO3(R)

a33e
α
2
a33 dA

where
Z =

∫
SO3(R)

e
α
2
a11 dA =

∫
SO3(R)

e
α
2
a33 dA.

Then, using the parametrisation (7.5), it follows that:

c2(α) =

∫ π
0

cosϕ sinϕe
α
2

cosϕ dϕ∫ π
0

sinϕe
α
2

cosϕ dϕ
.

Remark 7.3.3. We could alternatively use one of the two parametrisations of SO3(R)

given in Section 7.2.3 or the quaternion formulation to prove that 〈A〉αI3 and 〈A〉αB are
proportional to I3 and B. However, the proof that we have just presented here holds in
any dimension (the value of the constants c1(α) and c2(α) depends on the dimension but
not the form of the matrices) whereas the volume forms and the quaternion formulation
strongly depend on the dimension n = 3.

We can now state the main result of this section.

Theorem 7.3.4 (Equilibria for the homogeneous Body-Orientation BGK equation). Let
ρ ∈ R+ be a given density. The equilibria of the spatially homogeneous BGK equation (7.1)
are the distributions of the form f = ρMJ where J ∈M3(R) is a solution of the matrix
compatibility equation:

J = ρ〈A〉MJ
. (7.14)

The solutions of the compatibility equation (7.14) are:

1. the matrix J = 0,

2. the matrices of the form J = αA with A ∈ SO3(R) and where α ∈ R satisfies the
scalar compatibility equation

α = ρc1(α), (7.15)

3. the matrices of the form J = αB where B ∈ B and where α ∈ R satisfies the scalar
compatibility equation

α = ρc2(α), (7.16)
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where the set B and the functions c1 and c2 are defined in Lemma 7.3.1.

Remark 7.3.5. Notice that the existence of a non-zero solution for the scalar compatibility
equations (7.15) and (7.16) is not guaranteed for all values of ρ > 0 . The existence of
non-zero solutions for these equations will be explored in Section 7.3.2. They will determine
the existence of equilibria for Equation (7.1) for a given value of ρ (Corollary 7.3.17).

Remark 7.3.6. The fact that these matrices are solutions of the matrix compatibility
equation (7.14) follows directly from the consistency relations (7.9) and (7.11) as it will
be shown in the proof of Theorem 7.3.4. The main difficulty of the proof is therefore the
necessary condition: we will prove that a solution of the matrix compatibility equation (7.14)
is necessarily of one of the forms listed in Theorem 7.3.4.

Remark 7.3.7 (Physical interpretation of the equilibria). The first two types of equilibria
can be interpreted as statistical descriptions of respectively a disordered state (case J = 0)
or an ordered (or flocking) state where a physical average body-orientation A ∈ SO3(R) can
be identified and where α plays the role of a concentration parameter around the “mean”
value A. Note that α depends on ρ. In the following, it will be shown that the flocking
equilibrium is stable when the density ρ is sufficiently large. Moreover, the concentration
parameter α will be larger for larger values of the density (after a certain threshold of the
density). The third type of equilibria is specific to the body-orientation model and can be
physically understood as the statistical description of a system composed of two groups of
agents moving in the same direction but where one group is oriented upside-down with
respect to the other (see Figure 2.1c). The diagonal element diag(1, 0, 0) ∈ B can indeed
be obtained as the arithmetic average of the body-orientations diag(1, 1, 1) ∈ SO3(R)

and diag(1,−1,−1) ∈ SO3(R). It corresponds to the case of two agents moving in the e1

direction and where the body-orientation of an agent can be obtained from the other by a
rotation of angle π around the e1 axis. As it can be expected, equilibria of this type will
be shown to be always unstable.

The proof of this theorem will use the two following propositions. The first one and its
corollary (Proposition 7.3.8 and Corollary 7.3.9) show that the compatibility equation (7.14)
can be reduced to a compatibility equation on diagonal matrices (Equation (7.17)) using the
notion of orbit (7.7). The second one (Proposition 7.3.12) provides a necessary condition
for a diagonal matrix to be a solution of (7.17). The proof of Proposition 7.3.12 is deferred
to the next section.

Proposition 7.3.8 (Orbital reduction). The following equivalence holds: J ∈M3(R) is
a solution of the matrix compatibility equation (7.14) if and only if for all J ′ ∈ Orb(J), J ′

is a solution of the matrix compatibility equation (7.14).
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Proof. This is a consequence of the left and right invariance of the Haar measure which
ensures that for any J ∈M3(R) and any P,Q ∈ SO3(R), 〈PAQ〉MJ

= 〈A〉MPJQ
.

Since the diagonal part of the SSVD of a matrix J is in the orbit of J , we obtain the
following corollary:

Corollary 7.3.9 (Reduction to diagonal matrices). Let J ∈M3(R) with SSVD given by
J = PDQ. The following equivalence holds: J is a solution of (7.14) if and only if D is
a solution of (7.14).

We will therefore consider only the following problem in dimension 3: find all the
diagonal matrices D ∈M3(R) such that{

D = ρ〈A〉MD

D ∈ D ,
(7.17)

where the set D is the subset of diagonal matrices which are the diagonal part of a SSVD
and is defined by (7.6). Notice that Equation (7.17) is just Equation (7.14) restricted to
the set D .

Remark 7.3.10. The diagonal part D ∈ M3(R) of a SSVD of a matrix J ∈ M3(R) is
unique so the problems (7.14) and (7.17) are equivalent. Notice that there might be other
diagonal matrices in Orb(J) (take for example J diagonal which does not satisfy the
conditions (7.6)). However the diagonal part of any SSVD of these matrices is D : the
diagonal part of the SSVD characterises the orbit of a matrix. In the following, we will
find all the diagonal solutions of (7.14) (i.e. the solutions of (7.17) without the restriction
D ∈ D) and then only consider the ones which belong to D . For instance we will see that
there are solutions of (7.14) of the form diag(0,−α, 0) where α > 0. The diagonal part of
their SSVD is diag(α, 0, 0) and is a solution of (7.17).

Remark 7.3.11. A diagonal solution D of the matrix compatibility equation (7.14) verifies
that D/ρ belongs to the set:

Ω =
{
D = diag(d1, d2, d3), ∃ f ∈ P(SO3(R)), Jf = D

}
⊂ D3(R),

where P(SO3(R)) is the set of probability measures on SO3(R). The set diag−1(Ω) ⊂ R3

is exactly the tetrahedron T defined as the convex hull of the points (±1,±1,±1) with
an even number of minuses (which we will call Horn’s tetrahedron). It is a consequence of
Horn’s theorem [201, Theorem 8] which states that T is exactly the set of vectors which
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are the diagonal of an element of SO3(R). It ensures that if f is a probability measure, we
have by convexity of T : ∫

SO3(R)

f(A)A dA ∈ diag(T )

and therefore diag−1(Ω) ⊂ T . Conversely, taking the Dirac deltas δI3 and similarly for
the other vertices of T , we see that the four vertices of Horn’s tetrahedron belong to
diag−1(Ω). Since Ω is convex, we conclude that T ⊂ diag−1(Ω).

The diagonal solutions of the matrix compatibility equation (7.14) satisfy the following
necessary condition.

Proposition 7.3.12. The diagonal solutions of the compatibility equation (7.14) are
necessarily of one of the following the types :

(a) D = 0.

(b) D = α diag(±1,±1,±1) with an even number of minus signs and where α ∈ R \ {0}.
If α ∈ (0,+∞), the diagonal part of the SSVD of these diagonal matrices is equal to
D = αI3.
If α ∈ (−∞, 0), the diagonal part of the SSVD of these diagonal matrices is equal to
D = α diag(−1,−1, 1) = |α| diag(1, 1,−1).

(c) D = α diag(±1, 0, 0) and the matrices obtained by permutation of the diagonal coeffi-
cients and where α ∈ R \ {0}.
The diagonal part of the SSVD of these diagonal matrices is equal to D = diag(|α|, 0, 0).

Section 7.3.2 will be devoted to the proof of this proposition, which is the main technical
contribution of this section. We are now ready to prove Theorem 7.3.4.

Proof (of Theorem 7.3.4). An equilibrium of the BGK equation is of the form

f = ρMJ ,

where
J = Jf = ρ〈A〉MJ

.

It is straightforward to check that J = 0 is a solution of (7.14). Now, let D a matrix of
one the form described in Proposition 7.3.12 with a parameter α ∈ R. For instance, for a
matrix of type (c) like D = α diag(0,−1, 0), thanks to Lemma 7.3.1 we have:

D = ρ〈A〉MD
⇐⇒ D = ρc2(α) diag(0,−1, 0) ⇐⇒ α = ρc2(α).
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Similarly for the other diagonal matrices of type (c), we prove that they are solution of the
matrix compatibility equation (7.14) if and only if their parameter α ∈ R is solution of the
scalar compatibility equation (7.16). Analogously one can check that the diagonal matrices
of type (b) are solutions of the matrix compatibility equation (7.14) if and only if their
parameters α ∈ R are solutions of the scalar compatibility equation (7.15). This yields
all the diagonal solutions of (7.14). Now, the solutions of (7.14) are exactly the matrices
J ∈ Orb(D) where D is a diagonal solution of (7.14) and the set Orb(D) ⊂ M3(R) is
the orbit of D defined by (7.7). We conclude by noticing that if D is of type (b) then
Orb(D) = SO3(R) and if D is of type (c) then Orb(D) = B.

Remark 7.3.13. When applied to diagonal matrices, the last part of Theorem 7.3.4 states
that the diagonal solutions of (7.14) are necessarily of one of the types (a), (b) or (c)
defined in Proposition 7.3.12 and that, it holds that

1. the matrix 0 is always a solution of (7.14),

2. a matrix of type (b) is a solution of (7.14) if and only if its parameter α ∈ R \ {0}
satisfies (7.15),

3. a matrix of type (c) is a solution of (7.14) if and only if its parameter α ∈ R \ {0}
satisfies (7.16).

7.3.2 Proof of Proposition 7.3.12

The proof of Proposition 7.3.12 is based on two results. The first one has been proved
in [330, Section 4] to study the nematic alignment of polymers in higher dimensional
spaces:

Theorem 7.3.14 ([330]). Let n ≥ 3, b ∈ R+ and s = (s1, s2, . . . , sn) ∈ Rn be a solution
of the nonlinear system

sj = 〈m2
j〉gs,b , j = 1, . . . , n, (7.18)

where the average is taken with respect to the probability density function on the sphere Sn−1 :

gs,b(m1, . . . ,mn) :=
1

Z
exp

(
b

n∑
j=1

sjm
2
j

)
, (7.19)

where Z is the normalisation constant. Then the set {s1, . . . , sn} has at most two distinct
elements (i.e. Card{s1, s2, . . . , sn} ≤ 2).
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The second tool that we will use to prove Proposition 7.3.12 is the isomorphism
between SO3(R) and the space of unitary quaternions which transforms the compatibility
equation (7.17) into the compatibility equation (7.18) studied in Theorem 7.3.14.

Proposition 7.3.15.

1. There is an isomorphism between the group SO3(R) and the quotient group H/± 1,
where H is the group of unit quaternions. Since H is homeomorphic to S3, there is
an isomorphism Φ :

Φ : S3/± 1 −→ SO3(R).

Moreover Φ is an isometry in the sense that it maps the volume form of S3/ ± 1

(defined as the image measure of the usual measure on S3 by the projection on
the quotient space) to the volume form on SO3(R): for any measurable function f
on SO3(R), ∫

S3/±1

f
(
Φ(q)

)
dq =

∫
SO3(R)

f(A) dA.

2. There is a linear isomorphism between the vector space M3(R) and the vector
space S0

4 (R) of trace free symmetric matrices of dimension 4:

φ :M3(R) −→ S0
4 (R),

such that for all J ∈M3(R), and q ∈ H/± 1,

1

2
J · Φ(q) = q · φ(J)q.

The dot product on the left-hand side is defined by Equation (2.1) and the one on
the right-hand side is the usual dot product in R4.

3. For all q ∈ H/± 1, it holds that φ
(
Φ(q)

)
= q ⊗ q − 1

4
I4.

4. The isomorphism φ preserves the diagonal structure: if D = diag(d1, d2, d3) then,

φ(D) =
1

4


d1 + d2 + d3 0 0 0

0 d1 − d2 − d3 0 0

0 0 −d1 + d2 − d3

0 0 −d1 − d2 + d3
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and if Q = diag(s1, s2, s3, s4) with s1 + s2 + s3 + s4 = 0, then

φ−1(Q) = 2

 s1 + s2 0 0

0 s1 + s3 0

0 0 s1 + s4

 .

The proof of this proposition can be found in Appendix 7.A. We are now ready to
prove Proposition 7.3.12.

Proof (of Proposition 7.3.12). Using the first and second points of Proposition 7.3.15, it
holds that ∫

SO3(R)

AeA·D dA =

∫
S3/±1

Φ(q)eΦ(q)·D dq =

∫
S3/±1

Φ(q)e2q·φ(D)q dq.

The compatibility equation (7.17) then becomes:

D =
ρ

Z

∫
S3/±1

Φ(q)e2q·φ(D)q dq.

Applying the isomorphism φ defined in Proposition 7.3.15 to this last equation, we can
exchange φ and the integral by linearity and we obtain thanks to the third point of
Proposition 7.3.15 :

φ(D) =
ρ

Z

∫
S3/±1

φ
(
Φ(q)

)
e2q·φ(D)q dq =

ρ

Z

∫
S3/±1

(
q ⊗ q − 1

4
I4

)
e2q·φ(D)q dq.

Using the fourth point of Proposition 7.3.15, we then obtain the following equivalent
problem: find all the trace-free diagonal matrices Q = diag(s1, s2, s3, s4) of dimension 4
such that

Q = ρ

∫
S3/±1

e
∑4
i=1 2siq

2
i (q ⊗ q − 1

4
I4) dq

Z
,

where Z is a normalisation constant:

Z :=

∫
S3/±1

e
∑4
i=1 2siq

2
i dq.

Equivalently, defining for i ∈ {1, 2, 3, 4} :

s′i :=
si
ρ

+
1

4
,
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we want to solve the system of compatibility equations:

s′i =

∫
S3/±1

q2
i gs′,2ρ(q) dq, i = 1, 2, 3, 4, (7.20)

where s′ = (s′1, s
′
2, s
′
3, s
′
4) and gs′,2ρ is given by (7.19). Thanks to Theorem 7.3.14, we

conclude that if s′ is a solution of (7.20), then the coefficients s′1, s′2, s′3, s′4 can take at most
two distinct values. So, the same result holds for the coefficients s1, s2, s3, s4. Now thanks
to the fourth point of Proposition 7.3.15, we only have the following possibilities:

• if s1 = s2 = s3 = s4 = 0, then

D = φ−1(Q) = 0,

• if s1 = 3α/4 and s2 = s3 = s4 = −α/4 for α ∈ R, then

D = φ−1(Q) = αI3,

• if s2 = 3α/4 and s1 = s3 = s4 = −α/4 for α ∈ R, then

D = φ−1(Q) = α

 1 0 0

0 −1 0

0 0 −1

 ,

and similarly by permuting the diagonal elements when s3 = 3α/4 and when
the other elements are equal s1 = s2 = s4 = −α/4 or when s4 = 3α/4 and
s1 = s2 = s3 = −α/4,

• if s1 = s2 = α/4 and s3 = s4 = −α/4 for α ∈ R, then

D = φ−1(Q) = α

 1 0 0

0 0 0

0 0 0

 ,

and similarly by permuting the diagonal elements when s1 = s3 = α/4 and when
s2 = s4 = −α/4 or s1 = s4 = α/4 and s2 = s3 = −α/4.

The computation of the SSVD for these matrices is an easy computation. This concludes
the proof of Proposition 7.3.12.
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7.3.3 Determination of the equilibria for each density

In Theorem 7.3.4 we saw that the BGK operator can have three types of equilibria. The
uniform equilibria f = ρ (corresponding to J = 0) is always an equilibrium. However,
the existence of the other two types of equilibria depends on Equations (7.15) and (7.16)
having a solution for a given ρ. Therefore the existence of these types of equilibria will
depend on the value of ρ. In this section we will determine the existing equilibria for
each value of ρ. In particular, we will draw the phase diagram for ρ and α, that is to say
the parametrised curves defined by Equations (7.15) and (7.16) in the plane (ρ, α) (see
Figure 7.3.1). We first prove the following proposition.

Proposition 7.3.16. Let ρc := 6.

(i) The function α 7→ α/c1(α) is well-defined on R, its value at zero is ρc. Moreover,
there exists α∗ > 0 such that this function is decreasing on (−∞, α∗] and increasing
on [α∗,+∞). Defining ρ∗ := α∗/c1(α∗), it holds that ρ∗ < ρc.

(ii) The function α 7→ α/c2(α) is even. It is decreasing on (−∞, 0), increasing on (0,∞)

and its value at zero is ρc.

(iii) We have the following asymptotic behaviours:

α

c1(α)
∼

α→+∞
α + 1,

α

c2(α)
∼

α→+∞
α + 2.

Proof. The idea of the proof is taken from [330].

(i) Since
d

dθ

{
sin2(θ/2) sin θ

}
= sin2(θ/2)(1 + 2 cos θ),

an integration by parts shows that:

α

c1(α)
= 3

∫ π
0

sin2(θ/2)eα cos θ dθ∫ π
0

sin2(θ/2) sin2 θeα cos θ dθ
=

3

{sin2 θ}α
.

It proves that α and c1(α) have the same sign for all α ∈ R. Then we define function
m : α 7→ {sin2 θ}α = 3c1(α)/α which satisfies the property:

m′(α) = 0 =⇒ m′′(α) < 0,
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since
m′(α) = {sin2 θ cos θ}α − {sin2 θ}α{cos θ}α,

and
m′′(α) = −Varα(cos2 θ)− 2{cos θ}αm′(α),

where Varα is the variance for the probability density (7.10). This property implies
that α/c1(α) has only one critical point which is a global minimum. This minimum
is attained at a point α∗ > 0 as a simple computation shows that m′(0) > 0 and
consequently ρ∗ < ρc. A simple computation gives m(0) = 1

2
so ρc = 6.

(ii) We have similarly:

α

c2(α)
= 4

∫ π
0

sinϕe
α
2

cosϕ dϕ∫ π
0

sin3 ϕe
α
2

cosϕ dϕ
=

4

[sin2 ϕ]α
, (7.21)

from which we can easily see that α 7→ α/c2(α) is even and has only one minimum
attained at α = 0. A simple computation shows that its value at 0 is ρc = 6.

(iii) The behaviour at infinity is obtained by Laplace’s method: with the change of
variable s = 1− cos θ on [0, π], we get

α

c1(α)
= 3

eα
∫ 2

0
e−αs s

2
√

1−(1−s)2
ds

eα
∫ 2

0
e−αs s

2

√
1− (1− s)2 ds

∼
α→+∞

α + 1.

With the same method we have:

α

c2(α)
= 4

∫ 2

0
e−

α
2
s ds∫ 2

0
e−

α
2
s(1− (1− s)2) ds

∼
α→+∞

α + 2.

Thanks to Proposition 7.3.16 and Theorem 7.3.4 we can now fully describe the equilibria
of the BGK operator. A graphical representation of this result is given by the phase
diagram depicted in Figure 7.3.1 :

Corollary 7.3.17 (Equilibria of the BGK operator, depending on the density ρ). The set
of equilibria of the BGK operator (7.8) depends on the value of ρ. In particular we need to
distinguish three regions ρ ∈ (0, ρ∗), ρ ∈ (ρ∗, ρc) and ρ > ρc where ρ∗ and ρc are defined in
Proposition 7.3.16. We have the following equilibria in each region:
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• For 0 < ρ < ρ∗, α = 0 is the unique solution of Equations (7.15) and (7.16) and
therefore the only equilibrium is the uniform equilibrium f eq = ρ.

• For ρ = ρ∗, in addition to the uniform equilibrium, there is a family of anisotropic
equilibria given by f eq = ρ∗Mα∗A where A ∈ SO3(R) and α∗ = ρ∗c1(α∗).

• For ρ∗ < ρ < ρc, the compatibility equation (7.15) has two solutions α+ and α− with
0 < α− < α+ which give, in addition to the uniform equilibrium, two families of
anisotropic equilibria : f eq = ρMα+A and f eq = ρMα−A with A ∈ SO3(R).

• For ρ = ρc, we have α− = 0.

• For ρ > ρc, Equation (7.15) has two solutions α3 < 0 < α1 which give two families
of anisotropic equilibria f eq = ρMα3A and f eq = ρMα1A with A ∈ SO3(R). Moreover,
Equation (7.16) has two solutions −α2 < 0 < α2 which give another family of
equilibria: f eq = ρMα2B where B ∈ B. The uniform equilibrium is always an
equilibrium.

When an equilibrium is of the form f eq = ρMαA with parameters α > 0 and A ∈ SO3(R)

then these parameters can respectively be interpreted as a concentration parameter and a
mean body-orientation. They are analogous to the equilibria found in [113] in the Vicsek
case. However, in SO3(R), there exist other equilibria which are not of this form. We will
see in Section 7.4 that these latter equilibria are always unstable.

202



Figure 7.3.1: Phase diagram for the equilibria of the BGK operator (7.8). Depend-
ing on the density, there are one, two, three or four branches of equilibria (α2 and
−α2 give the same orbit). The uniform equilibrium f eq = ρ is always an equilibrium
(corresponding to α = 0, depicted in green). The equilibria of the form f eq = ρMαA,
A ∈ SO3(R) exist for ρ > ρ∗ and correspond to the two branches of the red curve
α = ρc1(α). Finally the equilibria of the form f eq = ρMαB, B ∈ B exist for ρ > ρc
and correspond to the two branches of the blue curve α = ρc2(α). The dotted and
dashed lines correspond to unstable equilibria (as shown in Section 7.4). The signs
are the signature of the Hessian matrix HessV (D) defined in Section 7.4 taken at an
equilibrium point. The elements α∗, ρ∗ and ρc are defined in Proposition 7.3.16; the
elements α+, α−, α1, α2 and α3 are given in Corollary 7.3.17.

Finally the following picture (Figure 7.3.2) is a representation in the space R3 of the
diagonal parts of the SSVDs of the solution of the matrix compatibility equation (7.14)
when ρ > ρc. They all belong to the domain D defined by (7.6) and depicted in orange in
Figure 7.3.2.
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Figure 7.3.2: The 4 diagonal parts of the SSVDs of the diagonal equilibria seen
as elements of the space R3 for ρ > ρc, as described in Corollary 7.3.17. The ones
with non zero determinant are in red (type (b) in Proposition 7.3.12), the non-zero
one with determinant equal to zero is in blue (type (c)) and the matrix 0 is in green.
They all lie in the domain diag−1(D) depicted in orange and delimited by the three
blue planes {d1 = d2}, {d2 = d3} and {d2 = −d3}.

7.4 Convergence to equilibria

7.4.1 Main result

Now that we know all the equilibria of the spatially homogeneous BGK equation (7.1)
we proceed to investigate the asymptotic behaviour of f(t, A) as t→ +∞. This problem
can be reduced to looking at the asymptotic behaviour of Jf since, if Jf → J∞ ∈M3(R),
then f(t) will converge as t→ +∞ towards ρMJ∞ as it can be seen by writing Duhamel’s
formula for equation (7.1) :

f(t) = e−tf0 + ρ

∫ t

0

e−(t−s)MJf (s) ds. (7.22)
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The asymptotic behaviour of Jf is much simpler than the one of f since Jf is the solution
of the following ODE

d

dt
Jf = ρ〈A〉MJf

− Jf , Jf (t = 0) = Jf0 , (7.23)

as it can be seen by multiplying (7.1) by A ∈ SO3(R) and integrating over SO3(R). Since
J ∈ M3(R) 7→ MJ ∈ L∞(SO3(R)) is locally Lipschitz, the flow of Equation (7.23) is
defined globally in time since the map J 7→ ρ〈A〉MJ

is Lipschitz with bounded Lipschitz
seminorm.

Notice that the solutions of the compatibility equation (7.14) are exactly the equilibria
of the dynamical system (7.23). We therefore obtain the following proposition:

Proposition 7.4.1 (Equilibria of the BGK operator, equilibria of the ODE (7.23)).
A distribution f eq = ρMJ is an equilibrium of the BGK operator (7.8) if and only if
J ∈M3(R) is an equilibrium of the dynamical system (7.23).

We will call stable/unstable an equilibrium of the BGK operator (7.8) such that the
associated matrix J ∈M3(R) is a stable/unstable equilibrium of the ODE (7.23). This
section is devoted to the proof of the following theorem:

Theorem 7.4.2 (Convergence towards equilibria). Let ρ ∈ R+ be such that ρ 6= ρ∗ and
ρ 6= ρc (as defined in Proposition 7.3.16). Let f0 be an initial condition for (7.1) and
let Jf0 = PD0Q be a SSVD. Let f(t) be the solution at time t ∈ R+ of the spatially
homogeneous BGK equation (7.1) with initial condition f0. Let D(t) be the solution at
time t ∈ R+ of the ODE (7.23) with initial condition D0 ∈ D . It holds that:

Jf(t) = PD(t)Q

is a SSVD and there exists a subset Nρ ⊂ R3 of zero Lebesgue measure such that, writing
Nρ := diag(Nρ) ⊂M3(R):

1. if D0 /∈ Nρ, then f(t) converges as t→∞ towards an equilibrium f eq of the BGK
operator (7.8) of the form f eq = ρMJeq, where Jeq ∈M3(R) is of one of the forms
described in Theorem 7.3.4. The convergence is locally exponentially fast in the sense
that there exist constants δ,K, µ > 0 such that if ‖Jf0 − Jeq‖ ≤ δ then for all t > 0,

∀A ∈ SO3(R), |f(t, A)− f eq(A)| ≤ e−µt
(
Kρ+ |f0(A)− f eq(A)|

)
.

2. If D0 /∈ Nρ, we have the following asymptotic behaviours depending on the density ρ:
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(i) if 0 < ρ < ρ∗, then D(t)→ 0 as t→ +∞ and, consequently, f eq = ρ,

(ii) if ρ∗ < ρ < ρc, then D(t) → 0 or D(t) → α+I3 as t → +∞ and, conse-
quently, f eq = ρ or f eq = ρMα+A respectively, where α+ > 0 is defined in
Corollary 7.3.17 and A := PQ ∈ SO3(R),

(iii) if ρ > ρc, then D(t)→ α1I3 as t→ +∞ and, consequently, f eq = ρMα1A where
α1 > 0 is defined in Corollary 7.3.17 and A := PQ ∈ SO3(R).

Remark 7.4.3 (Phase transitions). Theorem 7.4.2 demonstrates a phase transition phe-
nomenon triggered by the density of agents ρ : when ρ < ρ∗, the system is disordered
(asymptotically in time) in the sense that Jf → 0 and we therefore cannot define a mean
body-attitude. When the density increases and exceeds the critical value ρc, the system is
self-organised (asymptotically in time and for almost every initial data), in the sense that
Jf → αA where α ∈ R+ and A ∈ SO3(R) can be respectively interpreted as a concentration
parameter and a mean body attitude. When ρ∗ < ρ < ρc the self-organised and disordered
states are both asymptotically stable and the convergence towards one or the other state
depends on the initial data. Such “transition region” also appears in the Vicsek model, as
studied in [113], and gives rise to an hysteresis phenomenon.

Remark 7.4.4. Thanks to Horn’s theorem [201], it can be checked that in the cases where D0

is such that D(t)→ αI3 for α > 0, then D0 does not belong to the plane {d2 = −d3} and
the matrix PQ is indeed uniquely defined as PQ = PSO3(R)Jf0 .

The proof of this theorem can be found at the end of Section 7.4.3. It is based on a
gradient flow structure for the flux Jf studied in Section 7.4.2. This structure ensures
the convergence of Jf towards a matrix Jeq ∈M3(R) as t→ +∞ and consequently the
convergence of f(t) as t → +∞ towards an equilibrium. The stability of the equilibria
determines which equilibrium can be attained. This question is addressed in Section 7.4.3.

7.4.2 A gradient-flow structure in R3

In this section we show that the ODE (7.23) can be reduced to a gradient-flow ODE in R3.
We first show how (7.23) can be reduced to an ODE in R3, the equilibria of which are
linked to the equilibria of (7.23) (and therefore of (7.1)). Then we show that this ODE
in R3 has a gradient-flow structure which will allow us to conclude on the asymptotic
behaviour of the solution of (7.1).

The ODE (7.23) is a matrix-valued nonlinear ODE (in dimension 9) but, as in the
previous section (Proposition 7.3.8 and Corollary 7.3.9), we will use the left and right
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invariance of the Haar measure and the SSVD to reduce the problem to a vector-valued
nonlinear ODE in dimension 3, as explained in Proposition 7.4.5 and Corollary 7.4.7.

Proposition 7.4.5 (Reduction to a nonlinear ODE in dimension 3). Let J0 ∈M3(R) be a
given matrix and let D0 ∈ Orb(J0) be diagonal. Let P,Q ∈ SO3(R) such that J0 = PD0Q.
Let J : [0,∞) → M3(R) be a C1 curve in M3(R) with J(0) = J0. For all t > 0, let
D(t) ∈M3(R) be the matrix such that J(t) = PD(t)Q. It holds that:

(i) J = J(t) is the solution of the ODE (7.23) with initial condition J(t = 0) = J0 if
and only if D = D(t) is the solution of the same ODE (7.23) with initial condition
D(t = 0) = D0.

(ii) Moreover, if (i) holds, then the matrix D(t) ∈M3(R) is diagonal for all time.

Proof. (i) Using the left and right invariance of the Haar measure, we see that if the
matrix J(t) ∈M3(R) is a solution of (7.23), then for any P,Q ∈ SO3(R), PJ(t)Q is
also a solution (and conversely).

(ii) Since D0 is diagonal, the fact that D(t) is also diagonal is a consequence of
Lemma 7.2.3 which states that 〈A〉MD

is diagonal when D is diagonal.

For any matrix J0, such a diagonal matrix D0 always exists: we can take the diagonal
part of the SSVD of J0. We therefore only have to study the following ODE for diagonal
matrices. Since this vector space is isomorphic to R3 through the isomorphism diag : R3 →
M3(R), we obtain two equivalent ODEs:

d

dt
D(t) = ρ〈A〉MD(t)

−D(t), D(t = 0) = D0, (7.24a)

d

dt
D̂(t) = ρ diag−1

(
〈A〉M

diag(D̂(t))

)
− D̂(t), D̂(t = 0) = D̂0, (7.24b)

where D̂0 = diag−1(D0) and the following equivalence holds : D̂(t) = diag−1(D(t)) is the
solution of (7.24b) if and only if D(t) = diag(D̂(t)) is the solution of (7.24a).

Note that it is not clear that if J0 = PD0Q is a SSVD, then J(t) = PD(t)Q is a SSVD
for all t > 0. The following proposition and corollary ensure that the SSVD is preserved by
the dynamical system which will allow us to restrict the domain on which the ODE (7.24a)
is posed.

Proposition 7.4.6 (Invariant manifolds). The following subsets of R3 are invariant
manifolds of the dynamical system (7.24b) :
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• the planes
{

(d1, d2, d3) ∈ R3, di + dj = 0
}
for i 6= j ∈ {1, 2, 3},

• the planes
{

(d1, d2, d3) ∈ R3, di − dj = 0
}
for i 6= j ∈ {1, 2, 3},

• the intersections of two of these planes and in particular the lines

R

 1

1

1

 , R

 1

0

0

 , R

 1

1

−1

 . . .

Proof. For i = 2 and j = 3, the result has already been proved in the second point of
Lemma 7.3.1. The other cases are similar.

Corollary 7.4.7. Let J0 ∈ M3(R) and J0 = PD0Q be a SSVD with P,Q ∈ SO3(R)

and D0 ∈ D3(R) diagonal. Let J(t) be the solution of the ODE (7.23) with initial
condition J(t = 0) = J0. Let D(t) the solution of the ODE (7.24a) with initial condition
D(t = 0) = D0. Then the decomposition J(t) = PD(t)Q is a SSVD for J(t).

Proof. The fact that J(t) = PD(t)Q is a consequence of the first point of Proposition 7.4.5.
The fact that it is a SSVD is a consequence of Proposition 7.4.6 which ensures that the
conditions (7.6) remain true for all t > 0 : D is stable in the sense that if D0 ∈ D , then
D(t) ∈ D for all time t > 0. This follows from the fact that the image by the isomorphism
diag of the invariant manifolds of (7.24b) described in Proposition 7.4.6 are invariant
manifolds of the dynamical system (7.24a). These manifolds in D3(R) form the boundary
of the subset D .

In conclusion, the study of the asymptotic behaviour of f(t) as t→ +∞ can be reduced
to the study of the asymptotic behaviour of the solutions of the ODE (7.24a) posed on
the domain D (see Figure 7.3.2).

The following Proposition describes the equilibria of the dynamical system (7.24a) and
is a consequence of the results of Section 7.3.

Proposition 7.4.8 (Equilibria of the dynamical system (7.24a)). The equilibria of the
dynamical system (7.24a) are, depending on the density ρ :

• the matrix D = 0 for any density ρ,

• the diagonal matrices of type (b) with parameters α+ and α− when ρ∗ < ρ < ρc,

• the diagonal matrices of type (b) with parameters α1 and α3 and the diagonal matrices
of type (c) with parameters ±α2 when ρ > ρc,
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where the types (b) and (c) are defined in Proposition 7.3.12 and the elements α+, α−, α1,
α2 and α3 are defined in Corollary 7.3.17.

Proof. The equilibria of (7.24a) are the diagonal matrices D such that

ρ〈A〉MD
−D = 0,

which is exactly Equation (7.14) for the diagonal matrices. This equation has been solved
in Theorem 7.3.4, Remark 7.3.13 and Corollary 7.3.17.

Remark 7.4.9. As in the previous section, we have found all the diagonal equilibria
of (7.24a). However, thanks to Corollary 7.4.7, only the ones which belong to D are
needed.

The following proposition is a straightforward consequence of the previous results.

Proposition 7.4.10 (Equilibria of the BGK operator, equilibria of the ODE (7.24a)). Let
J ∈ M3(R) with a SSVD given by J = PDQ. The following assertions are equivalent.

(1) The distribution f eq = ρMJ is an equilibrium of the BGK operator (7.8).

(2) The matrix D is an equilibrium of the dynamical system (7.24a) on the domain D .

(3) The matrix D is of one of the forms:

• D = 0, when ρ < ρ∗,

• D = 0 or D = α−I3 or D = α+I3, when ρ∗ ≤ ρ ≤ ρc,

• D = 0 or D = α1I3 or D = α3 diag(−1,−1, 1) or D = α2 diag(1, 0, 0), when
ρ > ρc,

where ρ∗, ρc, α−, α+, α1, α2 and α3 are defined in Proposition 7.3.16 and Corol-
lary 7.3.17.

Lemma 7.4.11 (Gradient-flow structure). We define the partition function of a matrix
J ∈ M3(R) :

Z(J) :=

∫
SO3(R)

eJ ·A dA, (7.25)

and the potentials V (J) and V̂ (D̂) respectively on M3(R) and on R3 :

V (J) :=
1

2
‖J‖2 − ρ logZ(J), (7.26a)

V̂ (D̂) :=
1

2
|D̂|2 − 2ρ logZ(diag(D̂)) (7.26b)
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where ‖ · ‖ and | · | are respectively the norm onM3(R) induced by the inner product (2.1)
and the Euclidean norm on R3. Then we can rewrite equations (7.24a) and (7.24b) into a
gradient flow structure as follows:

d

dt
D(t) = ρ〈A〉MD(t)

−D(t) = −∇V (D), (7.27a)

d

dt
D̂(t) = ρ diag−1

(
〈A〉M

diag(D̂(t))

)
− D̂(t) = −∇V̂ (D̂), (7.27b)

where ∇ is the gradient operator inM3(R) endowed with the Riemaniann structure (2.1)
or the gradient operator in R3 endowed with the usual Euclidean structure.

Proof. The partition function satisfies that for all J ∈M3(R),

∇(logZ)(J) = 〈A〉MJ
,

since ∇(eJ ·A) = AeJ ·A. The result follows inM3(R). The result in R3 follows from the
fact that for any w1, w2 ∈ R3, it holds that:

w1 · w2 = 2 diag(w1) · diag(w2)

where · denotes the dot product on R3 and onM3(R) as defined in (2.1).

Remark 7.4.12. This gradient-flow structure on Jf is specific to the BGK equation and
does not hold for the Fokker-Planck operator (as shown in [113], the differential equation
satisfied by Jf in the Vicsek case involves the spherical harmonics of degree 2 and higher
of f ; here the equation for Jf is closed).

Remark 7.4.13 (Free-energy). The following functional is a free-energy for both the spatially
homogeneous BGK equation and the spatially homogeneous version of the Fokker-Planck
equation (2.13) (though with a different dissipation term):

F [f ] :=

∫
SO3(R)

f log f − 1

2
|Jf |2. (7.28)

It satisfies in both cases:
d

dt
F [f ] = −D[f ] ≤ 0,

where D[f ] is the dissipation term which is equal for the BGK model to:

D[f ] =

∫
SO3(R)

(f − ρMJf )(log f − log(ρMJf )) ≥ 0.
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In the context of the Vicsek model, this free energy was the key to study the phase transition
phenomena [113]. Moreover, in the Fokker-Planck case this dissipation inequality implies
a gradient flow structure in the Wasserstein-2 distance which has been studied (in the
Vicsek case) in [160]. Recently, it has been shown in [166] that this gradient-flow structure
and the properties of the potential V introduced in the present work can be used to study
the phase transition phenomena for a large class of Fokker-Planck models which includes
the case of the body-orientation model. However, the BGK model has another underlying
gradient-flow dynamics (studied in Section 7.4) on which the present study will be based,
and we will therefore not use this free-energy in the present work.

As an application of the gradient-flow structure, we can prove that all the trajectories
of (7.23) and (7.27a) are bounded: since the potential V in (7.26a) is decreasing along the
trajectories, we can write for all t > 0

1

2
‖J(t)‖2 ≤ V (J0) + ρ logZ(J(t)).

Using the fact that SO3(R) is compact with volume one, by the mean-value theorem
applied to (7.25) there exists Ā ∈ SO3(R) such that Z(J(t)) ≤ eĀ·J(t). Therefore, owing
to the fact that ‖A‖ ≤

√
3/2 for all A ∈ SO3(R), we obtain using the Cauchy-Schwarz

inequality that logZ(J(t)) ≤
√

3
2
‖J(t)‖. Then, by Young’s inequality we get:

1

4
‖J(t)‖2 ≤ V (J0) +

3

2
ρ2.

Moreover, since the potential V is analytic, a classical result by Łojasiewicz [190, 242]
implies that the solution to (7.27a) and (7.23) will converge towards an equilibrium. The
same holds for the system (7.27b).

When all the equilibria of the dynamical system (7.24a) are hyperbolic the convergence
towards the stable equilibria is exponentially fast (see [198, Section 9.3] and the Hartman-
Grobman theorem [278, Section 2.8]). The goal of the next section is to find which
equilibria among the ones found in Section 7.3 are stable and to completely describe
the asymptotic behaviour of the system depending on the initial condition and the local
density ρ. We will see that phase transitions appear between ordered and disordered
dynamics when the density ρ increases.

211



7.4.3 Stability of the equilibria and conclusion

Since the flow of (7.24b) is the image by the isomorphism diag−1 of the flow of (7.24a),
an equilibrium Deq of (7.24a) is stable (resp. unstable) if and only if diag−1(Deq) is a
stable (resp. unstable) equilibria of (7.24b). The stability properties of the equilibria
of (7.24b) are much simpler to study than the stability properties of the equilibria of
(7.24a) since they are given by the signature of the Hessian matrix Hess V̂ (D̂eq) ∈ S3(R)

of the potential V̂ given in equation (7.26b) (the linearisation of ODE (7.24b) around an
equilibrium D̂eq is indeed d

dt
Ĥ = −Hess V̂ (D̂eq)Ĥ). In particular, an equilibrium D̂eq is

stable if and only if the signature of Hess V̂ (D̂eq) is (+ + +).
Note that in the matrix framework (7.27a), the Hessian of the potential (7.26a) in the

Euclidean spaceM3(R) would be a rank 4 tensor. Here we are reduced to the computation
of the signature of 3 × 3 symmetric matrices. For a diagonal matrix D ∈ D3(R) and
D̂ = diag−1(D) we will write with a slight abuse of notations:

HessV (D) ≡ Hess V̂ (D̂).

When D ∈ D3(R) is an equilibrium of (7.24a) we call signature of the Hessian matrix
HessV (D) the signature of Hess V̂ (D̂) where D̂ = diag−1(D). A simple computation
shows that the Hessian matrix HessV (D) is given by :

HessV (D) = I3 −
1

2
ρΓD, (7.29)

where ΓD = (ΓDij )i,j with :

ΓDij = 〈aiiajj〉MD
− 〈aii〉MD

〈ajj〉MD
.

The following theorem is an extension of Corollary 7.3.17 and gives a full description of
the equilibria of the BGK operator with their stability.

Theorem 7.4.14 (Stability of the equilibria of the ODE (7.24a)).

• For 0 < ρ < ρ∗, the only equilibrium is D = 0. This equilibrium is stable.

• For ρ∗ < ρ < ρc, the equilibrium D = 0 and the equilibria of type (b) with parameter
α+ are stable. The equilibria of type (b) with parameter α− are unstable and the
signature of the Hessian matrix is (−+ +).

• For ρ > ρc, the stable equilibria are the equilibria of type (b) with parameter α1. The
other equilibria (D = 0, type (b) with parameter α3 and type (c) with parameter
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±α2) are unstable and the signatures of the Hessian matrix are respectively (−−−),
(+−−) and (+ +−).

The proof of Theorem 7.4.14 will be based on the following lemma which states an
important orbital invariance principle for the signature of the Hessian matrix.

Lemma 7.4.15 (Orbital invariance of the signature). Let GD and GP the subgroups of
SO3(R) respectively generated by the matrices Dij and P ij defined in Definition 7.2.2.
These subgroups act on D3(R) respectively by left multiplication and by conjugation. Let
D ∈ D3(R) be a diagonal matrix. Then the signature of HessV (D) is invariant by the
action of GD and GP on D.

Proof. Let us first introduce the map πdiag :M3(R)→ R3,M 7→ (Mii)i. Let L ∈ GD and
P ∈ GP . The map πdiag satisfies for all M ∈M3(R):

πdiag(LM) = Lπdiag(M), and πdiag(PMPT) = Rπdiag(M) (7.30)

where R := P �P ∈ O3(R) is the Hadamard product (or element-wise product) of P with
itself (that is R is the permutation matrix obtained by removing all the minuses in P ).
Let Ĥ ∈ R3 and H := diag(Ĥ) ∈ D3(R). From the expression (7.29) of the Hessian matrix
HessV (D) ≡ Hess V̂ (D̂) it follows that:

HessV (D)Ĥ = Ĥ − ρ
(〈

(A ·H)πdiag(A)
〉
MD
− 〈A ·H〉MD

〈πdiag(A)〉MD

)
.

Using the left and right invariance of the Haar measure and (7.30), we obtain:

HessV (LD)Ĥ = Ĥ − ρL
(〈

(A · LTH)πdiag(A)
〉
MD
− 〈A · LTH〉MD

〈πdiag(A)〉MD

)
= LHessV (D) diag−1(LTH)

and therefore, since diag−1(LTH) = LTĤ, it follows that

HessV (LD) = LHessV (D)LT.

Similarly, using (7.30), we obtain

HessV (PDPT)Ĥ = Ĥ − ρR
(〈

(A · PTHP )πdiag(A)
〉
MD
− 〈A · PTHP 〉MD

〈πdiag(A)〉MD

)
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and since diag−1(PTHP ) = RTĤ, it follows that

HessV (PDPT) = RHessV (D)RT.

The conclusion follows from Sylvester’s law of inertia ([238, Chapter 8 Theorem 1]).

If D̂ is an equilibrium of (7.24b) then diag(D̂) is of one type (a), (b) or (c) defined in
Proposition 7.3.12. For the types (b) and (c), the diagonal matrix diag(D̂) is therefore in
the orbit of respectively αI3 (by the action of GD) or α diag(1, 0, 0) (by the action of GP )
where α solves the associated compatibility equation. As a consequence of Lemma 7.4.15,
one only needs to look at the signature of the Hessian matrix of V̂ taken in one of these
two representatives. We are now ready to prove Theorem 7.4.14.

Proof (of Theorem 7.4.14). Thanks to lemma 7.4.15, we therefore do not have to compute
the signatures of the Hessian matrix taken at all equilibria, it is enough to choose one
matrix in each orbit: for the equilibria of type (b) (see Proposition 7.3.12) we will compute
the signature of HessV (αI3) where α = ρc1(α) and for the equilibria of type (c) we will
compute the signature of HessV (α diag(1, 0, 0)) where α = ρc2(α). We first start with the
case of the uniform equilibrium.

Case 1. Uniform equilibrium D = 0

For the uniform equilibrium D = 0, 〈aij〉 = 0 for all (i, j). Moreover, by the change of
variable A′ = DikA where k 6= i, j, we have when i 6= j :

〈aiiajj〉 = −〈aiiajj〉 = 0.

It proves that Γ is diagonal. Then with the changes of variables A′ = P ijA or A′ = AP ij

it can be seen that all the 32 quantities 〈a2
ij〉 are equal. Since their sum is equal to n = 3

we get that

HessV (0) =

(
1− 1

2
ρ〈a2

11〉
)
I3 =

(
1− ρ

ρc

)
I3,

where ρc = 6. In conclusion, the signature of HessV (0) is (+ + +) if ρ < ρc and (−−−)

if ρ > ρc.

Case 2. Equilibria of type (b) : D = αI3

Let D = αI3 with α = ρc1(α). We have c1(α) = 〈a11〉MD
= 〈a22〉MD

= 〈a33〉MD
and a

change of variable of the type A′ = P ijA(P ij)T shows that all the 〈akka``〉MD
are equal.
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The Hessian matrix is therefore equal to :

HessV (αI3) = I3 −
1

2
ρ

 ν γ γ

γ ν γ

γ γ ν

 ,

with ν = 〈a2
11〉MD

− 〈a11〉2MD
and γ = 〈a11a22〉MD

− 〈a11〉MD
〈a22〉MD

. The eigenvalues of
HessV (D) are :

• 1− 1
2
ρν − ργ of order 1 with eigenvector (1, 1, 1)T. But taking the derivative with

respect to α of (7.9) with A = I3 we obtain the relation :

c′1(α) =
1

2
〈a2

11〉MD
+ 〈a11a22〉MD

− 3

2
〈a11〉2MD

=
1

2
ν + γ,

and using ρ = α/c1(α) we can rewrite :

1− 1

2
ρν − ργ = 1− αc′1(α)

c1(α)
= c1(α)

(
id

c1

)′
(α).

Its sign is then given by Proposition 7.3.16 and the fact that c1(α) has the same

sign as α : c1(α)
(
id
c1

)′
(α) > 0 when α < 0, c1(α)

(
id
c1

)′
(α) < 0 when 0 ≤ α < α∗

and c1(α)
(
id
c1

)′
(α) > 0 when α > α∗.

• 1 − 1
2
ρν + 1

2
ργ of order 2 with eigenvectors (1,−1, 0)T and (0, 1,−1)T. It can be

rewritten as:
1− 1

2
ρν +

1

2
ργ = 1− α

4c1(α)

〈
(a11 − a22)2

〉
MD

.

To determine this sign, we use the explicit volume form of SO3(R) given by Rodrigues’
formula (7.2) to see that :

α

4c1(α)

〈
(a11 − a22)2

〉
MD

=
α

5
·
∫ π

0
sin2(θ/2)(1− cos θ)2eα cos θ dθ∫ π

0
sin2(θ/2)(1 + 2 cos θ)eα cos θ dθ

.

Lemma 7.4.16. The function

f : x 7−→ 1− x

5
·
∫ π

0
sin2(θ/2)(1− cos θ)2ex cos θ dθ∫ π

0
sin2(θ/2)(1 + 2 cos θ)ex cos θ dθ

,

satisfies f(0) = 0, f(x) ≥ 0 if x ≥ 0 and f(x) ≤ 0 if x ≤ 0
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Proof. The value of f(0) is given by the expansion of exp. Note that :

d

dθ

{
sin2(θ/2) sin θ

}
= sin2(θ/2)(1 + 2 cos θ),

so that an integration by parts shows :∫ π

0

sin2(θ/2)(1 + 2 cos θ)ex cos θ dθ = x

∫ π

0

sin2(θ/2) sin2(θ)ex cos θdθ.

We get that :

f(x) = 1− 1

5

∫ π
0

sin2(θ/2)(1− cos θ)2ex cos θ dθ∫ π
0

sin2(θ/2) sin2(θ)ex cos θdθ
.

We have :

f(x) ≥ 0⇐⇒
∫ π

0

sin2(θ/2)

(
1

5
(1− cos θ)2 − sin2(θ)

)
ex cos θ dθ ≤ 0.

Linearizing sin2(θ/2) and expanding everything gives :

sin2(θ/2)

(
1

5
(1− cos θ)2 − sin2(θ)

)
=
−1

5
(3 cos θ + 2)(1− cos θ)2,

so that :
f(x) ≥ 0⇐⇒

∫ π

0

(3 cos θ + 2)(1− cos θ)2ex cos θ dθ ≥ 0.

Now for x ≥ 0, let θ0 = arccos(−2/3). We cut the integral at θ0 and we get∫ θ0

0

(3 cos θ + 2)(1− cos θ)2ex cos θ dθ ≥ e−
2
3
x

∫ θ0

0

(3 cos θ + 2)(1− cos θ)2 dθ,

since the integrand is nonnegative and x ≥ 0. Similarly when the integrand is
nonpositive∫ π

θ0

(3 cos θ + 2)(1− cos θ)2ex cos θ dθ ≥ e−
2
3
x

∫ π

θ0

(3 cos θ + 2)(1− cos θ)2 dθ.

And finally :∫ π

0

(3 cos θ + 2)(1− cos θ)2ex cos θ dθ ≥ e−
2
3
x

∫ π

0

(3 cos θ + 2)(1− cos θ)2 dθ = 0.

We find similarly that f(x) ≤ 0 when x ≤ 0.
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And therefore, we can deduce the sign of the eigenvalue: 1− α
4c1(α)

〈
(a11−a22)2

〉
MD

> 0

when α > 0 and 1− α
4c1(α)

〈
(a11 − a22)2

〉
MD

< 0 when α < 0.

Case 3. Equilibria of type (c) : D = α diag(1, 0, 0)

For D = α diag(1, 0, 0) with α = ρc2(α), using the parametrisation (7.5), it holds that :∫
SO3(R)

a22e
α
2
a11 dA =

∫
SO3(R)

a22e
α
2
a33 dA

=
1

8π2

∫ 2π

θ=0

∫ π

φ2=0

e
α
2

cosφ2 sinφ2

∫ 2π

φ1=0

(− sin θ sinφ1 + cos θ cosφ1 cosφ2)dφ1dφ2dθ

= 0.

where the first equality comes from the change of variable A 7→ P 13A(P 13)T. Similarly,

〈a22〉MD
= 〈a33〉MD

= 〈a11a22〉MD
= 〈a11a33〉MD

= 0.

The Hessian matrix is therefore equal to :

I3 −
1

2
ρ

 〈a
2
11〉MD

− 〈a11〉2MD
0 0

0 〈a2
22〉MD

〈a22a33〉MD

0 〈a22a33〉MD
〈a2

33〉MD

 ,

and since 〈a2
22〉MD

= 〈a2
33〉MD

as it can be seen with the change of variable A 7→ P 23A(P 23)T,
its eigenvalues are :

1− 1

2
ρ
(
〈a2

11〉MD
− 〈a11〉2MD

)
,

with eigenvector (1, 0, 0)T,

1− 1

2
ρ
(
〈a2

22〉MD
− 〈a22a33〉MD

)
,

with eigenvector (0, 1,−1)T and

1− 1

2
ρ
(
〈a2

22〉MD
+ 〈a22a33〉MD

)
,

with eigenvector (0, 1, 1)T. We have as before :

c′2(α) =
1

2

(
〈a2

11〉MD
− 〈a11〉2MD

)
,
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so the first eigenvalue can be rewritten

1− 1

2
ρ
(
〈a2

11〉MD
− 〈a11〉2MD

)
= 1− αc′2(α)

c2(α)
= c2(α)

(
id

c2

)′
(α) > 0,

where we have used Proposition 7.3.16 to determine the sign. The two other eigenvalues
are equal to:

1− 1

4
ρ
〈

(a22 ± a33)2
〉
MD

Using the change of variable A 7→ P 13A(P 13)T and the parametrisation (7.5), one can see
that : ∫

SO3(R)

(a22 ± a33)2e
α
2
a11 dA =

∫
SO3(R)

(a22 ± a11)2e
α
2
a33 dA

=
1

8π2

∫ 2π

θ=0

∫ 2π

φ1=0

cos2(φ1 ± θ)
∫ π

φ2=0

sinφ2 (1± cosφ2)2e
α
2

cosφ2 dφ2 dφ1 dθ

so that : 〈
(a22 ± a33)2

〉
MD

=
1

2

[
(1± cosφ)2

]
α

where [·]α is defined in Proposition 7.3.1. Using the relation ρ = α
c2(α)

= 4
[sin2 φ]α

(see
Formula (7.21)), the two eigenvalues are equal to:

1− 1

2

∫ π
0

sinφ(1± cosφ)2e
α
2

cosφ dφ∫ π
0

sin3 φe
α
2

cosφ dφ
.

With the same technique used in the previous paragraph (Lemma 7.4.16) it is possible
to show that the eigenvalue 1 − 1

4
ρ
〈

(a22 − a33)
2
〉
MD

is nonpositive when α < 0 and

nonnegative when α > 0. The contrary holds for the other eigenvalue (nonnegative when
α < 0 and nonpositive when α > 0). Finally the signs of these two eigenvalues are always
(+−).

The conclusion of the proof follows from the study of the roots of Equations (7.15)
and (7.16) provided by Corollary 7.3.17 and depicted in Figure 7.3.1.

Remark 7.4.17. The above calculations are similar to the computation of the equilibria
and their stability of

Ψ : D ∈ diag(T ) 7→ F [MD]

where F is the free-energy (7.28). In particular, it can be shown that the equilibria of Ψ

and their stability are the same as the ones described in Theorem 7.4.14. In particular,
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since (7.28) is also a free energy in the Fokker-Planck case, this analysis shows the instability
of equilibria of the Fokker-Planck of the form ρMD when D is of one of the unstable
equilibria of (7.24a) described in Theorem 7.4.14. This technique is similar to the one
which was used in [335] in the case of 3D polymers. However, it does not provide global or
local convergence of the solution of the Fokker-Planck equation towards an equilibrium.
The problem has been recently tackled in [166] where a complete study of the phase
transition phenomena in the body-orientation Fokker-Planck case can be found.

We can finally prove Theorem 7.4.2 :

Proof (of Theorem 7.4.2). Thanks to the Duhamel’s formula (7.22), the asymptotic be-
haviour of f(t) as t → +∞ is given by the asymptotic behaviour of Jf(t). Thanks to
Proposition 7.4.5 and Corollary 7.4.7, we only have to study the asymptotic behaviour
of the solution of the ODE (7.24a) where the initial condition is the diagonal part of a
SSVD of Jf0 . Since this equation has a gradient-flow structure (7.27a), by analyticity
of the potential and boundedness of the trajectories, Łojasiewicz inequality [190, 242]
implies that the solution D(t) converges as t → +∞ towards an equilibrium Deq and
consequently Jf(t) → PDeqQ := Jeq. Moreover the equilibrium Deq is a stable equilibrium
provided that D0 does not belong to the stable manifold of an unstable equilibrium. Since
these manifolds have dimension at most 2, the union of these manifolds, called Nρ is of
zero measure and there is convergence towards a stable equilibrium for all D0 /∈ Nρ. In
this case, since all the equilibria are hyperbolic, the Hartman-Grobman theorem [278,
Section 2.8] ensures that the convergence is locally exponentially fast in the sense that
there exist constants δ, λ, C > 0 such that if ‖Jf0 − Jeq‖ ≤ δ then for all t > 0,

‖Jf(t) − Jeq‖ ≤ Ce−λt. (7.31)

Let f eq = ρMJeq . It follows from Duhamel’s formula (7.22) that for all A ∈ SO3(R) :

|f(t, A)− f eq(A)| ≤ e−t|f0(A)− f eq(A)|+ ρe−t
∫ t

0

es|MJf(s)
(A)−MJeq(A)|ds. (7.32)

Since SO3(R) is compact and Jf(t) is bounded uniformly in t, there exists a constant L > 0

such that for all t > 0, the following Lipschitz bound holds:

∀A ∈ SO3(R), |MJf(t)
(A)−MJeq(A)| ≤ L‖Jf(t) − Jeq‖. (7.33)

Reporting (7.33) into (7.32) and using (7.31), the first point of Theorem 7.4.2 follows with
constants K = CL/|1− λ| and µ = min(1, λ) when λ 6= 1 and K = CL and µ = 1− ε for
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any ε > 0 when λ = 1.
The stability of the equilibria of the dynamical system (7.24a) is given in Theorem 7.4.14.

Finally the conclusions of points 2.(ii) and 2.(iii) follow from the fact that the diagonal
parts of the SSVD of the equilibria of type (b) with parameters α+ and α1 are respectively
α+I3 and α1I3.

Remark 7.4.18. The main advantage of the choice of the BGK operator clearly appears
in this theorem: the infinite dimensional PDE can be reduced to a three-dimensional
dynamical system for which there is a local and global convergence theory. In particular,
we could push further the analysis and describe the zero-measure set Nρ. When ρ 6= ρ∗

and ρ 6= ρc, all the equilibria are hyperbolic and the set Nρ is an intersection of stable
manifolds of unstable equilibria [278, Section 2.7]. Using the stable manifold theorem, the
proof of Theorem 7.4.14 and Proposition 7.4.6, it is possible to characterise precisely the
behaviour of the system for each initial condition in Nρ. Some details are given in [111,
Section 5.3]. In the critical case ρ = ρ∗ or ρ = ρc, the equilibria are not hyperbolic and
the behaviour is ruled by the center manifold theory.

7.5 Macroscopic limit for the stable equilibria

7.5.1 Scaling of the spatially inhomogeneous BGK equation

We now go back to the spatially inhomogeneous model (2.10) (still with c0 = 1, ν = 1 and
M[f ] = Jf ). We want to investigate (at least formally) the hydrodynamic models derived
from the BGK equation (2.10). To do so, as in [114] and Section 1.4, we introduce the
scaling t′ = εt and x′ = εx for ε > 0 and we define f ε(t′, x′, A) := f(t, x, A). After this
change of variables in (2.10) and dropping the primes, we see that f ε satisfies the following
equation:

∂tf
ε + (Ae1 · ∇x)f

ε =
1

ε

(
ρfεMJfε − f ε

)
. (7.34)

We want to investigate the macroscopic limit ε → 0 with the assumption that f ε

converges towards a stable equilibrium. Thanks to the results of the last section, we will
assume that f ε → ρMαA where ρ = ρ(t, x), α = ρc1(α), α ∈ R+ and A = A(t, x) ∈M3(R)

(with a notion of convergence as strong as needed). Since the equilibrium is assumed to
be stable there are two cases: either A ∈ SO3(R) (and therefore ρ > ρ∗) or A = 0 that is
to say f ε is uniform in the body-orientation variable and converges towards ρ = ρ(t, x)

(and therefore ρ < ρc). For a given time t ∈ R+, we will say that x ∈ R3 belongs to a
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disordered region when A(t, x) = 0. Otherwise, when A(t, x) ∈ SO3(R), we will say that
x ∈ R3 belongs to an ordered region.

The purpose of the two next sections is to write at least formally the hydrodynamic
equations satisfied by ρ ≡ ρ(t, x) and A ≡ A(t, x). First notice that integrating (7.34) over
SO3(R) leads to the conservation law:

∂tρ
ε +∇x · j[f ε] = 0, (7.35)

where ρε ≡ ρfε and

j[f ε] :=

∫
SO3(R)

Ae1f
ε dA ≡ Jfεe1.

The macroscopic model then depends on the region considered.

1. In a disordered region, j[f ε]→ 0 and assuming that the convergence is sufficiently
strong, we get that ∂tρ = 0. To obtain more information we will look at the next
order in the Chapman-Enskog expansion (Section 7.5.2).

2. In an ordered region, j[f ε]→ αAe1 where α = ρc1(α) and therefore, assuming that
the convergence is strong enough:

∂tρ+∇x · (αAe1) = 0.

However due to the lack of conserved quantities, we will need specific tools to write
an equation satisfied by A = A(t, x) in order to obtain a closed system of equations
on (ρ,A). This is the purpose of Section 7.5.3.

7.5.2 Diffusion model in a disordered region

We consider a region where f ε converges as ε → 0 to a density ρ(t, x) uniform in the
body-attitude variable. The following proposition gives the diffusion model obtained by
looking at the next order in the Chapman-Enskog expansion.

Proposition 7.5.1 (Formal). In a disordered region, the density ρε satisfies formally at
first order the following diffusion equation:

∂tρ
ε = ε∇x ·

(
1
3
∇xρ

ε

1− ρε

ρc

)
, ρc = 6. (7.36)
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Proof. We follow the same calculations as in [113] : we write f ε = ρε + εf ε1 (where f ε1 is
defined by this relation) and notice that:

Jfε = εJfε1 and MJfε (A) = 1 + εJfε1 · A+O(ε2).

Inserting this in (7.34), multiplying by A and integrating over SO3(R) leads to:

Jfε1 = ρε
∫

SO3(R)

(Jfε1 · A)A dA−
∫

SO3(R)

Ae1 · ∇xρ
εA dA+O(ε). (7.37)

Using Lemma 7.2.4, it holds that∫
SO3(R)

(Jfε1 · A)A dA =
1

6
Jfε1 . (7.38)

To compute the second term, we note that Ae1 ·∇xρ
ε = 2A·Rρε where Rρε is the matrix, the

first column of which is equal to ∇xρ
ε and the others are equal to zero. Using Lemma 7.2.4

we obtain ∫
SO3(R)

Ae1 · ∇xρ
εA dA =

1

3
Rρε . (7.39)

By multiplying (7.37) by e1, it follows from (7.38) and (7.39) that :(
1− ρε

ρc

)
Jfε1 e1 = −1

3
∇xρ

ε +O(ε),

which gives the result by inserting this in (7.35).

Remark 7.5.2. This analysis does not depend on the dimension. In SOn(R) the same
formal result holds:

∂tρ
ε = ε∇x ·

(
1
n
∇xρ

ε

1− ρε

ρc

)
, ρc = 2n.

7.5.3 Self-organised hydrodynamics in an ordered region

In the following, for a given density ρ ∈ R+, α(ρ) denotes the maximal nonnegative root
of α = ρc1(α). We are going to prove the following theorem.

Theorem 7.5.3 (Formal). We suppose that f ε → ρ(x, t)MJ(t,x) (as strongly as necessary)
as ε → 0 where J(x, t) = α(ρ(t, x))A(t, x) and A(t, x) ∈ SO3(R). Then ρ and A satisfy
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the following system of partial differential equations:

∂tρ+∇x · (ρc1(α(ρ))Ae1) = 0, (7.40a)

ρ
(
∂tA + c̃2(Ae1 · ∇x)A

)
+ c̃3[Ae1 ×∇xρ]×A + c4ρ[−r× Ae1 + δAe1]×A = 0. (7.40b)

where c̃2, c̃3, c4 are functions of ρ to be defined later and δ and r are the “divergence” and
“rotational” operators defined in [114] : if A(x) = exp([b(x)]×)A(x0) with b smooth around
the point x0 and b(x0) = 0, then

δ(x0) := ∇x · b(x)|x=x0 , r(x0) := ∇x × b(x)|x=x0 , (7.41)

where ∇x× is the curl operator.

The first equation (7.40a) is the conservation law (7.35) and the goal is to obtain the
equation (7.40b) for A = A(t, x). However, here and contrary to the classical gas dynamics,
the total momentum is not conserved:

d

dt

∫
SO3(R)

fA dA 6= 0

and we therefore cannot deduce easily a closed system of equations. This lack of conserved
quantities is specific to self-propelled particle models such as the Vicsek model. The main
tool to tackle the problem will be the Generalised Collision Invariants (GCI) method
introduced in [122] for the study of the hydrodynamic limit of the continuum Vicsek model.
This method can be adapted to the present context as follows.

For a given J ∈M3(R), we define first the linear collision operator:

LJ(f) = ρfMJ − f,

so that QBGK(f) = LJf (f). If J ∈ M3(R) is not singular (i.e. det J 6= 0) then let A :=

PSO3(R)(J) ∈ SO3(R) be the projection of J on SO3(R). Note that when det J > 0 then A
is simply the orthogonal part of the polar decomposition of J (see[116, Proposition 7]).
The set of GCI associated to J is defined as:

CJ :=

{
ψ : SO3(R)→ R,

∫
SO3(R)

LJ(f)ψ dA = 0 for all f such that PTA(Jf ) = 0

}
.

(7.42)
The goal is to obtain an explicit definition of the set CJ . We first observe that the condition
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ψ ∈ CJ is equivalent to:∫
SO3(R)

f(〈ψ〉MJ
− ψ) dA = 0 for all f such that PTA(Jf ) = 0.

Therefore, following the ideas of the proof of [114, Proposition 4.3], we have:

ψ ∈ CJ ⇐⇒ ∃B ∈ TA, 〈ψ〉MJ
− ψ(A) = B · A,

that is to say:

ψ ∈ CJ ⇐⇒ ∃B ∈ TA, ∃C ∈ R, ψ(A) = −B · A+ C,

or equivalently since B ∈ TA means that there exists P ∈ A3(R) such that B = AP :

CJ = Span

1,
⋃

P∈A3(R)

ψA
P

 ,

where
ψA
P (A) = −P · (ATA).

We are now ready to give formal proof of Theorem 7.5.3.

Proof (of Theorem 7.5.3). For any P ∈ A3(R), by Definition (7.42) of the GCI, we get by
multiplying the equation (7.34) by ψAε

P :∫
SO3(R)

(∂tf
ε + Ae1 · ∇xf

ε)P · ((Aε)TA) dA = 0, (7.43)

where Aε = PSO3(R)(Jfε). Note that if f ε → ρMJ with det(J) > 0, we can also assume
det(Jfε) > 0 for ε sufficiently small and Aε ∈ SO3(R) can be constructed using the polar
decomposition as in [114].

Then, taking formally the limit ε→ 0 in (7.43) and since it is true for all P ∈ A3(R),
we obtain:

X :=

∫
SO3(R)

(
∂t(ρMαA) + Ae1 · ∇x(ρMαA)

)
(ATA− ATA) dA = 0. (7.44)
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We have:

∂t(MαA) =
(
∂t(αA) · A− 〈∂t(αA) · A〉MαA

)
MαA

= α′∂tρ(A · A− 〈A · A〉MαA)MαA + α∂tA · (A− 〈A〉MαA)MαA,

where α′ denotes the derivative of ρ 7→ α(ρ) with respect to ρ and similarly for ∂i(MαA).
With this we compute the term:

(∂t + Ae1 · ∇x)(ρMαA) = MαA(A)

(
1 + ρα′

(
A · A− 3

2
c1(α)

))
(∂t + Ae1 · ∇x)ρ

+MαA(A)ραA · (∂t + Ae1 · ∇x)A,

where we have used that:
〈A · A〉MαA =

3

2
c1(α),

and
A · (∂t + Ae1 · ∇x)A = 0.

Most of the terms that appear in X are computed in [114]. Precisely,

X = X1 +X2 +X3 +X4 + Y (7.45)

where X1, X2, X3 and X4 are computed in [114] :

X1 :=

∫
SO3(R)

∂tρMαA(A)(ATA− ATA) dA = 0,

X2 :=

∫
SO3(R)

αρ(A · ∂tA)MαA(A)(ATA− ATA) dA = C2ραAT∂tA,

X3 :=

∫
SO3(R)

Ae1 · ∇xρMαA(A)(ATA− ATA) dA = C3[e1 × AT∇xρ]×,

X4 :=

∫
SO3(R)

ρα
(
A · (Ae1 · ∇x)A

)
MαA(A)(ATA− ATA) dA

= ρα(C4[Le1]× + C5[LTe1 + Tr(L)e1]×),

where the coefficients

C2 = C3 :=
2

3
{sin2 θ}α, C4 :=

2

15
{sin2 θ(1 + 4 cos θ)}α, C5 :=

2

15
{sin2 θ(1− cos θ)}α,
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and the matrix
L := ATDx(A)A,

are the same as in [114]. The matrix Dx(A) ∈M3(R) is defined as the unique matrix such
that for all w ∈ R3, and smooth functions A : R3 → SO3(R),

(w · ∇x)A = [Dx(A)w]×A

(see [114, Section 4.5]). Note that C3 = C2 since the noise and alignement parameters
which were denoted by ν and d in [114] have been taken equal to 1 here. Note also that
these coefficients are functions of ρ (through α only). The term Y is an additional term
which appears here due to the presence of the parameter α = α(ρ) which is a function
of ρ. It depends also on the derivative α′ of α :

Y := ρα′
∫

SO3(R)

(ATA− ATA)MαA(A)

(
A · A− 3

2
c1(α)

)
(∂t + Ae1 · ∇x)ρ dA.

All the terms that involve the time derivative of ρ are equal to zero since ∂tρ does not
depend on A and with the change of variable A′ = AATA which has unit jacobian, it holds
that A′ · A = A · A and therefore∫

SO3(R)

(ATA− ATA)MαA(A)

(
A · A− 3

2
c1(α)

)
dA

= −
∫

SO3(R)

(ATA′ − A′TA)MαA(A′)

(
A′ · A− 3

2
c1(α)

)
dA′ = 0.

We thus have:
Y = Y1 + Y2,

where
Y1 := ρα′

∫
SO3(R)

(A · A)(Ae1 · ∇x)ρ (ATA− ATA)MαA(A) dA,

and
Y2 :=

3

2
c1(α)ρα′

∫
SO3(R)

(Ae1 · ∇x)ρ (ATA− ATA)MαA(A) dA.

With the change of variable A 7→ ATA these terms become

Y1 = ρα′
∫

SO3(R)

(ABe1 · ∇xρ)(B −BT)(B · I3)MαI3(B) dB,
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Y2 :=
3

2
c1(α)ρα′

∫
SO3(R)

(ABe1 · ∇xρ)(B −BT)MαI3(B) dB,

and they can be computed using the same techniques as in [114] or lemma 7.2.5 in the
appendix. More precisely, we can write

ABe1 · ∇xρ = B ·R1,ρ,

where R1,ρ is the matrix, the first column of which is equal to 2AT∇xρ and the others are
all equal to zero. It satisfies:

R1,ρ −RT
1,ρ

2
= [e1 × AT∇xρ]×.

By the change of variable B 7→ BT, we have

Y1 = ρα′
∫

SO3(R)

(B ·R1,ρ)(B −BT)(B · I3)MαI3(B) dB,

= ρα′
∫

SO3(R)

A · (R1,ρ −RT
1,ρ)A(A · I3)MαI3(A) dA.

This integral is of the form (7.46) where

g(A) := A · I3MαI3(A)

is invariant by transposition and conjugation and

J := R1,ρ −RT
1,ρ

is an antisymmetric matrix. From (7.48) and (7.49) we get

Y1 = ραµ(R1,ρ −RT
1,ρ)

with
µ :=

1

8

∫
SO3(R)

(a21 − a12)2 Tr(A)MαI3(A) dA.

The first term Y1 can therefore be written:

Y1 = 2µρα′[e1 × AT∇xρ]×,

227



and using Rodrigues’ formula (7.2) we obtain:

2µ =
1

3

{
(1 + 2 cos θ) sin2(θ)

}
α

where {·}α has been defined in Proposition 7.3.1. Similarly the second term Y2 can be
written:

Y2 =
3

2
c1(α)C3ρα

′[e1 × AT∇xρ]×,

where the coefficient C3 is the same as in [114] :

C3 =
2

3
{sin2 θ}α = C2.

Finally, we obtain:

Y = ρα′
(

3

2
c1(α)C3 +

1

3

{
(1 + 2 cos θ) sin2(θ)

}
α

)
[e1 × AT∇xρ]×.

Putting all the terms together, we can conclude as in [114]. First we notice that:

Tr(L) = δ, [ALTe1]× = [(Dx(A)− [r]×)Ae1]×, [ALe1]×A =
(
Ae1 · ∇x

)
A.

Therefore we obtain by multiplying (7.45) by A and dividing by αC2 :

ρ(∂tA + c2(Ae1 · ∇x)A) + c̃3[Ae1 ×∇xρ]×A + c4ρ[−r× Ae1 + δAe1]×A = 0,

where the coefficients

c̃2 :=
C4 + C5

C2

=
1

5

{sin2 θ(2 + 3 cos θ)}α
{sin2 θ}α

and c4 :=
C5

C2

=
1

5

{sin2 θ(1− cos θ)}α
{sin2 θ}α

are respectively equal to the coefficients c2 and c4 in [114] and the coefficient c3 in [114]
(which is equal to 1) becomes:

c̃3 =
1

α
+
ρα′

α

3

2
c1(α) +

1

2

{
(1 + 2 cos θ) sin2 θ

}
α

{sin2 θ}α

 .
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7.6 Conclusion and perspectives

In this chapter, we have presented an analysis at the kinetic level of the body-attitude
coordination level. In the spatially homogeneous case, we have drawn a parallel between
this Vicsek-type model and the models of nematic alignment of polymers. We then have
deduced the equilibria of the system and have shown a phase transition phenomenon
triggered by the density of agents. Thanks to a gradient-flow structure specific to the BGK
equation we have been able to describe the asymptotic behaviour of the system. Finally,
we have derived the macroscopic models (SOHB) in the spatially inhomogeneous case.

This model and its analysis raise many open questions. At the kinetic level, research
perspectives include the following:

1. it would be interesting to quantify the time that takes a solution to reach the basin
of attraction of a stable equilibria. This question has been addressed recently for
the Kuramoto model in [261].

2. Our study relies on the dimension 3. The complete description of the equilibria of
the BGK (or the Fokker-Planck) operator in any dimension and their stability is
still an open question. Note however that the derivation of the macroscopic model
in any dimension is investigated in Chapter 9.

3. The space-inhomogeneous case, not considered here, is much more difficult to tackle
due to the transport operator which prevents the reduction to a gradient-flow (in
finite dimension for the BGK operator and in infinite dimension for the Fokker-Planck
operator). This situation is not specific to the body-orientation model presented here
and the question is largely open even in the Vicsek case (see the conclusion of [113]).
Numerical simulations of the individual-based model suggest that clusterisation
phenomena appear: the space can be decomposed in large-density regions (the
clusters) and low-density regions. Inside a cluster, flocking is observed which is
consistent with the fact that it is the only stable equilibrium in large density regions.
Between the clusters, a diffusive behaviour is observed, again it seems consistent
with the analysis in the low-density (homogenous) case presented in this article. The
dynamics of the clusters (which can be seen as a kind of free-boundary problem)
remains an open problem.
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Appendix

7.A Quaternions and rotations

This appendix is devoted to the proof of Proposition 7.3.15. We also give additional results
about quaternions. The following lemma gives a link between quaternions and the theory
of Q-tensors.

Lemma 7.A.1. Let S0
4 (R) be the space of symmetric 4×4 trace free matrices. If Q ∈ S0

4 (R)

has two eigenvalues with eigenspaces of dimensions 1 and 3, then Q can be written

Q = α

(
q ⊗ q − 1

4
I4

)
,

for a given unit quaternion q seen as a vector of R4. A matrix of this form is called a
uniaxial Q-tensor. When α = 1 we will say that Q is a normalised uniaxial Q-tensor.

Proof. Let Q ∈ S0
4 (R) such that Q has two eigenvalues with eigenspaces of dimensions 1

and 3. By the spectral theorem, there exists P ∈ O3(R) such that for a given α > 0 :

Q =
α

4
P diag(3,−1,−1,−1)PT = αP diag(1, 0, 0, 0)PT − α

4
I4,

and the result follows by taking q equals to the first column of P .

Proof of Proposition 7.3.15. 1. The group isomorphism Φ is explicitly computed in [293].
In particular, let q ∈ S3/± 1. The matrix A = Φ(q) is defined for all purely imaginary
quaternion u ∈ H by A[u] = [quq∗] where (u1, u2, u3)

T =: [u] ∈ R3 is the vector
associated to u = u1i+ u2j + u3k. More explicitly, if q = x+ iy + zj + tk, then

A =

 x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)

2(xt+ yz) x2 − y2 + z2 − t2 2(zt− xy)

2(yt− xz) 2(xy + zt) x2 − y2 − z2 + t2

 .
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Note that we have identified q ∈ H and its equivalence class in S3/± 1 and that Φ is
well defined since only quadratic expressions are involved. The fact that this group
isomorphism is an isometry follows from [116, Proposition A.3] and [114, Lemma 4.2].

2. The expression

J · A =
1

2
Tr(Φ(q)TJ)

is a quadratic form for q. We take Q the matrix associated to this quadratic form. For
J = (Jij)i,j, using the explicit form of A = Φ(q) with q = x+ yi+ zj + tk we obtain:

Q =
1

4


J11 + J22 + J33 J32 − J23 J13 − J31 J21 − J12

J32 − J23 J11 − J22 − J33 J12 + J21 J13 + J31

J13 − J31 J12 + J21 −J11 + J22 − J33 J23 + J32

J21 − J12 J13 + J31 J23 + J32 −J11 − J22 + J33

 .

This is an isomorphism since dimM3(R) = dimS0
4 (R) and J can be obtained from Q

similarly. Moreover, since the bilinear matrix associated to a quadratic form is uniquely
defined, if Q ∈ S0

4 (R) is such that 1
2
J ·Φ(q) = q ·Qq for all q ∈ S3/± 1, then Q = φ(J).

3. To prove the third point, we note that a unit quaternion can be seen as a rotation in R3

in a more geometrical way ([116, Section 5.1]): for θ ∈ [0, π] and n = (n1, n2, n3)T ∈ S2,
let us define the unit quaternion q by

q = cos
θ

2
+ sin

θ

2
(n1i+ n2j + n3k),

The unit quaternion q represents the rotation of angle θ ∈ [0, π] and axis n ∈ S2 in the
sense that if A(θ,n) ∈ SO3(R) denotes the matrix associated to the rotation of angle
θ ∈ [0, π] around the axis n ∈ S2 then Φ(q) = A(θ,n). Note that q and −q represent
the same rotation so Φ(q) is well defined by identifying q with its equivalence class in
S3/± 1.

In R3 the composition of two rotations of respective angles and axis (θ,n) ∈ [0, π]× S2

and (θ′,n′) ∈ [0, π]× S2 is itself a rotation: we have A(θ,n)A(θ′,n′) = A(θ̂, n̂) where
the angle θ̂ ∈ [0, π] is defined by

cos
θ̂

2
= cos

θ

2
cos

θ′

2
− n · n′ sin θ

2
sin

θ′

2
.

Note that cos(θ̂/2) = q · q̄′ where q and q′ are the associated unit quaternions seen as

231



vectors of dimension 4. In particular the dot product of two rotations matrices is

A(θ,n) · A(θ′,n′) =
1

2
Tr
(
A(θ,n)A(θ′,−n′)

)
=

1

2
(2 cos θ̃ + 1)

where

cos
θ̃

2
= cos

θ

2
cos

θ′

2
+ n · n′ sin θ

2
sin

θ′

2
.

Besides, for the quaternions q and q′ respectively associated to the rotations A(θ,n)

and A(θ′,n′), we have:

q′ ·Qq′ = (q · q′)2 − 1

4
= cos2 θ̃

2
− 1

4
=

1

4
(2 cos θ̃ + 1),

where Q is the normalised uniaxial Q-tensor:

Q = q ⊗ q − 1

4
I4.

Finally 1
2
A(θ,n) · A(θ′,n′) = q′ ·Qq′ and we obtain thanks to the previous point:

φ
(
A(θ,n)

)
= Q,

that is to say: if J ∈ SO3(R) then φ(J) is a normalised uniaxial Q-tensor.

4. If D = diag(d1, d2, d3) then using the explicit form of φ given in the second point:

φ(D) =
1

4


d1 + d2 + d3

d1 − d2 − d3

−d1 + d2 − d3

−d1 − d2 + d3

 ,

and if Q = diag(s1, s2, s3, s4) with s1 + s2 + s3 + s4 = 0 then

φ−1(Q) = 2

 s1 + s2

s1 + s3

s1 + s4

 .
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7.B More about SOn(R)

Lemma 7.B.1. For all n ≥ 3 :

Span(SOn(R)) =Mn(R).

Proof. First we prove that the diagonal matrices form a subset of Span(SOn(R)): it is
enough to show that

D :=


1

0
. . .

0

 ∈ Span(SOn(R))

(the other diagonal matrices with only one nonzero coefficient can be obtained in a similar
way). When n is odd:

2D = In +


1

−1
. . .

−1


and both matrices in the sum are in SOn(R). When n ≥ 4 is even,(

04

In−4

)
=

1

2
In +

1

2

(
−I4

In−4

)
∈ Span(SOn(R)),

thus:
1

−1

−1

1

0n−4

 =


1

−1

−1

1

In−4

−
(

04

In−4

)
∈ Span(SOn(R)),
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and similarly:

4D =


1

1

1

1

0n−4

+


1

−1

−1

1

0n−4

+


1

1

−1

−1

0n−4



+


1

−1

1

−1

0n−4

 ∈ Span(SOn(R)).

The SSVD (Definition 7.2.7) gives the result for any matrix.

Corollary 7.B.2. For n ≥ 3, a matrix that commutes with any matrix of SOn(R) is of
the form λIn.

We can now prove Lemma 7.2.4 and its generalisation Lemma 7.2.5.

Proof (of Lemma 7.2.4). The linear map Φ :Mn(R)→Mn(R) defined by

Φ(J) :=

∫
SOn(R)

(J · A)A dA,

satisfies for all P ∈ SOn(R),

Φ(P ) = PΦ(In) = Φ(In)P,

which by Corollary 7.B.2 means that

Φ(In) = λIn.

Therefore, Φ(P ) = λP for any P ∈ SOn(R) and the same is true for any matrix J ∈Mn(R)

by Lemma 7.B.1. To compute λ, notice that for the matrix ei ⊗ ej :

1

2

∫
SOn(R)

(ei · Aej)2 dA = λ.
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Summing this equality for all i, j gives:

n

2
= λn2,

and λ = 1/2n.

Proof (of Lemma 7.2.5). Let us define the linear map ψ :Mn(R) −→Mn(R) by

ψ(J) :=

∫
SOn(R)

(J · A)Ag(A) dA. (7.46)

1. We first note that ψ is self-adjoint for the dot product A ·B = 1
2

Tr(ATB): for any
K ∈Mn(R),

ψ(J) ·K =

∫
SOn(R)

(J · A)(K · A) g(A) dA = J · ψ(K).

2. We prove that Span(In) is a stable subspace for ψ : for any P ∈ SOn(R) we have:

Pψ(In)PT =

∫
SOn(R)

(In · A)PAPT g(A) dA = ψ(In),

and we conclude with Corollary 7.B.2 that ψ(In) = αIn with:

α =
2

n
In · ψ(In) =

1

2n

∫
SOn(R)

Tr(A)2g(A) dA.

3. Since ψ is a self-adjoint operator, the orthogonal subspace Span(In)⊥ is also a
stable subspace. Moreover, using the change of variable A 7→ AT, we see that
ψ(JT) = ψ(J)T and we have the decomposition:

Span(In)⊥ = S0
n(R)

⊥
⊕An(R),

where S0
n(R) andAn(R) are respectively the subspace of trace free symmetric matrices

and the subspace of antisymmetric matrices. They are both stable subspaces.

4. We prove now that ψ : S0
n(R) → S0

n(R) is a uniform scaling. By the spectral
theorem, every matrix J ∈ S0

n(R) can be written

J = PDPT,
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where P ∈ SOn(R) and D is diagonal. Since

ψ(PDPT) = Pψ(D)PT,

it is enough to prove that there exists λ ∈ R such that for all diagonal matrices D,
ψ(D) = λD. For D = diag(d1, . . . , dn), we have:

ψ(D) =
1

2

n∑
k=1

dk

∫
SOn(R)

akkAg(A) dA.

Now, if i 6= j, let Dik ∈ SOn(R) be the diagonal matrix such that all the coefficients
are equal to 1 except Dik

ii and Dik
kk which are equal to −1. Then the change of

variable A 7→ DikA(Dik)T gives∫
SOn(R)

akkaij g(A) dA = −
∫

SOn(R)

akk aij g(A) dA = 0,

which proves that ψ(D) is diagonal and the i-th coefficient of ψ(D) is:

ψ(D)ii =
1

2

n∑
k=1

dk

∫
SOn(R)

akk aii g(A) dA.

Using the fact that Tr(D) = 0 and that all the
∫

SOn(R)
aii akk g(A) dA are equal for

i 6= k (by using conjugation by the matrices P ij, i, j 6= k, see Definition 7.2.2), we
obtain:

ψ(D)ii =
1

2
di

∫
SOn(R)

(a2
11 − a11 a22) g(A) dA,

and we conclude that for all J ∈ S0
n(R) :

ψ(J) = λJ,

with

λ =
1

2

∫
SOn(R)

(a2
11 − a11 a22) g(A) dA =

1

4

∫
SOn(R)

(a11 − a22)2 g(A) dA.

5. We prove similarly that ψ : An(R)→ An(R) is a uniform scaling. Every J ∈ An(R)

can be written
J = PCPT,
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where

C =



C1

C3

. . .

C2p−1

0
. . .

0


(7.47)

is a block diagonal matrix with blocks

Ci =

(
0 −ci
ci 0

)
, ci ∈ R∗, i ∈ {1, 3, 5, . . . , 2p− 1}

so that,
ψ(J) = ψ(PCPT) = Pψ(C)PT,

and

ψ(C) =
1

2

p∑
k=1

c2k−1

∫
SOn(R)

(a2k,2k−1 − a2k−1,2k)Ag(A) dA.

When n ≥ 3, by using conjugation by the matrices D2j−1,2j for j ∈ {1, . . . , bn/2c}
(Definition 7.2.2) we can see that for each k ∈ {1, . . . , p}, the matrix

Mk :=

∫
SOn(R)

(a2k,2k−1 − a2k−1,2k)Ag(A) dA

is of the form (7.47). Moreover, when n ≥ 5, by using conjugation by matrices
D2j−1,2`−1 for j 6= `, j, ` ∈ {1, . . . , bn/2c} and j, ` 6= k, we can see that all the
diagonal blocks of Mk are equal to zero except the one in position 2k − 1. When
n = 3 there is only one block in position 1 so the result holds but when n = 4 such j
and ` do not exist. In conclusion, when n 6= 4, ψ(C) is of the form (7.47) and each
diagonal block C ′2k−1 of ψ(C) is written

C ′2k−1 = µ2k−1C2k−1

with

µ2k−1 :=

∫
SOn(R)

(a2k,2k−1 − a2k−1,2k)a2k,2k−1g(A) dA =

∫
SOn(R)

(a21 − a12)a21g(A) dA,
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where this equality follows by using conjugation by “block-permutation matrices":

Qk :=



I2

. . .

I2

02 −I2

I2 02

I2

. . .

I2

1
. . .

1



,

where the first zero on the diagonal is in position 2k − 1. Therefore,

ψ(C) = µC, (7.48)

with

µ =
1

2

∫
SOn(R)

(a21 − a12)a21 g(A) dA =
1

4

∫
SOn(R)

(a21 − a12)2 g(A) dA. (7.49)

6. Finally, for J ∈ Span(In)⊥, writing

J =
J + JT

2
+
J − JT

2
,

we have:
ψ(J) = βJ + γJT,

with

β =
1

2
(λ+ µ) =

1

4

∫
SOn(R)

(
(a2

11 − a11 a22) + (a21 − a12)a21

)
g(A) dA,

and

γ =
1

2
(λ− µ) =

1

4

∫
SOn(R)

(
(a2

11 − a11 a22)− (a21 − a12)a21

)
g(A) dA.

238



7. In conclusion, writing the decomposition

J =
1

n
Tr(J)In +K,

where K ∈ Span(In)⊥, we obtain

ψ(J) = aTr(J)In + bJ + cJT,

with
a =

α− β − γ
n

,

and
b = β =

1

8

∫
SOn(R)

(
(a11 − a22)2 + (a12 − a21)2

)
g(A) dA,

and
c = γ =

1

8

∫
SOn(R)

(
(a11 − a22)2 − (a12 − a21)2

)
g(A) dA.

And there are of course many other ways to write the coefficients a, b and c.

Remark 7.B.3. In dimension 4, the result still holds for symmetric matrices. For general
matrices, the result can be proved in particular cases, for instance when g is a function
of the trace, by using an explicit parametrisation of SO4(R) such as the 4-dimensional
version of (7.4). An alternative more general approach will be presented in Chapter 9 (see
Lemma 9.3.2).
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Chapter 8

Bulk topological states in the
macroscopic SOHB model

The present chapter is based on the following article co-authored with P. Degond and M. Na

[106] P. Degond, A. Diez, and M. Na. “Bulk topological states in a new collective dynamics
model”. arXiv preprint: arXiv:2101.10864 (2021).

8.1 Introduction

This chapter is devoted to the macroscopic model (2.14) associated to the body-attitude
coordination model outlined in the introduction. This model was first derived in [116]
following the methodology of [122]. All the variants of the individual based models described
in the introduction (Section 2.1.2) actually lead to structurally the same macroscopic
model, called the “Self-Organised Hydrodynamics for Body-attitude coordination” (SOHB)
model in [114]. The only difference between the different macroscopic models is the
value of the coefficients ci. When the IBM is a piecewise deterministic process, these
coefficients can be computed explicitly as shown in the previous chapter and recalled in
this chapter. For the alternative diffusion process (2.9), they depend on the solution of
a differential equation which comes from the computation of the Generalised Collision
Invariants. These differences are summarised in the review article [116] (see in particular
[116, Proposition 11]). In the previous chapter, the model was derived in a slightly more
general framework (starting from the PDMP IBM), where the concentration parameter
depends on the spatial density of agents. In this case, the coefficients ci also involve the
derivatives of the function α defined in Section 7.5.3. In this chapter we focus on the
simplest form of the coefficients which are obtained from the PDMP IBM (2.3), (2.4) when
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the target body-orientation at each jump is given by (2.7).
In this chapter, we investigate the specificity of the SOHB model among the other

collective dynamics models. In particular, we derive explicit solutions and numerically
study the long-time behaviour of the system. To do so, we rely on an efficient direct
simulation of the IBM in a macroscopic regime, namely

N � 1,
R

L
∼ c0

ν L
� 1, (8.1)

where N is the number of particles, R is the interaction radius, L is the typical macroscopic
length, c0 is the moving speed and ν is the interaction rate. On the analytical side, the
derivation of the SOHB model starting from the IBM is only “formally rigorous”. On the
one hand, the mean-field limit cannot be guaranteed in all situations, on the other hand
the derivation of the macroscopic model starting from the kinetic model is rigorous under
appropriate, possibly strong, smoothness assumptions on the involved mathematical objects.
However, despite this lack of a complete rigorous theoretical convergence framework, we
have numerically checked in this chapter that there is a quantitative agreement between
the SOHB model and the IBM in the regime (8.1). This legitimates the kinetic theory
approach and enables a numerical study of the SOHB model. Using this approach, we
have numerically explored several situations where the long-time behaviour of the system
is characterised by a transition between the different classes of solutions derived. This is a
first step towards a rigorous stability analysis of the SOHB model.

One of the guiding question of the present chapter is the topological structure of the
solutions of the SOHB model. The internal geometrical properties of the particles indeed
translate at the macroscopic level into topological properties of the solutions. It is not
clear at this point whether these properties are linked to long-time stability. However,
this is reminiscent of the notion of “topological states” introduced in the study of the
quantum Hall effect and the design of so-called “topological insulators” [270, 269]. In
collective dynamics, topological states have recently been derived under various geometrical
configurations [299, 303, 304] in the Toner and Tu model [312], which is a continuum
analog of the Vicsek model [321]. These states propagate on the boundary of the domain
(they are thus called “edge states”) and are characterised by an increased robustness against
perturbations. By comparison, the topological states derived in this chapter propagate in
the whole domain and are therefore called “bulk states”. This comes from the fact that
they are not induced by the geometry of the domain but rather by the internal geometry
of the agents.

This chapter is organised as follows. In Section 8.2, we recall the SOHB model and
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describe its specific features among other continuum collective dynamics models. Then
explicit solutions of the macroscopic model are derived in Section 8.3 and are shown to
exhibit non-trivial topology. They also serve as benchmarks to show that the IBM is an
accurate approximation of the macroscopic model in Section 8.4. But after some time,
the IBM departs from the special solutions of the macroscopic model and undergoes a
topological phase transition. The study of these phase transitions require appropriate
topological indicators which are developed in Section 8.5. Then, the topological phase
transitions are analysed numerically in Section 8.6.2. A discussion and some open questions
raised by these observations can be found in Section 8.7. Several appendices complete
this chapter and include supplementary videos (Appendix 8.A), details on the numerical
methods (Appendices 8.B and 8.C), proofs (Appendices 8.D and 8.E) and complementary
experiments (Appendix 8.F).

8.2 The macroscopic body-alignment model

8.2.1 Description of the model

For the convenience of the reader, we recall below the macroscopic model outlined in
the introduction of this thesis and derived in Section 7.5 of the previous chapter. The
unknowns in the SOHB model are the particle density ρ(t,x) and mean body-orientation
A(t,x) ∈ SO3(R) at time t and at a position denoted in this chapter by x = (x, y, z)T ∈ R3.
They satisfy the following set of equations:

∂tρ+ c1∇x · (ρAe1) = 0, (8.2a)(
∂t + c2(Ae1) · ∇x

)
A +

[
(Ae1)× (c3∇x log ρ+ c4r) + c4δAe1

]
×A = 0. (8.2b)

We recall that × denotes the cross product and we refer to formula (7.3) for the definition
of [w]× when w is a vector in R3. The quantities r and δ have intrinsic expressions in
terms of A (see (7.41)). However, in this chapter it will be more convenient to write the
rotation field A in terms of the basis vectors

Ω = Ae1, u = Ae2, v = Ae3.
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With these notations, the vector field r(t,x) ∈ R3 and the scalar field δ(t,x) ∈ R are given
by

r = (∇x · Ω) Ω + (∇x · u) u + (∇x · v) v, (8.3)

δ = [(Ω · ∇x) u] · v + [(u · ∇x)v] · Ω + [(v · ∇x)Ω] · u. (8.4)

The macroscopic model (8.2) can also be equivalently rewritten as a set of four equations
for the unknowns (ρ,Ω,u,v)

∂tρ+∇x · (c1ρΩ) = 0 (8.5a)

(∂t + c2(Ω · ∇x))Ω + PΩ⊥(c3∇x log ρ+ c4r) = 0, (8.5b)

(∂t + c2(Ω · ∇x))u− u · (c3∇x log ρ+ c4r)Ω + c4δv = 0, (8.5c)

(∂t + c2(Ω · ∇x))v − v · (c3∇x log ρ+ c4r)Ω− c4δu = 0. (8.5d)

The following lemma provides alternate expressions for δ.

Lemma 8.2.1. We have

δ = −
{

[(u · ∇x) Ω] · v + [(v · ∇x)u] · Ω + [(Ω · ∇x)v] · u
}

(8.6)

= −1

2

{
(∇x × Ω) · Ω + (∇x × u) · u + (∇x × v) · v}. (8.7)

Proof. Eq. (8.6) follows from inserting the formula

0 = ∇x(Ω · u) = (Ω · ∇x)u + (u · ∇x)Ω + Ω× (∇x × u) + u× (∇x × Ω),

and similar formulas after circular permutation of {Ω,u,v} into (8.4). Eq. (8.7) follows
from taking the half sum of (8.4) and (8.6) and applying the formula

∇x × v = ∇x × (Ω× u) = (∇x · u) Ω− (∇x · Ω) u + (u · ∇x)Ω− (Ω · ∇x)u,

and similar formulas after circular permutation of {Ω,u,v}.

The quantities c1, c2, c3, c4 are functions of κ and c0 and have been computed in the
previous chapter in the generalised case when κ is a function of ρ. In the present case, κ
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is a fixed constant and the coefficients were known from [116]. They are given as follows.

c1

c0

=
2

3

〈1

2
+ cos θ

〉
exp(κ( 1

2
+cos θ)) sin2( θ2), (8.8)

c2

c0

=
1

5
〈2 + 3 cos θ〉exp(κ( 1

2
+cos θ)) sin4( θ2) cos2( θ2) , (8.9)

c3

c0

=
1

κ
, (8.10)

c4

c0

=
1

5
〈1− cos θ〉exp(κ( 1

2
+cos θ)) sin4( θ2) cos2( θ2) , (8.11)

where, for two functions f and g: [0, π]→ R, we write

〈f〉g =

∫ π
0
f(θ) g(θ) dθ∫ π
0
g(θ) dθ

.

Fig. 8.2.1 provides a graphical representation of these functions.

Remark 8.2.2. In order to keep lighter notations, the coefficients of the model are still
denoted by c1, c2, c3, c4 but compared to the coefficients derived in the last Chapter
(Theorem 7.5.3), they are all normalised by c0 (previously c0 = 1), the tildes are dropped
and the concentration parameter is constant (i.e. α(ρ) = κ).

Figure 8.2.1: Dimensionless coefficients ci/c0 as functions of the inverse of concen-
tration parameter 1/κ. Blue curve c1/c0, orange curve c2/c0, green curve c3/2c0 and
red curve c4/c0. At the crossover value κ∗ ' 2.58, the sign of c2 − c1 changes (see
Section 8.3.5).
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8.2.2 Interpretation of the model

To better understand what the SOHB system (8.2) does, we re-write it as follows:

∂tρ+ c1∇x · (ρΩ) = 0, (8.12a)

DtA + [w]×A = 0, (8.12b)

where the convective derivative Dt and the vector w are given by:

Dt = ∂t + c2Ω · ∇x, (8.13)

w = −Ω× F + c4δΩ, with F = −c3∇x log ρ− c4r, (8.14)

Eq. (8.12a) is the mass conservation equation of the fluid. The vector Ω gives the
direction of the fluid motion. The fluid velocity deduced from (8.12a) is c1Ω. Since
c1/c0 ∈ [0, 1] as can be seen from Fig. 8.2.1, the fluid motion is oriented positively along Ω

and its magnitude is smaller than the particles self-propulsion velocity c0. This is because
the average of vectors of identical norms has smaller norm. The quantity c1/c0 can be
seen as an order parameter as in Chapter 7 but we will not dwell on this issue here.

Eq. (8.12b) provides the rate of change of A with time along the integral curves of the
vector field c2Ω as expressed by the convective derivative Dt. Note that this vector field is
not the fluid velocity c1Ω since c2 6= c1. It can be interpreted as the propagation velocity
of A when w is zero. Since DtA is the derivative of an element of SO3(R), it must lie in
the tangent space to SO3(R) at A which consists of all matrices of the form WA with
W antisymmetric (see Lemma 7.2.1). This structure is indeed satisfied by Eq. (8.12b)
since, from the definition (7.3), the matrix [w]× is antisymmetric. It can be shown that
the SOHB system is hyperbolic [117].

In fact, Eq. (8.12b) shows that the vector w is the instantaneous rotation vector of
the frame A(t,X(t)), where t 7→ X(t) is any solution of dX

dt
= c2 Ω(t,X(t)). Indeed, in the

equivalent formulation Eq. (8.5), the equations on (Ω,u,v) are of the form DtZ = w× Z,
with Z = Ω, u, v. This describes a rigid body rotation of the frame {Ω,u,v} with angular
velocity w. The rotation vector w has two components. The first one is Ω× F and tends
to relax Ω towards F. Due to its expression (8.14), the force F includes two contributions:
that of the pressure gradient −c3∇x log ρ and that of gradients of the body orientation
through the vector −c4 r. The second component of the rotation vector is −c4δΩ and
corresponds to a rotation of the body frame about the self propulsion direction Ω driven by
gradients of the body orientation through the scalar −c4 δ. The contributions of gradients
of body orientation in the two components of the rotation vector are under the control of
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the single coefficient c4. Fig. 8.2.2 gives a graphical representation of the actions of these
two infinitesimal rotations.

F

u

Ω

v′
v

Ω× F

u′

Ω′

1

(a) Action of Ω× F

u′

−c4δΩ

Ω

v′

Ω′

u
v

1

(b) Action of −c4δΩ

Figure 8.2.2: Graphical representations of the two components of the infinitesimal
rotation. (Ω,u,v) denotes the position of the frame at time t while (Ω′,u′,v′) is its
position at time t+ ∆t with ∆t� 1. The frame at time t is denoted in plain colors
(red for Ω, green for u and blue for v) while that at time t+ ∆t is in light colors. The
motion of the vectors is indicated by a segment of circle in black color. (a) Action
of Ω × F: the vectors F and Ω × F are in plain and light black respectively. The
vector F is shown with unit norm for the ease of the representation but could be of
any norm in reality. The passage from (Ω,u,v) to (Ω′,u′,v′) is via an infinitesimal
rotation of axis Ω × F. (b) Action of δ: the vector −c4δΩ is shown in black. The
vectors Ω and Ω′ are identical and collinear to −c4δΩ. The passage from (Ω,u,v) to
(Ω′,u′,v′) is via an infinitesimal rotation of axis Ω.

8.2.3 Relation with other models

To better understand how the SOHB model (8.2) relates to other models, we re-write the
equation for Ω as follows:

DtΩ = PΩ⊥F, (8.15)

where PΩ⊥ is the 3× 3 projection matrix on the orthogonal plane to the vector Ω and is
written PΩ⊥ = I3 − Ω⊗ Ω with ⊗ standing for the tensor (or outer) product. Eq. (8.15)
bears similarities and differences with the momentum equation of isothermal compressible
fluids. The latter is exactly recovered if the following three modifications are made:

1. the projection matrix PΩ⊥ is removed from (8.15) (i.e. it is replaced by I3);

2. c2 = c1 in the convective derivative Dt (see (8.13));

3. c4 = 0 in the expression of F (see (8.14)).
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Indeed, under these three modifications, we get the following system for (ρ,U) where
U = c1Ω is the fluid velocity:

∂tρ+∇x · (ρU) = 0, (∂t + U · ∇x)U = −Θ∇x log ρ.

This is exactly the isothermal compressible Euler equations with the fluid temperature
Θ = c1c3.

We now investigate what consequences follow from undoing the above three modifica-
tions, one by one.

1. Introducing the projection PΩ⊥ in (8.15) guarantees that the constraint |Ω| = 1 is
preserved in the course of time, if it is satisfied at time 0. Indeed, dotting Eq. (8.15)
with Ω (and assuming that all functions are smooth) leads to Dt|Ω|2 = 0, which
guarantees that |Ω| is constant along the integral curves of the vector field c2Ω. Thus,
if |Ω| = 1 at time t = 0, it will stay so at any time.

2. Having c2 6= c1 is a signature of a loss of Galilean invariance. This is consistent with
the fact that the microscopic system is not Galilean invariant as well, Indeed, there
is a distinguished reference frame where the particle speed is c0. Of course, this
speed does not remain equal to c0 in frames that translate at constant speed with
respect to this frame.

So far, with the introduction of PΩ⊥ and different constants c2 6= c1 but still with
c4 = 0, the system for (ρ,Ω) is decoupled from the equations for u and v and is
written (see Eqs. (8.12a), (8.15) with F given by (8.14) in which c4 = 0):

∂tρ+ c1∇x · (ρΩ) = 0, (8.16a)

DtΩ + c3 PΩ⊥∇x log ρ = 0. (8.16b)

This is nothing but the hydrodynamic limit (1.12), (1.13) of the Vicsek particle
model outlined in the introduction of this thesis and known as “Self-organised
Hydrodynamics (SOH)” as established in [122, 140]. This system has been shown to
be hyperbolic [122] and to have local-in-time smooth solutions [120].

3. When c4 6= 0, in addition to the pressure gradient, a second component of the force F

appears. This component depends on the full rotation matrix A through Ω, u, v

and their gradients (see Eq. (8.3)). It is thus truly specific of the body-orientation
model.
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8.3 Explicit solutions of the macroscopic model

In this section, we exhibit three different classes of global-in-time solutions of the SOHB
model (8.12). They are special classes of a larger family of solutions which will also be
introduced. All these solutions are characterised by uniform (i.e. independent of the
spatial coordinate) fields ρ, r and δ. From now on we fix a wave-number (inverse of the
length) ξ ∈ R \ {0} and define

ω = ξc4, λ = c2 + c4. (8.17)

We denote by x = (x, y, z)T the coordinates of a point x ∈ R3 in the basis (e1, e2, e3).

8.3.1 Flocking state

The flocking state (FS) is a trivial but important special solution of the SOHB model (8.12)
where both the density and rotation fields are constant (i.e. independent of time) and
uniform, for all (t,x) ∈ [0,∞)× R3,

ρ(t,x) ≡ ρ0 = constant, A(t,x) ≡ A0 = constant.

8.3.2 Milling orbits

We have the following

Lemma 8.3.1 (Milling solution). The pair (ρ,A) consisting of a constant and uniform
density ρ(t,x) = ρ0 = constant and the following rotation field:

A(t,x) = Amill(t, z)

=

 cos(ωt) sin(ωt) cos(ξz) − sin(ωt) sin(ξz)

− sin(ωt) cos(ωt) cos(ξz) − cos(ωt) sin(ξz)

0 sin(ξz) cos(ξz)

 (8.18)

= A(−ωt, e3)A(ξz, e1), (8.19)

is a solution of the SOHB system (8.12), where ω and ξ are given by (8.17). We recall
that A(θ,n) is the rotation of axis n ∈ S2 and angle θ ∈ R defined by (7.2). This solution
will be referred to as a milling orbit (MO).

The proof of this lemma is deferred to Section 8.D.
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The MO is independent of x and y. Its initial condition is

Amill(0, z) = A(ξz, e1) =

 1 0 0

0 cos(ξz) − sin(ξz)

0 sin(ξz) cos(ξz)

 . (8.20)

The initial direction of motion (the first column of Amill(0, z)) is independent of z and
aligned along the x-direction, i.e. Ω(0, z) ≡ e1. As z varies, the body-orientation rotates
uniformly about the x-direction with spatial angular frequency ξ. As the rotation vector is
perpendicular to the direction of variation, (8.20) is called a “perpendicular twist”. As time
evolves, the rotation field is obtained by multiplying on the left the initial perpendicular
twist by the rotation A(−ωt, e3). This means that the whole body frame undergoes
a uniform rotation about the z-axis with angular velocity −ω. As a consequence, the
direction of motion is again independent of z. It belongs to the plane orthogonal to z and
undergoes a uniform rotation about the z-axis. Consequently, the fluid streamlines, which
are the integral curves of c1Ω, are circles contained in planes orthogonal to z of radius
c1
ω

= c1
c4

1
ξ
traversed in the negative direction if ξ > 0. These closed circular streamlines

motivate the “milling” terminology. It can be checked that the MO satisfies:

r = ξ (sin(ωt), cos(ωt), 0)T, δ = 0.

As announced, r and δ are uniform but r depends on time. Actually, Ω × r = ξe3 is
independent of time. The MO is depicted in Fig. 8.3.1 and its dynamics is visualized in
Video 2 (see Section 8.A).

Many examples of milling (also known as vortex) solutions have been observed in
the collective dynamics literature as well as in biological systems [52, 91, 322]. On the
modelling side, milling states have not been observed so far in alignment models without
the inclusion of an additional process such as an attraction-repulsion force between the
agents [68], a bounded cone of vision [90] or an anticipation mechanism [171]. The body-
orientation framework is, to the best of our knowledge, a new situation in which milling
can be observed with only alignment assumptions. Milling states can also be found in
physical systems. A typical and important example is the motion of a charged particle in
a uniform magnetic field, resulting in the formation of so-called cyclotron orbits. Once
again, in the body-orientation framework, an external field is not needed and self-induced
cyclotron orbits emerge only from the variations of the internal body-orientation. Here,
the analog of the magnetic field would be Ω× r and the cyclotron frequency would be ω.
Note that ω is under the control of coefficient c4 which depends on the noise intensity 1/κ.
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(a) t = 0

1

(b) t > 0

Figure 8.3.1: Graphical representation of the milling orbit (MO) at (a): initial
time, and (b): time t > 0. The frame vectors Ω, u and v are represented at a certain
number of points of the (O, x, y) and (O, y, z) planes. In (b), the rotation motion of
the frame vectors is depicted by dotted circles of the color of the corresponding frame
vector. The red dotted circle can be seen as a depiction of the fluid streamlines. See
also Section 8.A, Video 2.

8.3.3 Helical traveling wave

We have the following

Lemma 8.3.2 (Helical wave solution). The pair (ρ,A) consisting of a constant and
uniform density ρ(t,x) = ρ0 = constant and the following rotation field:

A(t,x) = Ahtw(t, x)

=

 1 0 0

0 cos (ξ(x− λt)) − sin (ξ(x− λt))
0 sin (ξ(x− λt)) cos (ξ(x− λt))

 (8.21)

= A(ξ(x− λt), e1), (8.22)

is a solution of the SOHB system (8.12) where ξ and λ are defined by (8.17). This solution
will be referred to as a helical traveling wave (HW).

The proof of this lemma is given in Section 8.D.2.
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The HW is independent of y and z. Its initial condition is

Ahtw(0, x) = A(ξx, e1) =

 1 0 0

0 cos(ξx) − sin(ξx)

0 sin(ξx) cos(ξx)

 . (8.23)

Here the self-propulsion direction is still independent of x and equal to e1. Also, the body
orientation still rotates uniformly about e1 with spatial angular frequency ξ but when x
is varied instead of z. This means that the body orientation is now twisted when varied
along the propagation direction. So, this initial condition is called a “parallel twist”. In the
HW, the self propulsion direction Ω remains constant in time and uniform in space. The
initial twist is propagated in time in this direction at speed λ and gives rise to a traveling
wave

Ahtw(t, x) = Ahtw(0, x− λt).

Note that the traveling wave speed λ depends on the noise intensity 1/κ and is different
from the fluid speed c1. So, the frame carried by a given fluid element followed in its
motion is not fixed but rotates in time. Since Ω does not change, the fluid streamlines
are now straight lines parallel to e1. So, as a fluid element moves, the ends of the frame
vectors u and v follow a helical trajectory with axis e1, hence the terminology “helical
traveling waves” for these solutions. It can be checked that

r = 0, δ = ξ,

and again, r and δ are spatially uniform as announced. The HW is depicted graphically in
Fig. 8.3.2. Its dynamics is visualized in Video 3 (see Section 8.A). The HW belongs to a
larger class of solutions described in Section 8.D.2.

8.3.4 Generalised topological solutions

The three above described classes of solutions can be encompassed by a single family of
generalised solutions as stated in the following lemma.

Lemma 8.3.3 (Generalised solutions). Let ξ ∈ R and θ ∈ [0, π] be two parameters. Let
ω ∈ R and λ̃ ∈ R be defined by

ω = c4ξ, λ̃ = c2 cos θ.

The pair (ρ,A) consisting of a constant and uniform density ρ(t,x) = ρ0 = constant and
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(a) t = 0
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(b) t > 0

Figure 8.3.2: Graphical representation of the helical traveling wave (HW) at (a):
initial time, and (b): time t > 0. See Fig. 8.3.1 for captions. See also Section 8.A,
Video 3.

the following rotation field:

A(t,x) = Aξ,θ(t, z) := A(−ωt, e3)A
(
θ − π

2
, e2

)
A(ξ(z − λ̃t), e1), (8.24)

is a solution of the SOHB system (8.12). We recall that A(θ,n) is the rotation of axis
n ∈ S2 and angle θ ∈ R. This solution will be referred to as a Generalised topological
Solution (GS).

The proof of this lemma is deferred to the Appendix 8.D.3. Each of the three previous
classes of solutions can be obtained for specific values of the parameters ξ and θ.

• When ξ = 0, the solution A0,θ is constant for any θ, which corresponds to a FS.

• When θ = π
2
and ξ ∈ R, then λ̃ = 0 and the rotation with respect to the y-axis is

equal to the identity: the solution Aξ,π/2 is therefore equal to the MO (8.19).

• When θ = 0 and ξ ∈ R then λ̃ = c2 and the solution Aξ,0 is equal to

Aξ,0 =

 0 − sin(ξ(z − λt)) − cos(ξ(z − λt))
0 cos(ξ(z − λt)) − sin(ξ(z − λt))
1 0 0

 , λ = c2 + c4,

which is an HW along the z-axis. The situation is analogous when θ = π.
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All these solutions have a non-zero gradient in the body-orientation variable which is always
along the z-axis. This gradient is controlled by the parameter ξ. However, in the GS, the
direction of motion Ω (or fluid velocity) is not necessarily parallel nor perpendicular to this
gradient. Specifically, Ω has a constant polar angle equal to the parameter θ. The behaviour
of the solution is then a combination of the two previously introduced phenomena: milling
around the z-axis and a travelling wave of the body-orientation variable along the same axis.
The applet accessible at https://www.glowscript.org/#/user/AntoineDiez/folder/
MyPrograms/program/BOfield provides a graphical representation of the GS for arbitrary
polar angles using VPython [296] and with the same conventions as in Fig. 8.3.1.

In the following, we will focus on each of these two elementary behaviours, i.e. the
standard milling and helical travelling wave solutions, and in particular on their topological
properties. The study of the full continuum of generalised solutions is left for future work.
However, we will encounter GS obtained from a perturbed milling solution in Section 8.6.4.

8.3.5 Some properties of these special solutions

Clearly, in the definitions of the MO and HW, the choice of reference frame is unimportant.
So, in the whole space R3, such solutions exist in association with any reference frame. In
a square domain of side-length L with periodic boundary conditions, periodicity imposes
some constraints on the direction of the reference frame. For simplicity, we will only
consider the case where the reference frame has parallel axes to the sides of the square
and ξ is linked to L by an integrality condition L ξ = 2π n, with n ∈ Z \ {0}.

The study of the stability of the MO and the HW is left for future work. By contrast,
the FS is linearly stable as the SOHB system is hyperbolic [117]. However, there is no
guarantee that the FS at the level of the IBM is stable. Indeed, there are strong indications
that the FS is not stable for the Vicsek model [80] for some parameter ranges and a similar
trend is likely to occur here.

The existence of these solutions show that the inclusion of the full body orientation
induces important changes in the dynamics of the particle positions and directions compared
to the Vicsek model. To this end, we consider the corresponding macroscopic models,
i.e. the SOH model (8.16) for the Vicsek model and the SOHB model (8.2) for the
body-orientation dynamics. If we initialize the SOH model with uniform initial density ρ
and mean direction Ω, inspection of (8.16) shows that the solution remains constant in
time and thus corresponds to a flocking state of the Vicsek model. In the SOHB model,
the three classes of solutions described in the previous sections (the FS, MO and HW)
also have uniform initial density ρ and mean direction Ω. If the dynamics of the particle
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positions and directions in the body orientation model was the same as in the Vicsek
model, these three classes of solutions should have a constant mean direction Ω. However,
it is not the case for the MO, where Ω changes with time and is subject to a planar
rotation. This means that gradients of body attitude do have a non-trivial influence on the
direction of motion of the particles and that the body orientation model does not reduce
to a Vicsek model for the particle positions and directions.

There is another, more subtle, difference between the two models concerning the
dynamics of Ω. It does not concern the MO and HW but we discuss it here in relation
with the previous paragraph. Indeed, Fig. 8.2.1 reveals that the velocities c1 and c2 for
the SOHB model crossover at a certain value κ∗ of the concentration parameter. The
coefficients c1 and c2 for the SOH model can be found in [140, Fig. A1(b)] and appear
to satisfy c1 > c2 for the whole range of values of κ, i.e. do not exhibit any crossover.
In particular, at large noise, the propagation velocity c2 of Ω in the SOHB model is
larger than the mass transport velocity c1. This means that information (which triggers
adjustments in Ω) propagates downstream the fluid by contrast to the Vicsek case where
it propagates upstream. While the reason for this difference is unclear at this stage, we
expect that it may induce large qualitative differences in the behaviour of the system in
some cases. This point will be investigated in future work.

Numerical simulation of the SOHB will be subject to future work. Here, we will restrict
ourselves to the MO and HW for which we have analytical formulas. In the next section,
using these two special solutions, we verify that the SOHB model and the IBM are close
in an appropriate parameter range.

8.4 From the IBM to the macroscopic model

In this section, we give some details on our numerical framework based on the direct
simulation of the underlying IBM (2.3), (2.4), (2.7). Then, under the scaling (8.1), we
show that the IBM converges towards the SOHB as expected by the theory.

8.4.1 Numerical simulations of the IBM

Unless otherwise specified, throughout this paper, a square box of side length L with
periodic boundary conditions is used. As sensing kernel K, we use the indicator function of
the ball centered at 0 and of radius R. Thus, an agent interacts with all its neighbors at a
distance less than R (radius of interaction). Table 8.4.1 summarises the model parameters.

For the numerical simulations presented in this chapter, we have used the convenient
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Parameter Symbol
Number of particles N
Computational box side length L
Interaction radius R
Particle speed c0

Concentration parameter κ
Alignment frequency ν

Table 8.4.1: Parameters of the IBM (2.3), (2.4).

framework offered by quaternions, already used in Chapter 7, and detailed in Section 8.B.
Indeed, let us recall that there is a group isomorphism between SO3(R) and H/{±1},
where H is the group of unit quaternions, and that it is possible to express the IBM (2.3),
(2.4), (2.7) using this representation (see [116] and Section 8.B). Roughly speaking, body-
alignment as described here is equivalent to nematic alignment of the corresponding
quaternions (nematic alignment of a unit quaternions q to the mean direction q̄ is unchanged
if q is replaced by −q, as opposed to polar alignment where the result depends on the sign
of q). This is because a given rotation can be represented by two opposite quaternions
and thus, the outcome of the alignment process should not depend of the choice of
this representative. The numerical algorithm is described in Section 8.C. Additionally,
the quaternion framework also suggests to use order parameters derived from nematic
alignment dynamics (such as in liquid crystal polymers). We shall use this analogy to
define appropriate order parameters in Section 8.5.1.

All the simulations were written in Python using the SiSyPHE library [139] described
in Chapter 5. The outcomes of the simulations were analysed and plotted using the
NumPy [191] and Matplotlib [203] libraries. The 3D particle plots were produced using
VPython [296]. All the particle simulations have been run on a GPU cluster at Imperial
College London using an Nvidia GTX 2080 Ti GPU chip.

A typical outcome of the IBM is shown in Figure 8.4.1 (see also Section 8.A, Video 1)
for a moderate number of particles (N = 3000). Throughout this paper, in the plots, we
will represent each agent graphically by an elongated tetrahedron pointing in the direction
of motion. The three large faces around the height will be painted in blue, green and
magenta and the base will be in gold, as described in Fig. 8.4.1a. We notice that, starting
from a uniformly random initial state (Fig. 8.4.1b), the system self-organizes in small
clusters (Fig. 8.4.1c) and finally reaches a flocking equilibrium where all the agents have
roughly the same body-orientation (Fig. 8.4.1d). The goal of this chapter is to show that
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flocking is not necessarily the ultimate fate of the system, because it may be trapped in
a so-called topologically protected state, i.e. in one of the solutions of the macroscopic
model.

(a) Graphical
representation
of particles

(b)
Time=0

(c)
Time=4

(d)
Time=40

Figure 8.4.1: (a) Graphical representation of particles and their body orientations
as elongated tetrahedra pointing towards the self-propulsion direction with blue,
magenta and green large faces and gold bases. (b,c,d) Snapshots of a typical output
of the simulation at three different times (b) Time=0, (c) Time=4 and (d) Time=40.
Parameters: N = 3000, L = 1, R = 0.075, κ = 20, ν = 5, c0 = 0.2. see also
Section 8.A, Video 1.

8.4.2 The IBM converges to the macroscopic model as N →∞
In this section we use the MO and HW to demonstrate the quantitative agreement
between the SOHB model (8.2) and the IBM (2.3), (2.4), (2.7) in the scaling (8.1). In the
simulations below, we consider a periodic cube of side-length L and choose

R = 0.025, ν = 40, c0 = 1, L = 1, ξ = 2π, (8.25)

so that R
L

= c0
ν L

= 0.025� 1, ensuring that the scaling (8.1) is satisfied. Furthermore, we
see that the choice of ξ is such that the twists in the MO or HW have exactly one period
over the domain size.

Then, we numerically demonstrate that the solutions of the IBM converge to those of
the macroscopic model in the limit N →∞ and investigate the behaviour of the IBM at
moderately high values of N .

We sample N particles according to the initial condition (8.20) of the MO and simulate
the IBM (2.3), (2.4), (2.7). We recall that the average direction Ω(t) of the exact MO (8.18)
is spatially uniform at any time and undergoes a uniform rotation motion about the z-axis.
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So, we will compare Ω(t) with the average direction Ω(t) of all the particles of the IBM,
where Ω(t) = (Ω1,Ω2,Ω3)T is defined by:

Ω(t) =

∑N
k=1 Ωk

t

|∑N
k=1 Ωk

t |
,

(provided the denominator is not zero, and where we recall that Ωk(t) = Ak(t) e1). To ease
the comparison, we compute the azimuthal and polar angles of Ω respectively defined by:

ϕ̄ := arg(Ω1 + iΩ2) ∈ [0, 2π), θ̄ = arccos(Ω3) ∈ [0, π], (8.26)

where arg(x+ iy) stands for the argument of the complex number x+ iy. We note that
the corresponding angles ϕ and θ of Ω(t) are given by

ϕ(t) = −ω t = −2π c4(κ) t, θ = π/2, (8.27)

where we have used (8.17) and (8.25) to compute the value of ω.
Fig. 8.4.2a shows the azimuthal angle ϕ̄ as a function of time over 5 units of time, for

increasing particle numbers: N = 5 104 (green curve), N = 1.5 105 (orange curve) and
N = 1.5 106 (blue curve). Note that for very small values of N , the macroscopic model loses
its relevance: below a few thousand particles we only observe a noisy behaviour, not shown
in the figure. For the considered range of particle numbers, we notice that the angle ϕ̄
decreases linearly with time, which shows that the behaviour of the IBM is consistent
with the exact solution (8.27). However, quantitatively, we see that |dϕ̄/dt| depends
on the particle number and decreases with increasing particle number. We investigate
this behaviour in more detail in Fig. 8.4.2b where the difference between the measured
angular velocity |dϕ̄/dt| and the theoretical prediction 2πc4(κ) is plotted as a function
of N . Each data point (blue dot) is an average of 10 independent simulations. This figure
confirms that, as N increases, |dϕ̄/dt| decreases and converges towards 2πc4(κ). The inset
in Fig. 8.4.2b shows the same data points in a log-log-scale with the associated regression
line (orange solid line). We observe that the error between the measured and theoretical
angular velocities behaves like N−α with a measured exponent α ' 1.01 which is close to
the theoretical value α = 1 derived in Section 8.E of the Supplementary Material.

8.4.3 Quantitative comparison between the models

In order to quantitatively confirm the agreement between the IBM and the macroscopic
model, we fix a large number N = 1.5 106 of particles and we run the IBM for different
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(a) (b)

Figure 8.4.2: (a) Time evolution of the angle ϕ̄ for three values of N : N = 0.05 106

(green curve), N = 0.15 106 (orange curve) and N = 1.5 106 (blue curve). (b)
Difference between the measured angular velocity |dϕ̄/dt| and the theoretical value
2πc4(κ). Each data point (blue dot) is an average of 10 independent simulations with
the error bar showing one standard deviation. Solid black horizontal line at 0 for
convenience. Inset: same data in log-log scale and regression line (solid orange line).
Parameters: L = 1, ξ = 2π, R = 0.025, ν = 40, c0 = 1, κ = 10.

values of the concentration parameter κ and for the two classes of special solutions, the MO
and the HW. To compare the models, we compute the following macroscopic quantities:

• For the MO: starting from a sampling of the initial condition (8.20), we measure
the angular velocity |dϕ̄/dt| in a similar way as in the previous section. Given
the parameter choice (8.25), the theoretical value of |dϕ/dt| predicted by (8.18) is
|ω| = 2πc4(κ) where the function c4 is given by (8.11).

• For the HW, starting from a sampling of the initial condition (8.23), we measure the
wave speed. To this aim, using (2.8), we compute the mean body-orientation A of
the agents in a slice of size 10−3 along the x-axis (which is the global direction of
motion) as a function of time. As predicted by (8.21) the coefficient A22 of the mean
orientation is a periodic signal. The inverse of the period of this signal (obtained
through a discrete Fourier transform) gives the traveling wave speed of the HW.
The theoretical value predicted by (8.21) is given by λ = c2(κ) + c4(κ) where the
function c2 is given by (8.9).

The output of these simulations is shown in Figs. 8.4.3a for the MO and 8.4.3b for the
HW. They respectively display the angular velocity and traveling wave speed obtained by
running the IBM for a discrete set of values of κ (big blue dots). By comparison, the black
dotted curves show the theoretical values as functions of κ. For the parameters of Fig. 8.4.3,
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the order of magnitude of the standard deviation of 10 independent simulations is 10−3.
The relative error between the average measured value and its theoretical prediction varies
between 2% and 5% on the whole range of concentration parameters considered.

These figures show an excellent agreement between the prediction of the macroscopic
SOHB model and the results obtained by running the IBM when the number of particles is
large. This confirms that the SOHB model provides an excellent approximation of the IBM,
at least during a certain period of time which is a function of the particle number. We
will see below that fluctuations induced by the finite number of particles may eventually
destabilize the MO and lead to a HW or a FS. As these solutions are associated with
different topological structure, these transitions will be analysed as topological phase
transitions in the forthcoming sections.

(a) (b)

Figure 8.4.3: (a) MO: angular velocity |dϕ/dt| as a function of 1/κ. (b) HW:
traveling wave speed λ as a function of 1/κ. Measured values from the IBM at discrete
values of κ (big blue dots) and theoretical prediction from the SOHB model (dotted
black curve). Parameters: N = 1.5 106, L = 1, ξ = 2π, R = 0.025, ν = 40, c0 = 1.

8.4.4 Topology

Both the MO and HW have non-trivial topology: inspecting the perpendicular twist (8.20)
(see also Fig. 8.3.1a), we observe that the two-dimensional curve generated by the end of
the vector u in the (y, z)-plane as one moves along the z-axis is a closed circle. A similar
observation can be made on the parallel twist (8.23) (see Fig. 8.3.2a) as one moves along
the x-axis. Both curves have therefore non-zero winding numbers about the origin. When
the domain is R3, these winding numbers are ±∞ (where the sign corresponds to that
of ξ) as these curves make an infinite number of turns. If the domain has finite extension L
along the z-axis (in the MO case) or the x-axis (in the HW case) and, due to the periodic
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boundary conditions, L is related to ξ by L = n 2π/ξ with n ∈ Z \ {0}, then the winding
numbers are equal to n. As observed on Formulas (8.18) and (8.21) (or on Figs 8.3.1b
and 8.3.2b), this initial non-trivial topological structure is propagated in time.

When we initialize particles by sampling the initial conditions (8.20) or (8.23), we
expect that the solution of the IBM remains an approximation of the MO (8.18) or
HW (8.21) respectively as evidenced in Section 8.4.3. However, noise induced by both
the inherent stochasticity of the IBM and finite particle number effects as explained in
Section 8.4.2 may eventually destabilize the IBM. Then, in most cases, its solution is
seen to transition towards an approximation of the FS after some time. This transition
implies a change of the topology of the solution which, from initially non-trivial, becomes
trivial, since the winding number of the FS is zero. One may wonder whether the evolution
towards a FS is slower if the initial state has non-trivial topology and exhibits some kind
of “topological protection” against noise-induced perturbations. To test this hypothesis
quantitatively, we first need to develop appropriate indicators. This is done in the next
section.

8.5 Order parameters and topological indicators

We will use two types of indicators. The first one is the global order parameter which will
discriminate between the various types of organization of the system (disorder, MO or
HW and FS). The second type of indicators are based on analysing the roll angle. They
will enable a finer characterization of topological phase transitions.

8.5.1 Global order parameter

We first introduce the following scalar binary order parameter which measures the degree
of alignment between two agents with body-orientations A, Ã ∈ SO3(R) :

ψ(A, Ã) :=
1

2
A · Ã+

1

4
. (8.28)

In the quaternion framework (see Section 8.4.1 and 8.B for details), we have

ψ(A, Ã) = (q · q̃)2, (8.29)

where q and q̃ are two unit quaternions respectively associated to A and Ã, and q·q̃ indicates
the inner product of two quaternions. This expression makes it clear that ψ(A, Ã) ∈ [0, 1].
The square exponent in (8.29) indicates that ψ(A, Ã) measures the nematic alignment
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of the two associated unit quaternions, as it should because two opposite quaternions
represent the same rotation. We note that ψ(A, Ã) = 1 if and only if Ã = A. On the other
hand, ψ(A, Ã) = 0 if and only if A · Ã = −1/2, which corresponds to the two rotation axes
being orthogonal and one rotation being an inversion about its axis.

The Global Order Parameter (GOP) of a system of N agents at time t > 0 is the
average of all binary order parameters over all pairs of particles:

GOPN(t) =
1

N(N − 1)

∑
k 6=`

ψ
(
Akt , A

`
t

)
. (8.30)

From (8.30) we have GOPN (t) ∈ [0, 1]. A small GOPN indicates large disorder and a large
one, strong alignment. This is a global measure of alignment, by contrast to a local one
where ψ would be averaged over its neighbors only (and the result, averaged over all the
particles). This global measure of alignment allows us to separate the MO and HW from
the FS as shown below, which would not be possible with a local one.

The GOP (8.30) can also be defined at the continuum level. Since in the macroscopic
limit the particles become independent and identically distributed over R3 × SO3(R),
with common distribution ρMκA where (ρ,A) satisfies the SOHB system (8.2) and MκA is
the von Mises distribution (2.5). Therefore, the GOP of a solution of the SOHB system
(ρ,A) is obtained as (8.30) where the sum is replaced by an integral, Akt is replaced
by A distributed according to the measure (ρMκA)(t,x, A) dx dA and A`t is replaced by Ã
distributed according to the same measure, but independently to A. Therefore,

GOP(ρ,A) :=

∫∫
(R3×SO3(R))2

ψ(A, Ã) ρ(x) ρ(x̃)MκA(x)(A)MκA(x̃)(Ã) dx dx̃ dA dÃ.

Using Lemma 7.3.1, for any A ∈ SO3(R), we have∫
SO3(R)

AMκA(A) dA =
c1(κ)

c0

A, (8.31)

with c1(κ)/c0 defined by (8.8). Using (8.28), we obtain:

GOP(ρ,A) =
1

2

(
c1(κ)

c0

)2 ∫
R3×R3

A(x) · A(x̃) ρ(x) ρ(x̃) dx dx̃ +
1

4
. (8.32)

From now on, we let ρ be the uniform distribution on a square box of side-length L.
We can compute the GOP corresponding to each of the solutions defined in Section 8.3.
For the MO (8.18), the HW (8.21) and the GS (8.24), for all time t > 0 and in both cases,
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the GOP remains equal to:

GOP1 =
1

4

(
c1(κ)

c0

)2

+
1

4
. (8.33)

For the FS, A(x) ≡ A = constant and the GOP is equal to

GOP2 =
3

4

(
c1(κ)

c0

)2

+
1

4
. (8.34)

Note that the GOP:
GOP0 =

1

4
,

corresponds to a disordered state of the IBM where the body-orientations of the particles
are chosen independently and randomly uniformly (or equivalently to the SOHB case
κ→ 0 in (8.33) and (8.34)). For the typical value κ = 10 used in our simulations, one can
compute that:

GOP1 ' 0.45, GOP2 ' 0.85. (8.35)

The GOP values between GOP1 and GOP2 can be reached by generalised HW as shown
in Section 8.D.4.

8.5.2 Roll angle

Definition

Let A = [Ω,u,v] ∈ SO3(R) be a body-orientation. Let θ ∈ [0, π], ϕ ∈ [0, 2π) be the
spherical coordinates of Ω defined by (8.26) (omitting the bars). We let {Ω, eθ, eϕ} be the
local orthonormal frame associated with the spherical coordinates (θ, ϕ) and we define
p(Ω) = eϕ and q(Ω) = −eθ. Then we define the rotation matrix

R(Ω) := [Ω,p(Ω),q(Ω)] =

 sin θ cosϕ − sinϕ − cos θ cosϕ

sin θ sinϕ cosϕ − cos θ sinϕ

cos θ 0 sin θ

 .

Since u and v belong to the plane spanned by p(Ω) and q(Ω), we let ζ ∈ [0, 2π) be the
angle between p(Ω) and u. Then, it is an easy matter to show that A = R(Ω)A(ζ, e1).
In aircraft navigation, θ, ϕ and ζ are respectively called the pitch, yaw and roll angles:
the pitch and yaw control the aircraft direction with respect to the vertical and in the
horizontal plane respectively, while the roll controls the plane attitude (see Fig. 8.5.1a).
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These angles are related to the Euler angles. The construction of the roll angle ζ is
summarised in Figure 8.5.1b. Pursuing the analogy with aircraft navigation, we see from
Fig. 8.2.2 that F controls variations of pitch and yaw while δ controls variations of roll.

(a) (b)

Figure 8.5.1: (a) Pitch, yaw and roll angles of an aircraft with body orientation
[Ω,u,v] (original picture released under the Creative Commons CC0 license by
https://pixabay.com). (b) Construction of the roll angle of A = [Ω,u,v], where
the vectors Ω, u and v are respectively in red, green and blue. The local frame is
(Ω,p(Ω),q(Ω)) where p(Ω) and q(Ω)) and the plane generated by them are in purple.
u and v belong to this plane. ζ is the angle between p(Ω) and u.

As an example, we examine the pitch, yaw and roll of the three solutions of the SOHB
model (8.2) described in Section 8.3.

1. FS: A is constant and uniform. Then, the pitch, yaw and roll are also constant and
uniform.

2. MO: A is given by (8.18) (see Figs. 8.3.1). Using Eq. (8.19), we have R(Ω) =

A(−ω t, e3) and the roll is given by ζ = ξz. The pitch and yaw are constant and
uniform. The roll is constant in time and is also uniform on planes of constant z.
The non-trivial topology of the MO results from the roll making a complete turn
when z increases by the quantity 2π/ξ.

3. HW: A is given by (8.21) (see Fig. 8.3.2). Then, we have R(Ω) = I3 and ζ = ξ (x−λ t).
The pitch and yaw are constant and uniform while the roll is uniform on planes of
constant x. It depends on x and time through the traveling phase x− λ t. Here, the
non-trivial topology results from the roll making a complete turn when x increases
by the quantity 2π/ξ.

263

https://pixabay.com


The goal of the next section is to see how we can recover the roll field from the simulation
of a large particle system.

Roll polarization

As shown in the last section, the roll of the MO is uniform on planes of constant z. When
simulating the MO by the IBM, we will use this property to compute an average roll
on planes of constant z. To cope with the discreteness of the particles, we will rather
consider slices comprised between two planes of constant z. If the distance ∆z between
the planes is chosen appropriately, we can access to both the average and the variance
of the roll. They will be collected into one single vector, the Roll Polarization in planes
of constant z or RPZ. A similar quantity characterises the HW, the Roll Polarization in
planes of constant x or RPX. Below, we detail the construction of the RPZ. Obviously the
procedure is the same (changing z into x) for the RPX.

We assume that the domain is a rectangular box of the formD := [0, Lx]×[0, Ly]×[0, Lz],
and Lz = n (2π/ξ) with n ∈ Z \ {0}. The domain D is partitioned into M slices of fixed
size across z, where M is a fixed integer. For m ∈ {1, . . . ,M}, the slice Sm is defined by:

Sm := [0, Lx]× [0, Ly]×
[
m− 1

M
Lz,

m

M
Lz

]
.

Let us consider a system of N agents with positions and body-orientations (Xk, Ak),
indexed by k ∈ {1, . . . , N}. Each body orientation Ak has roll ζk ∈ [0, 2π). We define the
discrete RPZ for Slice m, ūm, by

ūm :=
1

Nm

∑
k∈Im

(cos ζk, sin ζk)T ∈ R2, (8.36)

where Im = {k ∈ {1, . . . , N}, Xk ∈ Sm} and Nm is the cardinal of Im. Note that the RPZ
ūm has norm smaller than one. The unit vector ūm/|ūm| or equivalently, its angle with
the vector (1, 0)T gives the average roll in Sm. The euclidean norm |ūm| is a measure of
the variance of the set of roll angles {ζk}k∈Im . If this variance is small, then |ūm| ∼ 1,
while if the variance is large, |ūm| � 1. When plotted in the plane R2, the set of RPZ
{ūm}m=1,...,M forms a discrete curve referred to as the RPZ-curve. It will be used to
characterise the topological state of the particle system. A summary of this procedure is
shown in Figure 8.5.2.
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Figure 8.5.2: Construction of the RPZ and graphical representation. The spatial
domain D is partitioned into M slices represented in different colors (top left). In
each slice Sm, we have Im particles with roll ζk each of them plotted in the particle’s
local plane spanned by p(Ωk), q(Ωk) (top right: we plot 3 particles in the slice S1).
Note that the local planes of different particles of the same slice may not coincide
when imbedded in R3. For this given slice, the RPZ ūm is computed and plotted in
R2 (bottom right). The RPZ has norm smaller than 1 and belongs to the unit disk,
whose boundary, the unit circle, is plotted for clarity. The RPZ of each slice is then
plotted on a single figure in the same color as the slice it corresponds to (bottom
left). This collection of points forms a discrete curve (here a fragment of a circle):
the RPZ-curve.

Indicators of RPZ-curve morphology

The RPZ-curve is shown in Figure 8.5.3 (a) to (c), in the three following cases.

1. Disordered state: the particles are drawn independently uniformly randomly in
the product space D× SO3(R). For eachm, the RPZ (8.36) is an average of uniformly
distributed vectors on the circle and its norm is therefore close to 0. The RPZ-curve
is thus reduced to the origin, as shown in Figure 8.5.3a;

2. FS: the positions of the particles are drawn independently uniformly in D and
their body-orientations independently according to a von Mises distribution MκA0

with a fixed mean body orientation A0 ∈ SO3(R). In this case, for all slices, the
corresponding RPZ (8.36) is an average of identically distributed vectors on the
circle whose distribution is peaked around the same point of the unit circle, and the
peak is narrower as κ is larger. Therefore, the RPZ vectors (8.36) concentrate on a
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point near the unit circle (Figure 8.5.3b). The RPZ-curve reduces to a single point
different from the origin;

3. MO: the positions of the particles are drawn independently uniformly in D. Then for
a particle at position x, its body-orientation is drawn independently according to a
von Mises distributionMκAmill(0,z) with Amill(0, z) defined by (8.20) (with ξ = 2π/Lz).
This time, the von Mises distribution is peaked around a point which depends on
z. For each slice, the position of the RPZ (8.36) depends on m. Since Amill(0, z) is
Lz-periodic, the RPZ-curve is a discrete closed circle (Figure 8.5.3c). Note that the
RPX-curve of a HW is similar.

From Figure 8.5.3, we realize that three quantities of interest can be extracted from
the RPZ-curve:

1. the distance of its center of mass to the origin dz:

dz =
∣∣∣ 1

M

M∑
m=1

ūm

∣∣∣, (8.37)

2. its mean distance to the origin r̄z:

r̄z =
1

M

M∑
m=1

|ūm|, (8.38)

3. its winding number about the origin wz: for m ∈ {1, . . . ,M}, let βm = arg
(
ūm,1 +

iūm,2
)
∈ [0, 2π) (with ūm = (ūm,1, ūm,2)

T) and δβm+1/2 ∈ [−π, π) be such that
δβm+1/2 ≡ βm+1 − βm modulo 2π, where we let βM+1 = β1. Then:

wz =
1

2π

M∑
m=1

δβm+1/2,

(see e.g. [202, p. 176]).

The subscript z indicates that the slicing has been made across z. Similar quantities with
an index ’x’ will correspond to the slicing made across x. Fig. 8.5.3d provides a graphical
illustration of the triple (dz, r̄z, wz). For the examples given above, this triple has the
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(a) (b)

(c) (d)

Figure 8.5.3: Examples of RPZ-curves: in each figure, the roll Polarization RPZ
vectors corresponding to M = 1000 slices are plotted. The color bar to the right of
each figure assigns a unique color to each slice. The same color is used to plot the
corresponding RPZ. In each figure the unit circle and its center are represented in
blue. (a) Disordered state: all RPZ concentrate near the origin. (b) FS: all RPZ
concentrate on a point close to the unit circle. (c) MO (8.20): the RPZ-curve is a
discrete circle centered at the origin and of radius close to unity. The total number of
particles is N = 1.5 · 106. Note that in Figs. (a) and (b), all RPZ are superimposed
and only the last one (in magenta color) is visible. (d) Quantifiers of RPZ curve
morphology: point G (in red) is the center-of-mass of the RPZ curve and dz is its
distance to the origin O (shown in blue). The mean radius r̄z of the RPZ curve is
illustrated by the circle in black broken line which has same radius. The winding
number, which is the number of turns one makes following the spectrum of colors in
the same order as in the color bar from bottom to top (the green arrow indicates the
direction of progression along the RPZ curve) is wz = −1 in this example.

following values:

Disordered state: (dz, r̄z, wz) = (0, 0,ND), where ND stands for “undefined”, (8.39)

FS: (dz, r̄z, wz) ≈ (1, 1, 0), (8.40)

MO: (dz, r̄z, wz) ≈ (0, 1, w), with w 6= 0. (8.41)

We have a similar conclusion with (dx, r̄x, wx) for a disordered state or an FS. For an
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HW, we have (dx, r̄x, wx) ≈ (0, 1, w) with w 6= 0. Thus, monitoring either or both triples
(according to the situation) will give us an indication of the state of the system in the
course of time. In particular, non-trivial topological states are associated with non-zero
winding numbers wx or wz. In practice, we will use the nonzero-rule algorithm to compute
the winding numbers numerically [202, p. 176].

8.6 Topological phase transitions: are the MO and HW

topologically protected?

As pointed out in Section 8.4.4, for the IBM, the MO and HW are only metastable: they
typically persist for a finite time before degenerating into a FS. This is in stark contrast
with the macroscopic model for which they persist for ever. The transition of a MO or
HW to a FS implies a topological change. To analyse whether the MO or HW are more
robust due to their non-trivial topological structure (i.e. are topologically protected), we
will compare them with similar but topologically trivial initial conditions (Sections 8.6.1,
8.6.2 and 8.6.3). We also test their robustness against perturbed initial conditions and
show that, in this case, MO may transition to GS (Section 8.6.4). In the Appendix 8.F, we
investigate rarer events, where an MO does not transition directly to an FS but through
a HW.

8.6.1 Initial conditions

In Section 8.6.2, we will compare the solutions of the IBM with different initial conditions
using the perpendicular or parallel twists as building blocks. Some will have a non-trivial
topology and the others, a trivial one. Specifically we define the following initial conditions.

Milling orbit

Let D = [0, L]× [0, L]× [0, 2L] be a rectangular domain with periodic boundary conditions
and let ξ = 2π/L. We consider the following two initial conditions:

• Double mill initial condition MO1:

Am,1(0, z) = A(ξ z, e1), z ∈ [0, 2L], (8.42)

where we recall again that A(θ,n) is the rotation of axis n ∈ S2 and angle θ ∈ R
defined by (7.2). This initial condition has non-trivial topology: the curve generated
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by the end of the vector u in the (y, z)-plane as z ranges in [0, 2L] makes two
complete turns around the origin in the same direction. Thus, this initial condition
has winding number equal to 2.

• Opposite mills initial condition MO2:

Am,2(0, z) =

{
A(ξ z, e1), z ∈ [0, L],

A(−ξ z, e1), z ∈ [L, 2L].
(8.43)

This initial condition has trivial topology: starting from z = 0, the curve generated
by the end of the vector u makes one complete turn around the origin in the
counterclockwise direction until it reaches z = L but then reverses its direction and
makes a complete turn in the clockwise direction until it reaches z = 2L. Thus, this
initial condition has winding number equal to 0 and has trivial topology.

• Perturbed double mill initial condition MO3:

Am,3(0, z) = A(ξ z +
√
σBz, e1), z ∈ [0, 2L], (8.44)

where (Bz)z is a given one-dimensional standard Brownian motion in the z variable
and σ > 0 is a variance parameter which sets the size of the perturbation. The
Brownian motion is subject to B0 = B2L = 0 (i.e. it is a Brownian bridge). Similarly
to the initial condition MO1 (8.42), this initial condition has a nontrivial topology,
in this case a winding number equal to 2.

Helical traveling wave

Let now D = [0, 2L]× [0, L]× [0, L]. Compared to the previous case, the domain has size
2L in the x-direction instead of the z-direction. Let again ξ = 2π/L. We consider now the
following two initial conditions:

• Double helix initial condition HW1:

Ah,1(0, x) = A(ξ x, e1), x ∈ [0, 2L], (8.45)

This initial condition has non-trivial topology and has winding number equal to 2

by the same consideration as for initial condition MO1.
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• Opposite helices initial condition HW2:

Ah,2(0, x) =

{
A(ξ x, e1), x ∈ [0, L],

A(−ξ x, e1), x ∈ [L, 2L].
(8.46)

Again, by the same considerations as for MO2, this initial condition has trivial
topology, i.e. winding number equal to 0.

8.6.2 Observation of topological phase transitions

We initialize the IBM by drawing N positions independently uniformly randomly in the
spatial domain and N body-orientations independently from the von Mises distribution
MA(0,x) where A(0,x) is one of the initial conditions MO1 or MO2. Then, we run the
IBM and record the various indicators introduced in Section 8.5 as functions of time. The
results are plotted in Fig. 8.6.1, as plain blue lines for the solution issued from MO1 (the
topologically non-trivial initial condition), and as broken orange lines for that issued from
MO2 (the topologically trivial one). We proceed similarly for the two initial conditions
HW1 and HW2 and display the results in Fig. 8.6.2. See also Videos 4 to 7 in Section 8.A
supplementing Fig. 8.6.1 and Videos 8 to 11 supplementing Fig. 8.6.2.

Figs. 8.6.1a and 8.6.2a display the GOP. We observe that, for all initial conditions, the
GOP has initial value GOP1, which is consistent with the fact that the initial conditions
are either MO or HW. Then, again, for all initial conditions, at large times, the GOP has
final value GOP2 which indicates that the final state is a FS. This is confirmed by the
inspection of the second line of figures in Figs. 8.6.1 and 8.6.2 which provide the triplet
of topological indicators (dz, r̄z, wz) for MO solutions and (dx, r̄x, wx) for HW solutions.
Specifically, dz and dx are given in Figs. 8.6.1d and 8.6.2d respectively, r̄z and r̄x in
Figs. 8.6.1e and 8.6.2e, and wz and wx in Figs. 8.6.1f and 8.6.2f. Initially both triplets
corresponding to MO1 or HW1 solutions have value (0, 1, 2) as they should (see (8.41)).
Their final value is (1, 1, 0) which indicates a FS (see (8.40)). The fact that the final state
is a FS implies, for MO1 and HW1, first that the IBM has departed from the MO and
HW exact solutions of the macroscopic model described in Sections 8.3.2 and 8.3.3, and
second, that a topological phase transition has taken place, bringing the topologically
non-trivial MO1 and HW1 to a topologically trivial FS. For the topologically trivial MO2
and HW2 initial conditions, no topological phase transition is needed to reach the FS.
The differences in the initial topology of the solutions induce strong differences in the
trajectories followed by the system.

For the topologically non-trivial initial conditions MO1 or HW1, the system remains
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in the MO or HW state for some time; hence it follows the macroscopic solution during
this phase. Indeed, the GOP displays an initial plateau at the value GOP1, while the
triplet of topological indicators stays at the value (0, 1, 2), which characterize the MO or
HW state. For MO1, this is also confirmed by the yaw ϕ̄ (Fig. 8.6.1c, blue curve), which
varies linearly in time and by the pitch θ̄ (Fig. 8.6.1b blue curve) which is constant in
time, consistently with the MO solution of the macroscopic model (Section 8.3.2) (see also
Fig. 8.4.2a for the linear variation of the yaw). The duration of this initial phase, also
referred to as the persistence time, is significantly longer for HW1 than for MO1. In our
experiments, the former can reach several hundred units of time and sometimes be infinite
(up to our computational capacity). By contrast, the latter is random and of the order of
ten units of time. After this initial plateau, the GOP decreases until it reaches a minimum
at a time highlighted in Figs. 8.6.1, 8.6.2 and subsequent figures by a gray shaded zone,
showing that the system passes through a state of maximal disorder. Around that time, r̄
has a sharp drop which is another confirmation of an increased disorder. The topological
transition precisely occurs at this time with a transition of the winding number from 2

to 0 through a short sequence of oscillations. However, r̄ has not reached 0 and d has
already started to increase, which suggests that disorder is not complete. At this time
also, the linear variation of ϕ̄ suddenly stops and ϕ̄ remains constant afterward, while
θ̄ shows a small oscillation and jump. For HW1, θ̄ and ϕ̄ are initially plateauing with
small oscillations. At the time when the system leaves the HW state (around t ' 178), we
observe a sudden drop of ϕ̄ from 2π to π which indicates that the system suddenly reverses
its average direction of motion. The GOP starts to decrease significantly before this time
so we can infer that during the time period between t ' 125 and t ' 178, even though
the mean direction of motion Ω̄ remains constant, groups of particles of almost similar
proportions are moving in opposite directions, which preserves the average direction of
motion (and may explain the oscillations during the initial persistence phase). This is
confirmed by Video 8 (see description in Section 8.A). Then, once this minimum is reached,
the GOP increases quickly to finally reach the value GOP2 of the FS. Likewise, r̄ and d
quickly reach the value 1 while the winding number stays at the value 0.

By contrast to the previous case, the system immediately leaves the topologically
trivial initial conditions MO2 or HW2 as shown by the GOP immediately leaving the
value GOP1. For HW2 the GOP increases right after initialization and smoothly reaches
the value GOP2, at a much earlier time than HW1. The trend is different for MO2. In
this case, the GOP first decreases. Then, after a minimum value, it increases again and
smoothly reaches the value GOP2 at a time similar to MO1. The initial decay of the GOP
for the MO2 solution can be explained by the fact that the macroscopic direction Ω turns
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in opposite directions for the two opposite mills, thus decreasing the global order. For
HW2, the macroscopic direction stays constant and uniform. So, it is the same for the
two opposite helices, giving rise to a larger GOP. The mean radii r̄z and r̄x stay constant
it time, showing that the evolutions of MO2 and HW2 do not involve phases of larger
disorder. The quantity dx increases monotonically towards the value 1 while dz is subject
to some oscillations close to convergence. This is due to the fact that the RPZ or RPX
curves stay arcs of circles with decreasing arc length for the RPX and with some arc length
oscillations for the RPZ as displayed in Videos 7 and 11. Of course, the winding number
stays constant equal to 0 as it should for topologically trivial solutions. In both the MO2
and HW2 cases, θ̄ and ϕ̄ remain constant throughout the entire simulation. In the MO2
case, this is the consequence of the two counter-rotating mills which preserve the direction
of motion on average. In the HW2 case, this is due to the fact that there is no variation
of the direction of motion for HW solutions in general (see also Video 6 and Video 10).
Again, we observe that the convergence towards the FS takes more time for HW2 than for
MO2. This points towards a greater stability of the HW-type solutions compared to the
MO ones.

8.6.3 Reproducibility

Since the IBM is a stochastic model, one may wonder whether Figs. 8.6.1 and 8.6.2 are
representative of a typical solution. In Fig. 8.6.3, the GOP is plotted as a function of time
for 20 independent simulations with MO1 initial conditions and the same parameters as
in Fig. 8.6.1 (blue curves). The same features as in Fig. 8.6.1 are observed, namely: (i)
an initial stable milling phase which lasts about 10 units of time; (ii) a decrease of the
GOP between approximately 10 to 15 units of time; (iii) a subsequent increase of the GOP
which reaches the value GOP2 of the FS. A similar reproducibility of the results has been
observed for the other initial conditions (MO2, HW1, HW2) (not shown).

8.6.4 Robustness against perturbations of the initial conditions

In this section, we study the robustness of the MO when the initial condition is randomly
perturbed as described by the initial condition MO3 (8.44). Three typical outcomes for
three different values of the perturbation size σ are shown in Fig. 8.6.4. For each value of σ,
the temporal evolution of the four main indicators are shown: the GOP (Figs. 8.6.4a, 8.6.4e,
8.6.4i), the mean polar angle or pitch (Figs. 8.6.4b, 8.6.4f, 8.6.4j), the mean azimuthal angle
or yaw (Figs. 8.6.4c, 8.6.4g, 8.6.4k) and the winding number along the z-axis (Figs. 8.6.4d,
8.6.4h, 8.6.4l). For small to moderate values (approximately σ < 100), the outcomes of the
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(a) (b) (c)

(d) (e) (f)

Figure 8.6.1: Examples of solutions of the IBM for initial conditions sampled from
the double mill MO1 (plain blue curves) and the opposite mills MO2 (boken orange
curves). The following indicators are plotted as functions of time: (a) Global Order
Parameter (GOP) (see Eq. (8.30)). Horizontal lines at GOP values 0.25, 0.45 and 0.85
materialize the special values GOP0, GOP1 and GOP2 respectively corresponding
to totally disordered states, MO or HW, and FS (see Eqs. (8.33)-(8.35)). (b) Pitch
angle θ̄ of the global particle average direction Ω̄ (see (8.26)). (c) Yaw ϕ̄ of Ω̄. (d)
Distance of center of mass of RPZ curve to the origin dz (see (8.37)). (e) Mean
distance of RPZ curve to the origin r̄z (see (8.38)). (f) Winding number of RPZ
curve wz (see (8.37)). Gray shaded zones highlight a small region around the time
of minimal GOP for the MO1 solution. Parameters: N = 3 106, R = 0.025, κ = 10,
ν = 40, c0 = 1, L = 1, ξ = 2π. See also Videos 4 to 7 in Section 8.A.

simulation are the same as in Fig. 8.6.1 and are not shown. However, they demonstrates
the robustness of the topological solutions. When σ increases and crosses this threshold,
the behaviour becomes different. Around this threshold (for σ = 134), in Fig. 8.6.4a, we
observe that the GOP does not remain initially constant (contrary to the un-perturbed
case shown in Fig. 8.6.1a) but immediately decreases, then increases and oscillates around
the value GOP1 before transitioning towards the value GOP2 corresponding to a FS. In
Figs. 8.6.4c and 8.6.4d, we observe that the MO is preserved during a comparable, slightly
longer, time than in Figs. 8.6.1c and 8.6.1f (around 20 units of time) before degenerating
into a FS.
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(a) (b) (c)

(d) (e) (f)

Figure 8.6.2: Examples of solutions of the IBM for initial conditions sampled
from the double helix HW1 (plain blue curves) and the opposite helices HW2 (broken
orange curves). The following indicators are plotted as functions of time: (a) Global
Order Parameter (GOP). (b) Pitch angle θ̄ of Ω̄. (c) Yaw ϕ̄ of Ω̄. (d) Distance of
center of mass of RPX curve to the origin dx. (e) Mean distance of RPX curve to
the origin r̄x. (f) Winding number of RPX curve wx. Gray shaded zones highlight
a small region around the time of minimal GOP for the HW1 solution. The HW2
and HW1 solutions are computed during 200 and 250 units of time respectively. The
two simulations have reached equilibrium by their final time. Parameters: N = 3 106,
R = 0.025, κ = 10, ν = 40, c0 = 1, L = 1, ξ = 2π. See caption of Fig. 8.6.1 for
further indications. See also Videos 8 to 11 in Section 8.A.

Passed this threshold, when σ increases again and up to another threshold value
around σ ' 1000, a new topological phase transition is observed from a MO with winding
number 2 to a GS (8.24) with winding number 1. For σ = 753, the GOP shown in
Fig. 8.6.4e initially strongly oscillates around the value GOP1 before stabilizing, still
around this value, which is in stark contrast with the previous experiments. The winding
number shown in Fig. 8.6.4h reveals that this final steady behaviour is linked to a winding
number equal to 1 after a transition around t ' 12. Consequently, a milling behaviour
is observed in Fig. 8.6.4g for the mean azimuthal angle. This angle evolves linearly but
with a slower speed, approximately divided by 2, after the transition, as expected since
the winding number has dropped from 2 to 1. However, the final mean polar angle θ̄
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Figure 8.6.3: GOP as a function of time for 20 independent simulations of the
transition from a MO to a FS starting from MO1. The parameters are the same as
the ones on Figure 8.6.1.

shown in Fig. 8.6.4f is not equal to π/2. Since the gradient in body-orientation is along
the z-axis, this indicates that the final state corresponds to a GS rather than a standard
MO. This demonstrates that the family of generalised topological solutions enjoys some
greater stability. The transition between MO and GS has not been observed when starting
from a non-perturbed initial state. However, starting with perturbed initial conditions,
the MO and GS with winding number 1 seem stable during several tens of units of time.

The transition between MO and GS with different winding numbers happens when
the perturbation size is large enough and seems to be the typical behaviour: out of 6
independent simulations for values of σ evenly spread between 258 and 876, 5 simulations
led to a MO or a GS with winding number 1 stable during more than 50 units of time.
The other one led to a FS. We can think that the perturbation brings the system to a
state closer to the MO with winding number 1, in particular due to the stochastic spatial
inhomogeneities of the perturbation. On the particle simulations, we observe that the
density of agents does not remain uniform, which creates different milling zones with
possibly different milling speeds depending on the local gradient of body-orientations.
The denser region then seems to attract the other particles before expanding into the
full domain. The global direction of motion is not necessarily preserved during this
process. In comparison, starting from an unperturbed MO with winding number 2, the
density remains uniform and the system is globally subject to numerical errors which
homogeneously degrade the topology up to the point that the system becomes closer to a
FS. The situation is analogous when the size of the perturbation is too large as shown in
Figs. 8.6.4i, 8.6.4k, 8.6.4l for σ = 1000 : the MO is preserved during less than 5 units of
time and after an immediate drop of the GOP, the system quickly reaches a FS.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8.6.4: Different outcomes of the simulation of the IBM starting from
perturbed initial MO. Only the four main indicators are shown: from left to right, the
GOP, the mean polar angle (or pitch) θ̄, the mean azimuthal angle (or yaw) ϕ̄ and
the winding number wz. (a)-(d) For σ = 134, the system stays a MO for a long time
(t ' 20) but eventually converges to a FS; (e)-(h) for σ = 753, the system converges
towards a generalised solution with a polar angle not equal to π/2 and a winding
number equal to 1 along the z-axis; (i)-(l) for σ = 1000, the MO is quickly disrupted
(at t ' 5) and converges almost immediately towards a FS. Parameters: N = 3 106,
R = 0.025, κ = 10, ν = 40, c0 = 1, L = 1, ξ = 2π.

8.6.5 Critique

The existence of a persistence time for the MO1 and HW1 solutions suggests that they
enjoy some kind of topological protection against the noisy perturbations induced by
the IBM and that MO2 and HW2 do not have such protection. However, since explicit
solutions of the SOHB model for the initial conditions MO2 and HW2 are not available,
it is not possible to assess the role of noise in the observed evolutions of the MO2 and
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HW2 solutions. So, further investigations are needed to confirm that non-trivial topology
actually provides increased robustness against perturbations. Moreover, the MO1 is robust
against perturbed initial conditions. The MO and GS with winding number 1 seem to be
much more more stable than with winding number 2.

8.7 Discussion and conclusion

At the particle level, the body-attitude coordination model involves new kinds of internal
degrees of freedom involving geometrical constraints, here due to the manifold structure
of SO3(R). At the macroscopic level, it leads to new types of self-organised phenomena.
In particular, the macroscopic model has been shown to host special solutions with non-
trivial topological structures. Corresponding solutions of the Individual Based Model have
been computed and their non-trivial topological structure, shown to persist for a certain
time before being destroyed by noise-induced fluctuations. Quantitative estimates of the
agreement between the Individual Based Model and the macroscopic model have been
given. This study provides one more evidence of the role of geometry and topology in
the emergence of self-organised behaviour in active particle systems. The SOHB model
presented in this chapter opens many new research directions. Some of them are listed
below.

1. The stability of the MO (8.18), HW (8.21) and GS (8.24) solutions as well as those
of the generalised HW solutions described in Section 8.D is an open problem. It
would enable us to investigate the potential link between topological structure and
stability.

2. Numerical simulations have been carried out in a periodic setting. Real systems
though are confined by solid walls. To model the influence of confinement, it is
necessary to explore wider classes of boundary conditions.

3. Most topological states in physical systems consist of linear perturbations of bulk
states that propagate on the edges of the system (edge states). It would be interesting
to determine whether linear perturbations of the MO or HW solutions could host
such edge states.

4. Direct numerical simulations of the macroscopic model need to be developed to
answer some of the questions raised by the study of topological protection (see
Section 8.6.2).
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5. It is desirable to develop more sophisticated topological indicators to gain better
insight into the topological structure of the solutions.

6. The multiscale approach developed here could be extended to other geometrically
structured systems involving e.g. a wider class of manifolds which would enlarge the
applicability of the models.
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Appendix

8.A List of supplementary videos

This chapter is supplemented by several videos which can be accessed by following this link:
https://figshare.com/projects/Bulk_topological_states_in_a_new_collective_

dynamics_model/96491. They are listed and described below.

Video 1. It supplements Fig. 8.4.1 of Section 8.4.1 and provides a visualization of the time
evolution of the system considered in this figure.

Video 2. It supplements Fig. 8.3.1 of Section 8.3.2: it provides a visualization of the time
evolution of a MO. Several frames A = (Ω,u,v) ∈ SO3(R) are placed at various locations
of space and evolve according to (8.18) (with arbitrary chosen parameters). The vectors
Ω, u and v are displayed respectively in red, green and blue.

Video 3. It supplements Fig. 8.3.2 of Section 8.3.3: it provides a visualization of the time
evolution of a HW. See caption of Video 2 for details on the graphical representation.

Video 4. It supplements Fig. 8.6.1 in Section 8.6.2. It shows the time-evolution of the
particles for the initial condition MO1 (8.42). For clarity, only a sample of 5000 particles
are shown. We refer to Fig. 8.4.1a for details on the representation of the body orientation
using four-colored tetrahedra. We notice the ensemble rotation of the particle directions
about the z axis until an instability disrupts the body orientation twist along the z axis
(around time t ≈ 13) and eventually drives the system to a FS.

Video 5. It supplements Fig. 8.6.1 in Section 8.6.2. It provides the time-evolution of the
RPZ curve for the initial condition MO1 (8.42). The RPZ curve remains a circle until time
t ≈ 8 where its radius shrinks down. Then, the RPZ-curve shows a fairly chaotic dynamics
during which the topology is lost. This happens around time t ≈ 13 which is the first time
when the RPZ-curve passes through the origin; at this time, the winding number is not
defined. Then, the RPZ-curve slowly migrates towards the unit circle while shrinking to a
single point which signals a FS. From time t ≈ 15 on, it remains a single immobile point.
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Video 6. It supplements Fig. 8.6.1 in Section 8.6.2. It shows the time-evolution of the
particles for the initial condition MO2 (8.43). For clarity, only a sample of 5000 particles
are shown (see Fig. 8.4.1a for details on the representation of the body orientation). We
notice the counter-rotation of the particle directions about the z axis in the bottom and
top halves of the domain, corresponding to the opposite mills. These two counter-rotations
gradually dissolve while the solution approaches the FS.

Video 7. It supplements Fig. 8.6.1 in Section 8.6.2. It provides the time-evolution of the
RPZ curve for the initial condition MO2 (8.43). The circle formed by the initial RPZ
curve immediately opens. The opening width constantly increases, until the arc is reduced
to a single point opposite to the opening point at time t ≈ 10. Then there is a bounce
and the arc forms again and increases in size until it reaches a maximum and decreases
again. Several bounces are observed with decreasing amplitudes. These bounces result in
the non-monotonous behaviour of the quantity dz displayed on Fig. 8.6.1d.

Video 8. It supplements Fig. 8.6.2 in Section 8.6.2. It shows the time-evolution of
the particles for the initial condition HW1 (8.45) (see Fig. 8.4.1a for details on the
representation of the body orientation). For clarity, only a sample of 5000 particles are
shown. Before time t ' 125, we observe a steady HW state. Then, after time t ≈ 125, the
particles show an undulating wave-like behaviour, with slowly increasing frequency and
amplitude, which causes the decrease of the GOP. Around time t ≈ 178, the particles are
divided into two groups with pitch angles θ ' 0 and θ ' π, which suddenly reverses the
global direction of motion. After time t ≈ 178, the particles quickly adopt the same body-
orientation. Shortly after time t = 178, the particles still have an undulating behaviour
but it quickly fades away until a FS is reached.

Video 9. It supplements Fig. 8.6.2 in Section 8.6.2. It shows the time-evolution of the
RPX-curve for the initial condition HW1. Unlike in the MO case, the RPX curve does not
shrinks to the center of the circle before migrating to its limiting point. In this case, the
limiting point near the unit circle towards which the RPX curve is converging attracts
the RPX. During this transition, the circular shape of the RPX curve is preserved until it
becomes a point.

Video 10. It supplements Fig. 8.6.2 in Section 8.6.2. It shows the time-evolution of the
particles for the initial condition HW2 (8.46). For clarity, only a sample of 5000 particles
are shown (see Fig. 8.4.1a for details on the representation of the body orientation). At
the beginning, we see two opposite alternations of the three side colors of the tetrahedra
(green-blue-magenta followed by green-magenta-blue), which signals a double parallel twist.
Then, gradually, the green color is eaten up by the blue and magenta ones and only one
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alternation of the blue and magenta colors remains. Then the color alternation shades
away and gives room to a homogeneous color showing that the body orientations have
stopped rolling and a FS is attained.

Video 11. It supplements Fig. 8.6.2 in Section 8.6.2. It provides the time-evolution of
the RPX curve for the initial condition HW2 (8.46). The circle formed by the initial
RPX curve immediately opens. The opening width constantly increases, although at a
slower pace than for MO2 (see Video 7). Here, also contrasting with the MO2 case, the
monotonous opening of the arc results in a monotonously increasing quantity dx as shown
in Fig. 8.6.2d.

Video 12. It supplements Fig. 8.F.1 in Section 8.F.1. It shows the time-evolution of the
particles for a MO initial condition (8.42) in a rare case where it evolves into a HW.
For clarity, only a sample of 5000 particles are shown (see Fig. 8.4.1a for details on the
representation of the body orientation). It starts like Video 4 with the ensemble rotation
of the particle directions about the z axis until an instability initiated at time t ≈ 10

gradually disrupts this organization. However, the disruption does not drive the system
to an FS, but rather to a HW as shown by the alternations of blue, green and magenta
colors propagating along the particle orientations.

Video 13. It supplements Fig. 8.F.1 in Section 8.F.1. It provides the time-evolution of the
RPZ curve for a MO initial condition (8.42) in a rare case where it evolves into a HW. The
behaviour is essentially the same as in Video 5 except that the RPZ-curve shrinks to a
single point far away from the unit circle. This shows that the end state of the RPZ-curve
is closer to disorder than for a milling to flocking transition. Before that, the non-trivial
topology across z is lost following a similar scenario as for the milling-to-flocking transition.

Video 14. It supplements Fig. 8.F.1 in Section 8.F.1. It provides the time-evolution of
the RPX curve for a MO initial condition (8.42) in a rare case where it evolves into a
HW. Initially, the RPX-curve is reduced to the origin, showing total disorder across the
x direction. Then, after some chaotic transient, a closed curve enclosing the origin is
formed. This curve initially stays close to the origin, still showing strong disorder. But
gradually, the radius of the curve increases and approaches the unit circle. Thus, across x,
the topology is initially undefined, but when it builds up, it shows its non-trivial character,
the emerging RPX-curve having non-zero winding number about the origin.

Video 15. It supplements Fig. 8.F.2 in Section 8.F.2. It shows the time-evolution of the
particles for a MO initial condition (8.42) in a rare case where it evolves into a FS through
a transient HW. For clarity, only a sample of 5000 particles are shown (see Fig. 8.4.1a
for details on the representation of the body orientation). The point of view is changed
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from Video 12 to better visualize the transient HW moving along the diagonal, appearing
around time t ≈ 16. At the beginning we witness the ensemble rotation of the particles
and its disruption by an instability. After some chaotic behaviour, the transient HW
establishes as shown by the alternations of blue, green and magenta colors propagating
along the diagonal. But after some time, the HW structure is disrupted again and the
system eventually establishes a FS.

Video 16. It supplements Fig. 8.F.2 in Section 8.F.2. It provides the time-evolution of
the RPZ curve for a MO initial condition (8.42) in a rare case where it evolves into a FS
through a transient HW. The behaviour is essentially the same as in Video 5 except that
the RPZ-curve undergoes a longer-lasting chaotic dynamics before shrinking to a point
which migrates towards the unit circle.

8.B Quaternion framework

Despite its formal simplicity, the SO3(R)-framework used in the definition of the Individual
Based Model is not well suited to numerical simulations due to the high computational
cost required to store and manipulate rotation matrices. A more efficient representation of
rotations in R3 is the quaternion representation already used in Chapter 7 in a different
context. We recall that it is based on the group isomorphism

Φ : H/± 1 −→ SO3(R)

q 7−→ Φ(q) : w ∈ R3 7→ {q[w]q∗} ∈ R3,

where the 3-dimensional vector w = (w1, w2, w3)T ∈ R3 is identified with the pure imaginary
quaternion denoted by [w] = iw1 + jw2 + kw3 and q∗ denotes the conjugate quaternion
to q. Conversely, the pure imaginary quaternion q = iq1 + jq2 + kq3 is identified with the
3-dimensional vector denoted by {q} := (q1, q2, q3)T. Note that for any quaternion q and
any vector w ∈ R3, the quaternion q[w]q∗ is a pure imaginary quaternion. The group of
unit quaternions is denoted by H and is homeomorphic to the sphere S3 ⊂ R4.

We refer the reader to [116, Section 2] and [115, Appendix A] where details about
the equivalence between the two representations can be found. Note that [115] studies a
model in a full quaternion framework. The main difference with the SO3(R)-framework
is the computation of the flux (2.6). In the quaternion framework, the flux is defined as
the local average of the normalised uniaxial Q-tensors associated to the body-orientations
of the particles (See Lemma 7.A.1). This is a symmetric matrix of dimension 4 and the
quaternion version of the projection of the flux on SO3(R) is a normalised eigenvector of

282



this matrix associated to the maximal eigenvalue.
Table 8.B.1 below summarises how the different objects can be computed in either of

the two representations.

Matrix Quaternion

Orientation A ∈ SO3(R) q ∈ H/± 1 such that Φ(q) = A

Flux Jkt =
∑

jK(|Xk
t −Xj

t |)Ajt Qkt =
∑

jK(|Xk
t −Xj

t |) (qjt ⊗qjt −1/4I4)

Mean orientation A = argmax{A 7→ A · J} q̄ ∈ H eigenvector associated to the
largest eigenvalue of Q

Von Mises distri-
bution

MκA(A) =
exp(κA ·A)

Z Mκq(q) =
exp(2κ(q · q)2)

Z

Table 8.B.1: Matrix vs quaternion formulation

8.C Numerical methods

The IBM (2.3), (2.4) has been discretized within the quaternion framework using the
time-discrete Algorithm 6 below (in pseudo-code using a naive implementation). This
algorithm shows one iteration of the algorithm during which the positions Xk

n ∈ R3 and
orientations qkn ∈ H for k ∈ {1, . . . , N} are updated into Xk

n+1 and qkn+1 respectively. Note
that the source code used for the simulations in this chapter can be found on the SiSyPHE
GitHub page https://github.com/antoinediez/Sisyphe.

The Poisson process is discretized with a time step ∆t during which the indices of the
jumping agents are recorded. In the simulations ∆t has to be chosen small enough so that
the event that an agent jumps twice or more during a time interval of size ∆t is negligible.
In all the simulations, we take ∆t such that ν ∆t = 10−2.

The orientations of a subset of agents is updated at each time step by drawing random
quaternions from a von Mises distribution with prescribed mean orientation. Note that a
quaternion q ∼Mκq̄ for a given q̄ can be obtained as q = q̄r where r ∈ H is sampled from
a von Mises distribution with mean orientation 1 (see [116, Proposition 9]). We use an
efficient rejection algorithm to sample von Mises distributions which is due to [230].

All the simulations in this paper take place in a periodic box of size L = (Lx, Ly, Lz).
The observation kernel K is the indicator of the ball centered at 0 and of radius R > 0.
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Input: The set of positions (X1
n, . . . , X

N
n ) ∈ (R3)N and orientations

(q1
n, . . . , q

N
n ) ∈ HN at iteration n and the parameters in Table 8.4.1.

Output: The positions and orientations at iteration n+ 1

for k = 1 to N do

Set Xk
n+1 = Xk

n + c0 {qkn[e1](qkn)∗}∆t ; // Update the position

Draw rk uniformly in [0, 1] ;

if rk > exp(−ν∆t) then
Set Qk

n = 1
N

∑N
j=1K(|Xk

n −Xj
n|) (qjn ⊗ qjn − 1

4
I4). ; // Average Q-tensor

Compute one unit vector qkn of Qk
n of maximal eigenvalue ;

Draw qkn+1 ∼Mκqnn ; // Draw a new orientation

else
Set qkn+1 = qkn ; // Do not update the orientation

end
end

Algorithm 6: Iteration n→ n+ 1 of the time-discrete algorithm

The six parameters of the simulations are summarised in Table 8.4.1.

8.D MO, HW, GS and generalised HW solutions

In this section, we provide proofs of Lemmas 8.3.1, 8.3.2 and 8.3.3. The prototypical
helical traveling wave (HW) presented in Lemma 8.3.2 belongs to a more general class of
solutions called generalised HW solutions described in Section 8.D.2 below.

8.D.1 Proof of Lemma 8.3.1

Starting from the initial condition (8.20), we are looking for solutions of (8.2b) of the form

A(t,x) =

 cos(ωt) u1(t, z) v1(t, z)

− sin(ωt) u2(t, z) v2(t, z)

0 u3(t, z) v3(t, z)

 ,

where ω ∈ R is an angular velocity which will be related to the parameters of the problem
later and where the basis vectors u = (u1, u2, u3)

T and v = (v1, v2, v3)
T depend only on

the z variable and time. In this situation, Equation (8.2a) is trivially satisfied which means
that the system stays homogeneous in space. Solutions of this form have to satisfy three
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geometrical constraints which ensure that A ∈ SO3(R). The first two ones are Ω× u = v

and v × Ω = u, which lead to

A(t,x) =

 cos(ωt) sin(ωt)v3(t, z) − sin(ωt)u3(t, z)

− sin(ωt) cos(ωt)v3(t, z) − cos(ωt)u3(t, z)

0 u3(t, z) v3(t, z)

 . (8.47)

The third one is a normalization constraint:

∀t > 0, ∀z ∈ R, u3(t, z)2 + v3(t, z)2 = 1. (8.48)

Using (8.48), we define a function α ≡ α(t, z) such that

u3(t, z) = sin(α(t, z)), v3(t, z) = cos(α(t, z)).

A direct computation shows that for A of the form (8.47), we have

r = (∂zu3) u + (∂zv3) v, δ = 0.

Therefore, Eq. (8.2b) can be rewritten more concisely into:

∂tA + c4 [Ω× r]×A = 0, (8.49)

where we recall Eq. (7.3) for the definition of [ ]×. A direct computation shows that

Ω× r = (v3 ∂zu3 − u3 ∂zv3) e3 = (∂zα) e3. (8.50)

Inserting this in (8.49) implies that u3(t, z) ≡ u3(z) and v3(t, z) ≡ v3(z) are independent
of time. We then observe that:

A(t,x) = A(−ωt, e3)A(α(z), e1), (8.51)

where we recall Eq. (7.2) for the meaning of A. Therefore, using (8.49) and (8.50), we
obtain:

−ω [e3]×A + c4 (∂zα) [e3]×A = 0,

from which we deduce that A satisfies (8.2b) if and only if α and ω satisfy:

c4∂zα = ω,
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which implies
α(z) =

ω

c4

z + ᾱ, (8.52)

where ᾱ is a constant, which can be interpreted as the phase at the origin z = 0. To
recover Eq. (8.18), we just need to take ᾱ = 0 and define ξ = ω/c4. Eq. (8.19) follows
from (8.51).

8.D.2 Generalised HW and proof of Lemma 8.3.2

Starting from the initial condition (8.23), we are looking for solutions of (8.2b) of the form

A(t,x) =

 1 0 0

0 cos(α(t, x)) − sin(α(t, x))

0 sin(α(t, x)) cos(α(t, x))

 ,

for a real-valued function α of the t and x variables only. In this case, Ω is a constant
vector and Equation (8.12a) is trivially satisfied. Moreover a direct computation shows
that:

r = 0, δ = (∂xα)(t, x).

As a consequence, Eq. (8.15) is trivially satisfied and straightforward computations show
that Eq. (8.2b) reduces to

∂tα + (c2 + c4) ∂xα = 0.

This last equation is a linear transport equation with velocity c2 + c4, the solutions of
which are given by

α(t, x) = α0(x− (c2 + c4)t) (8.53)

for any initial condition α0 ∈ L1
loc(R). In the case of (8.23), α0(x) = ξ x. However, we see

that there are as many different solutions as functions in L1
loc(R). Such general solutions

are called “generalised HW”.

8.D.3 Proof of Lemma 8.3.3

The three rotation matrices are given by

A(−ωt, e3) =

 cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0

0 0 1

 ,
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A(θ − π/2, e2) =

 sin θ 0 − cos θ

0 1 0

cos θ 0 sin θ

 ,

A(ξ(z − λ̃t), e1) =

 1 0 0

0 cos(ξ(z − λ̃t)) − sin(ξ(z − λ̃t))
0 sin(ξ(z − λ̃t)) cos(ξ(z − λ̃t))

 ,

and a direct computation shows that the three column vectors Ω, u and v of the matrix Aξ,θ

are given by

Ω =

 sin θ cos(ωt)

− sin θ sin(ωt)

cos θ

 ,

u =

 − cos θ sin(ξ(z − λ̃t)) cos(ωt) + cos(ξ(z − λ̃t)) sin(ωt)

cos θ sin(ξ(z − λ̃t)) sin(ωt) + cos(ξ(z − λ̃t)) cos(ωt)

sin θ sin(ξ(z − λ̃t))

 ,

v =

 − cos θ cos(ξ(z − λ̃t)) cos(ωt)− sin(ξ(z − λ̃t)) sin(ωt)

cos θ cos(ξ(z − λ̃t)) sin(ωt)− sin(ξ(z − λ̃t)) cos(ωt)

sin θ cos(ξ(z − λ̃t))

 .

Then we compute

r = ξ sin θ cos(ξ(z − λ̃t))u− ξ sin θ sin(ξ(z − λ̃t))u = ξ sin θ(sin(ωt), cos(ωt), 0)T,

δ = cos θ∂zu · v + u3δzv · Ω = ξ cos θ,

where we have used that ∂zu = ξv and ∂zv = −ξu. It remains to check that Eq. (8.2b)
holds true. We split this equation into three equations (8.5), one for each vector Ω, u

and v. The first equation on Ω reads

(∂t + c2(Ω · ∇x))Ω + c4PΩ⊥r = 0.

This equation holds true because

∂tΩ = −ω

 sin θ sin(ωt)

sin θ cos(ωt)

0

 , (Ω · ∇x)Ω = 0, PΩ⊥r = ξ sin θ

 sin(ωt)

cos(ωt)

0

 ,
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and ω = c4ξ. The second equation on u reads

(∂t + c2(Ω · ∇x))u− c4(u · r)Ω + c4δv = 0.

Because λ̃ = c2 cos θ, we have

∂t + c2Ω · ∇x = ∂t + c2 cos θ∂z = ∂t + λ̃∂z and ∂t + λ̃∂z(z − λ̃t) = 0.

Thus

(∂t + c2(Ω · ∇x))u = ω

 cos θ sin(ξ(z − λ̃t)) sin(ωt) + cos(ξ(z − λ̃t)) cos(ωt)

cos θ sin(ξ(z − λ̃t)) cos(ωt)− cos(ξ(z − λ̃t)) sin(ωt)

0

 ,

and using ω = c4ξ, it can be checked that

(∂t + c2(Ω · ∇x))u− c4(u · r)Ω = −c4ξ cos θv = −c4δv,

which yields the result. The equation on v is analogous.

8.D.4 GOP of the MO and generalised HW

The GOP (given by Eq. (8.32)) of the MO and HW do not depend on time and only
depend on the function α defined respectively by (8.52) and (8.53). Using Eq. (8.32), we
can compute that the GOP is equal to:

GOP =
1

2

(
c1(κ)

c0

)2 (
1 + 2 |〈u〉|2

)
+

1

4
,

where 〈u〉 denotes the spatial average of the vector u with respect to ρ (here the with
respect to the uniform measure on the domain since ρ is constant and uniform). With the
previous notations, we obtain

|〈u〉|2 = 〈cosα〉2 + 〈sinα〉2,

For the generalised HW, depending on the choice of α, the GOP can take any value
between GOP1 and GOP2, these two extreme values being attained respectively when
|〈u〉| = 0 and |〈u〉| = 1.
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8.E Convergence rate of |dϕ̄/dt| as N →∞
The fact that the convergence rate of |dϕ̄/dt| is close to N−1 agrees with previously docu-
mented observations in spherical statistics. Indeed, it has been shown in [298, Theorem 3(e)]
that the estimation of the concentration parameter of a (spherical) von Mises distribution
obtained from a crude averaging procedure from N independent samples produces a biased
estimator with a (nonnegative) bias of order N−1 (see also [247, Section 10.3]). In the
present case, a similar reasoning can be applied, which we now briefly develop. The key
observation is that all the measured quantities are functions of empirical averages of the
form (2.6). Under the chaos assumption, when N is large, the body-orientations of the
particles behave as N independent samples with common law MκA, where A solves the
SOHB model (8.2) and MκA is defined by (2.5). In [114, Theorem 4.1], it has been shown
that c4(κ) can actually be expressed as a function of a certain number p of averaged
quantities

c4(κ) = F
(
〈g1〉MκA , . . . , 〈gp〉MκA

)
,

where gi : SO3(R) → M3(R) and F : M3(R)p → R are smooth functions. The IBM
simulation thus defines an estimator κ̂ of the concentration parameter such that

c4(κ̂) = F (ĝ1, . . . , ĝp),

where ĝi is the average of gi obtained by replacing MκA by the empirical measure of the N
body-orientations of the particles. We can then measure the bias by taking the expectation
of the Taylor expansion of the previous expression around the point (〈g1〉MκA , . . . , 〈gp〉MκA)

c4(κ̂) = c4(κ) + δĝ · ∇F + (δĝ)T(HessF )δĝ +R,

where δĝ = (ĝ1, . . . , ĝp)
T − (〈g1〉MκA , . . . , 〈gp〉MκA)T and R is a remainder. The gradient ∇

and Hessian Hess are defined within the Euclidean framework given by (2.1). By the chaos
hypothesis E[δĝ] = 0 and by the central limit theorem, the term of order two behaves
as N−1. Since SO3(R) is compact, higher order moments of δĝ can be controlled by a
classical argument based on Hoeffding’s inequality [320, Lemma 5.5 and Theorem 5.29].
This ensures that E[R] is O(N−2). We therefore obtain a biased estimator:

E[c4(κ̂)] = c4(κ) +
a

N
+O(N−2),

where a ∈ R depends on the derivatives of the considered functions and on the variance of
the estimator (2.6) where the particles are replaced by independent identically distributed
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samples with law MκA. The fact that a > 0 can be empirically verified on Fig. 8.4.2b but
has not been proved yet. For each N , the fluctuations around the average (biased) value
can be monitored by computing the standard deviation of the 10 independent simulations.
Fig. 8.E.1 shows this standard deviation as a function of N in a log-log-scale (blue dots).
Although fluctuations remain significant with only 10 simulations per data point, by a
standard linear regression (solid orange line) we obtain that the size of the standard
deviation behaves as N−β with β ' 0.54. which is close to the value β = 1/2 which we
expect from an application of the central limit theorem.

Figure 8.E.1: Standard deviation of the 10 independent simulations as a function
of N (blue dots) and regression line (solid orange line) in log-log scale. Parameters:
L = 1, ξ = 2π, R = 0.025, ν = 40, c0 = 1, κ = 10.

8.F Rare events

Although the scenario described in Section 8.6 is the most common one, the IBM sometimes
leads to different, slightly more complex scenarios which are described in the present
section. Now, the IBM is initialized by drawing N positions independently uniformly in
the cubic domain D = [0, L] × [0, L] × [0, L] with periodic boundary conditions and N
body-orientations independently from the von Mises distribution MA(0,x) where A(0,x) is
given by (8.20) with ξ = 2π/L (winding number equal to 1).

8.F.1 From milling orbit to helical wave

Here, we report on the occurrence of transitions from a MO to a HW. Among twenty
independent simulations, this transition occurred only once (the other cases being a
transition from a MO to a FS). We run the IBM and record the time-evolution of a set of
indicators as shown in Fig. 8.F.1 (see also supplementing videos 12 to 14 in Section 8.A).
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As shown in Fig. 8.F.1a, the GOP does not converge towards GOP2 characterizing
the FS, but towards an intermediate value between GOP1 (which characterizes MO or
HW) and GOP2. As explained in Section 8.D.4, such values of the GOP can be attained
by a generalised helical wave solution (as can be observed in Video 12). The pitch θ̄

(Fig. 8.F.1b) and yaw ϕ̄ (Fig. 8.F.1c) behave like in the milling-to-flocking transition (see
Figs. 8.6.1b and 8.6.1c) except for small-amplitude, slow-frequency oscillations appearing
after the topological transition time. This may be due to some competition between two
attractors, the FS and the HW, which being alternately stronger and weaker, generate
this oscillatory behaviour. Note that a transition to a HW cannot occur when the global
direction of motion at the transition time is not one of the principal axes of the square
domain since a HW along another direction is not compatible with the periodic boundary
conditions (see Section 8.F.2). This is confirmed by the final values of ϕ̄ and θ̄ (both equal
to π/2) which correspond to a global direction of motion oriented along the y-axis (in
what follows, in reference to (8.45) and to avoid confusion, we will still call that direction,
the x direction).

The second and third lines of figures in Fig. 8.F.1 show the triplets of topological
indicators (dz, r̄z, wz) and (dx, r̄x, wx) which materialize the MO and HW structures
respectively. The mean distance of the RPZ-curve to the origin r̄z (Figs. 8.F.1e) decreases,
revealing an increase of the disorder. Simultaneously, the distance of its center of mass to
the origin dz increases (Figs. 8.F.1d) showing a transition trend to a FS. The winding
number wz (Fig. 8.F.1f) jumps from 1 to 0 at the time of maximal disorder. However, dz
and r̄z do not reach zero, showing that complete disorder across z is not reached. Since
the final state of the system is a generalised helical wave state (see Section 8.D.4), we do
not necessarily expect that complete disorder will be reached along the z-direction. In
the mean time, r̄x starts from 0 (complete disorder) and increases up to a value close to
unity, showing the build-up of a HW. The quantity dx increases during some time but
eventually decreases to 0 (not shown in the figure) as it should for a HW. Finally, the
winding number wx is undefined in the initial stage, as it should for complete disorder, but
builds up to 1 at the time where the winding number wz drops to 0. There is a transfer of
non-trivial topology from an MO structure to a HW structure.

8.F.2 From milling to flocking via a helical wave state

In some rare cases an intermediate unstable HW can be observed. Note that due to the
periodic setting, an HW cannot be stable for most of the global directions of motion.
Although stable or unstable HW typically appear in one over twenty of our simulations, it

291



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.F.1: Transition from a MO to a HW: example of a solution of the IBM for
an initial condition sampled from (8.42) in the rare case where it leads to a HW. The
following indicators are plotted as functions of time: (a) GOP (b) Pitch θ̄ of Ω̄. (c)
Yaw ϕ̄ of Ω̄. (d) Distance of center of mass of RPZ curve to the origin dz. (e) Mean
distance of RPZ curve to the origin r̄z. (f) Winding number of RPZ curve wz. (g)
Distance of center of mass of RPX curve to the origin dx. (h) Mean distance of RPX
curve to the origin r̄x. (i) Winding number of RPX curve wx. Gray shaded zones
highlight a small region around the time of minimal GOP. Parameters: N = 1.5 · 106,
R = 0.025, L = 1, D = 0.1, ν = 40, c0 = 1. See caption of Fig. 8.6.1 for further
indications. See also Videos 12 to 14 in Section 8.A.
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should be kept in mind that the occurrence frequency also depends on the geometry of
the domain and that this phenomena may be more frequent for other simulation settings.
The procedure is the same as in the previous section. Fig. 8.F.2 shows the results (see
also supplementing videos 15 and 16 in Section 8.A).

The transition stage between the MO and FS is significantly longer than in the previous
situations. During that phase, the GOP (Fig. 8.F.2a) oscillates between the value Ψ1

characterizing the MO and lower values, i.e. lower order. Likewise, there are significant
variations of the pitch θ̄ (Fig. 8.F.2b) and yaw ϕ̄ (Fig. 8.F.2c). As in the previous section,
this could be explained by antagonist effects of different attractors (the MO and HW)
and subsequent oscillations of the system between them. Video 15 reveals large scale
band structures similar to a HW except that the global direction of motion is not one of
the principal axes of the square domain. As, in most cases, this cannot be compatible
with the periodic boundary conditions, such state cannot persist in time. The relatively
long-time persistence of this stage could be explained in the present case by the fact that
the global direction of motion seems to oscillate around the direction given by e1 + e2

(i.e. ϕ = π/4 and θ = π/2) which is theoretically compatible with the periodic boundary
conditions, provided the wave length ξ is changed from 2π/L to

√
2π/L. This state does

not seem to be stable as shown by the large oscillations of ϕ̄ and θ̄. The topological
indicators (dz, r̄z, wz) shown in the second line of figures of Fig. 8.F.2 also display large
oscillations. The quantity r̄z drops, and at the same time, dz remains small, while the
winding number wz has strong oscillations, indicating a state of large disorder across z,
which is consistent with the fact that the temporary HW order is organized in a different
direction. However, we see that wz has a calmer period between two series of oscillations.
This calmer period corresponds to the interval of time during which the temporary HW
order prevails. Eventually the triplet converges to the value (1, 1, 0) characterizing the FS.
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(a) (b) (c)

(d) (e) (f)

Figure 8.F.2: Transition from a MO to a FS via an unstable HW: example of
a solution of the IBM for an initial condition sampled from (8.42) in the rare case
where it leads to a FS through a transient HW. The following indicators are plotted
as functions of time: (a) GOP (b) Pitch θ̄ of Ω̄. (c) Yaw ϕ̄ of Ω̄. (d) Distance of
center of mass of RPZ curve to the origin dz. (e) Mean distance of RPZ curve to
the origin r̄z. (f) Winding number of RPZ curve wz. Gray shaded zones highlight a
small region around the time of minimal GOP. Parameters: N = 1.5 · 106, R = 0.025,
L = 1, D = 0.1, ν = 40, c0 = 1. See caption of Fig. 8.6.1 for further indications. See
also Videos 15 and 16 in Section 8.A.
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Chapter 9

Body-attitude coordination in arbitrary
dimension

The present chapter shortly summarises the main result of the following article co-authored
with P. Degond and A. Frouvelle

[110] P. Degond, A. Diez, and A. Frouvelle. “Body-attitude coordination in arbitrary dimen-
sion”. arXiv preprint: arXiv:2111.05614 (2021).

9.1 Introduction

From a modelling perspective, the concept body-orientation is naturally defined in a three
dimensional setting. However, from a purely mathematical perspective, there is no reason
to restrict to the dimension three. The PDMP individual based model introduced in
Section 2.1.2 with body-orientations in SO3(R) can be straightforwardly extended in any
dimension, with body-orientations in SOn(R) (and positions in Rn) for any n ≥ 3. Similarly,
the mean-field limit result presented in Chapter 4 does not depend on the dimension.
However, this is not the case for the derivation of the macroscopic model in [114] recalled in
Section 7.5. In order to obtain the fluid model (2.14), a specific parametrization of SO3(R)

is used, either based on Rodrigues formula (7.2) or a quaternion formulation [115]. In
arbitrary dimension n, there is no such natural parametrization of SOn(R). Writing a
macrosocopic model for the n-dimensional model is therefore not a simple exercise. The
present chapter introduces some tools and ideas to fulfill this task, based on representation
theory [167, 188].

Beyond the purely mathematical game, there are at least two reasons to consider
such generalisation. The first one is to obtain a more intrinsic formulation of the model
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(including in dimension three) which does not depend on an arbitrary parametrization
which may hide its underlying geometrical structure. The second reason is a more long-
term perspective. Extending the result from SO3(R) to SOn(R) may be seen as a first
step towards a generalisation to an arbitrary manifold or at least to a larger class of
manifolds. Identifying what kind of geometrical properties lead to non-trivial effects
in macroscopic models in collective dynamics is undoubtedly an important modelling
question. In particular, although most (if not all) biologically related questions are bound
to dimensions two or three, collective dynamics models are nowadays used in optimization
and data sciences where understanding the “shape of data” in high-dimensional problems
is a crucial issue. This chapter remains of course a modest contribution to this program
but it may be considered as a first step to better understand high-dimensional collective
dynamics effects.

9.2 Main result

The starting point is the re-scaled BGK equation in dimension n

∂tf
ε + (Ae1 · ∇x)f

ε =
1

ε

(
ρfεMAfε − f ε

)
, (9.1)

with Af = M[f ] ∈ SOn(R) is the projection of Jf on SOn(R) given by (2.11) with K = δ0.
The main result of this chapter is the following formal theorem.

Theorem 9.2.1 (formal). Let n ∈ N, n ≥ 3. We assume that (9.1) has a smooth solution
f ε which converges as ε→ 0 as smoothly as needed towards a smooth function f . Then,

f = ρMA, (9.2)

where ρ = ρ(t, x) and A = A(t, x) are functions from (0,∞)× Rn to (0,∞) and SOn(R)

respectively which are solutions of the following system:

∂tρ+∇x · (c1ρΩ1) = 0, (9.3)

ρ
(
∂t + c2Ω1 · ∇x

)
A = WA, (9.4)
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where

W = F ∧ Ω1 − c4ρ∇x ∧ Ω1, (9.5)

F = −c3∇xρ− c4ρr, (9.6)

r =
n∑
k=1

(∇x · Ωk)Ωk, (9.7)

with Ωk = Aek, k = 1, . . . , n. In Equation (9.5), we use the following notation: for two
vectors X = (Xi)i=1,...,n and Y = (Yi)i=1,...,n, X ∧ Y and ∇x ∧X denote the antisymmetric
matrices:

(X ∧ Y )ij = XiYj −XjYi, (∇x ∧X)ij = ∂xiXj − ∂xjXi.

The constants ci, i = 1, . . . , 4 are expressed as follows depending on the parity of the
dimension. Let p ∈ N such that n = 2p or n = 2p+ 1. Then it holds that

c1 =
1

n

∫
[0,2π]p

C(1)
n exp

(
κC(1)

n

)
undθ̃p∫

[0,2π]p
exp

(
κC(1)

n

)
undθ̃p

, (9.8)

c2 =

∫
[0,2π]p

(
2C(3)

n − nC(1)
n C(2)

n + (n2 − 2)C(1)
n

)
exp

(
κC(1)

n

)
undθ̃p

n(n− 2)(n+ 2)

∫
[0,2π]p

(
1− 1

n
C(2)
n

)
exp

(
κC(1)

n

)
undθ̃p

, (9.9)

c3 =
1

κ
, (9.10)

c4 =

∫
[0,2π]p

(
C(3)
n −

2

n
C(1)
n C(2)

n + C(1)
n

)
exp

(
κC(1)

n

)
undθ̃p

2(n− 2)(n+ 2)

∫
[0,2π]p

(
1− 1

n
C(2)
n

)
exp

(
κC(1)

n

)
undθ̃p

, (9.11)

with the notation dθ̃p = dθ1 . . . dθp, where the probability density functions un are defined
by (9.15) and (9.16) below and where for k ∈ Z, the functions C(k)

2p and C(k)
2p+1: Rp → R

are defined by

C
(k)
2p (θ1, . . . , θp) = 2(cos kθ1 + . . .+ cos kθp), (9.12)

C
(k)
2p+1(θ1, . . . , θp) = 2(cos kθ1 + . . .+ cos kθp) + 1. (9.13)

The coefficients in the theorem are computed using Weyl integration formula [301,

297



Theorems IX.9.4 & IX.9.5] recalled below.

Proposition 9.2.2 (Weyl integration formula). Let n ∈ N, n ≥ 3. Let p ∈ N such that
n = 2p or n = 2p + 1. For any integrable class function f on SOn(R) (i.e. such that it
only depends on the conjugation class), it holds that∫

SOn(R)

f(A) dA =
1

(2π)p

∫
[0,2π]p

f(Rθ1...θp)un(θ1, . . . , θp) dθ1 . . . dθp, (9.14)

where un: Rp → R are defined when n = 2p or n = 2p+ 1 by

u2p(θ1, . . . , θp) =
2(p−1)2

p!

∏
1≤j<k≤p

(
cos θj − cos θk

)2
, (9.15)

u2p+1(θ1, . . . , θp) =
2p(p−1)

p!

∏
1≤j<k≤p

(
cos θj − cos θk

)2
p∏
j=1

(
1− cos θj

)
, (9.16)

and using the notations: for θ ∈ R,

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
,

and for (θ1, . . . , θp) ∈ Rp, Rθ1,...,θp denotes the following matrix defined by blocks:

• in the case n = 2p, p ≥ 2,

Rθ1,...,θp =


Rθ1 0

Rθ2
. . .

0 Rθp

 ∈ SO2p(R), (9.17)

• in the case n = 2p+ 1, p ≥ 1,

Rθ1,...,θp =



Rθ1 0 0

Rθ2
...

. . . ...

0 Rθp 0

0 . . . . . . 0 1


∈ SO2p+1(R). (9.18)
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There is an alternate expression of (9.4) which generalises (2.14) more directly but
which first requires the introduction of additional notations. Suppose A, B and C are
three smooth vector fields Rn → Rn and let us consider the following generalisation of
(8.4)

δ(A,B,C) :=
(
(A · ∇x)B

)
· C +

(
(B · ∇x)C

)
· A+

(
(C · ∇x)A

)
·B, (9.19)

and for A = (Ω1, . . . ,Ωn) ∈ SOn(R),

∆ijk := δ(Ωi,Ωj,Ωk). (9.20)

It is easy to check that ∆ijk is antisymmetric by permutations of the indices (i, j, k). Then,
we define the following antisymmetric matrix field:

Γ =
n∑

k,`=1

∆1k` Ωk ⊗ Ω`, (9.21)

where ⊗ denotes the tensor product of two vectors. The matrix Γ is just the matrix with
entries ∆1k` in the basis (Ω1, . . . ,Ωn). We note that

ΓΩ1 =
n∑

k,`=1

∆1k`(Ω` · Ω1)Ωk =
n∑
k=1

∆1k1Ωk = 0, (9.22)

by the antisymmetry of ∆ijk. Finally, we define

W̃ = F ∧ Ω1 + c4ρΓ. (9.23)

Then, we have the following proposition (see [110, Appendix 10]).

Proposition 9.2.3. Eq. (9.4) is equivalent to

ρ
(
∂t + (c2 − c4) Ω1 · ∇x

)
A = W̃A. (9.24)

Finally, Equation (9.24) can be expanded into equations for the basis vectors Ωj , which
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is the direct generalisation of the 3D system (2.14). For j = 2, . . . , n, it holds that

ρ
(
∂t + (c2 − c4)Ω1 · ∇x

)
Ω1 = −c3PΩ⊥1

∇xρ− c4ρ
∑
k 6=1

(∇x · Ωk)Ωk, (9.25)

ρ
(
∂t + (c2 − c4)Ω1 · ∇x

)
Ωj =

(
c3(Ωj · ∇x)ρ+ c4ρ(∇x · Ωj)

)
Ω1 − c4ρ

∑
k 6=1,j

δ(Ω1,Ωj,Ωk)Ωk,

(9.26)

where PΩ⊥1
= Id− Ω1 ⊗ Ω1 is the orthogonal projection onto Ω⊥1 .

Remark 9.2.4. In order to maintain light notations, the same notation is used for the
coefficient c2 but in dimension three it is not equal to the coefficient c2 in (2.14). Namely,
c2 ← c2 − c4. The fact that (9.25) and (9.26) coincide with (2.14) in dimension three is
checked in [110, Appendix 10].

9.3 A few elements of proof

The methodology of the proof of Theorem 9.2.1 is the same as the one exposed in Chapter 7
(Section 7.5) based on the notion of Generalised Collision Invariants [122]. The method
reduces the problem to the computation of two integral operators, one linear and one
bilinear, defined on spaces of matrices. In dimension n, these operators will be seen as
maps between representations of SOn(R).

9.3.1 Using the GCI: proof of Theorem 9.2.1

First, let us note that Equation (9.3) on ρ simply stems from the mass conservation
and its derivation does not depend on the dimension. Then in order to derive the
second Equation (9.4), let us extend the definition and computation of the set of GCI
(Definition 7.42) in Section 7.5 to the n-dimensional case. Namely, for a given non singular
matrix J ∈Mn(R), the set of GCI is defined by

CJ :=

{
ψ : SOn(R)→ R,

∫
SOn(R)

(ρfMJ − f)ψ dA = 0, ∀f such that PTA(Jf ) = 0

}
,

(9.27)
where A = PSOn(R)J . Then it holds that

CJ = Span

1,
⋃

P∈An(R)

ψA
P

 , ψA
P (A) := −P · (ATA).
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Multiplying (9.1) by the ψA
P (A) for any P ∈ An(R) and using Lemma 7.2.1 leads to the

following relation when ε→ 0

X :=

∫
SOn(R)

(∂t + Ae1 · ∇x)(ρMA(A))PTAA dA = 0, (9.28)

This is the n-dimensional analog of (7.44) except that for later convenience, here, we have
multiplied the expression by A/2 on the left and used Lemma 7.2.1. The quantity X is
the sum of a linear part and a bilinear part, respectively:

X = X` +Xb,

with

X` :=

∫
SOn(R)

[
(PTAA)e1 · ∇xρ+ κρPTAA · ∂tA

]
PTAAMκA(A) dA, (9.29)

Xb := κρ

∫
SOn(R)

PTAA ·
(
(PT⊥A A)e1 · ∇x

)
APTAAMκA(A) dA. (9.30)

The following lemma shows that each of these quantities can be expressed in terms of
two simple integral operators.

Lemma 9.3.1. The quantity X` and Xb satisfy

X` = L(P)A, (XbAT) · P = κρ
n∑

k,`=1

Bk`(T··k`, P ),

for any antisymmetric matrix P ∈ An(R) and where we have defined the following tensors

P =
1

2

(
(∇xρ⊗ e1)AT − A (∇xρ⊗ e1)T

)
+ κρ (∂tA)AT, (9.31)

Tijk` =
1

2

(
Ak1 Ajm ∂x`Aim + A`1 Ajm ∂xkAim

)
, (9.32)

and the linear and bilinear maps

L : An → An, P 7→ L(P ) :=

∫
SOn(R)

(A · P )
A− AT

2
MIn(A) dA, (9.33)

B : An ×An → Sn, (P,Q) 7→ B(P,Q) :=

∫
SOn(R)

(A · P ) (A ·Q)
A+ AT

2
MIn(A) dA.

(9.34)
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The main technical contribution of [110] is an explicit computation of the maps L and B,
summarised in the following lemma. Once this result is proved, the derivation of (9.4)
from the relation (9.28) follows from tedious but elementary computations summarised
below and detailed in [110, Lemma 4.10].

Lemma 9.3.2. For all antisymmetric matrices P,Q ∈ An(R), it holds that

L(P ) = C2P, (9.35)

B(P,Q) = C3Tr(PQ)Id + C4

(PQ+QP

2
− 1

n
Tr(PQ)Id

)
, (9.36)

with

C2 =
1

n− 1

(
1−

〈TrA2

n

〉
exp(κTrA)

)
, (9.37)

C3 =
1

n− 1

〈(TrA2

n
− 1
) TrA

n

〉
exp(κTrA)

, (9.38)

C4 =
2n

(n− 1)(n− 2)(n+ 2)

〈TrA3

n
− 2

TrA

n

TrA2

n
+

TrA

n

〉
exp(κTrA)

. (9.39)

There are at least two proofs of this result. One is more elementary and rely on simple
algebra using the changes of variables described in Definition 7.2.2. For instance, note that
the first result (9.35) is a particular case of Lemma 7.2.5 proved using this method (for
n 6= 4). For the second result (9.36), an elementary proof in three steps is outlined below.

1. Since, B takes its values in the space of symmetric matrices, the goal is to compute
B(P,Q) · S for arbitrary P,Q ∈ An(R) and S ∈ Sn(R). An important property is
the invariance by conjugation

∀P1, P2 ∈ An(R), ∀U ∈ SOn(R), B(UP1U
T , UP2U

T ) = UB(P1, P2)UT .

Using this property and the spectral theorem, one can take for S a diagonal matrix.

2. By linearity, it remains to compute the quantities B(αij, αk`) · σm for i, j, k, `,m ∈
{1, . . . , n}, i < j, k < ` and where αij := ei ∧ ej, σm := em ⊗ em.

3. Using the invariance by conjugation again with the changes of variable described
in Definition 7.2.2, it can be proved that, at least when n is large enough, it
holds that B(αij, αk`) · σm = 0 if (i, j) 6= (k, `) and there exist λ, µ ∈ R such that
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B(αij, αij) · σi = B(αij, αij) · σj = λ for all i < j and B(αij, αij) · σm = µ for all
i < j and m 6= i, j. The result then follows by a direct computation.

Similarly to the proof of Lemma 7.2.5, the third step is quite tedious, especially for
small dimensions, and does not explicitly use the underlying algebraic structure of the
problem. Another approach investigated in [110] and summarised in the next section is
based on representation theory. This approach focuses more on the Lie group structure
of SOn(R) rather than on the fact that it is a matrix group. It may therefore be more
easily generalised to other Lie groups. Once Lemma 9.3.2 is proved, the proof of the main
Theorem 9.2.1 follows from direct computations.

Proof (of Theorem 9.2.1). First, we note that

(∇xρ⊗ e1)AT − A(∇xρ⊗ e1)T = ∇xρ ∧ Ω1.

Thus Lemma 9.3.1 and Lemma 9.3.2 give

X` = C2PA = κC2(ρ∂tA + c3(∇xρ ∧ Ω1)A).

Similarly, for the bilinear term, for all P ∈ An(R), it holds that

(XbAT) · P = κρ
[(
C3 −

C4

n

) n∑
k=1

Tr(T··kkP ) +
C4

2

n∑
k,`=1

(
T··k`P + PT··k`

)
k`

]
.

Using the definition of Tijk` and the fact that it is anti-symmetric with respect to (i, j)

and symmetric with respect to (k, `), one can prove the following relations

n∑
k=1

Tr(T··kkP ) = −
(
(Ω1 · ∇x)AAT

)
· P

n∑
k,`=1

(
T··k`P + PT··k`

)
k`

=
1

2
(r ∧ Ω1 +∇x ∧ Ω1) · P.

Finally, since XbAT is antisymmetric and that the relation is valid for any P ∈ An(R), it
follows that

Xb = κC2ρ
[
c2 (Ω1 · ∇x)A + c4 (r ∧ Ω1 +∇x ∧ Ω1)A

]
, (9.40)

where
c2 = − 1

C2

(
C3 −

C4

n

)
, c4 =

C4

4C2

, (9.41)

which concludes the proof.
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9.3.2 Representation theory

Before giving the main steps of the proof of Lemma 9.3.2, let us recall below some of the
key concepts of representation theory.

Definition 9.3.3 (Representation). LetG be a Lie group. A real or complex representation
of G of dimension n is a group morphism G→ GL(V ) into the group of automorphisms
of the vector space V = Rn or Cn respectively. Equivalently, a representation of G can be
seen as a group action of G on V . Likewise, if g is a Lie algebra, a representation of g is a
map of Lie algebras g→ gl(V ), where gl(V ) is the space of endomorphisms of V .

Example 9.3.4. The simplest representations are the following.

• (Trivial representation). This is the representation ρ : G→ GL(V ), g 7→ idV

where idV is the identity operator.

• (Standard representation). When G ⊂ GL(V ) is a matrix group, the standard
representation is ρ : G→ GL(V), g 7→ g.

Definition 9.3.5 (Map of representations). Let ρ : G → GL(V ) and ρ′ : G → GL(V ′)

be two representations of a group G. A linear map T : V 7→ V ′ is said to be a map of
representations when for all g ∈ G it satisfies the commutation relation ρ′(g)◦T = T ◦ρ(g).
The map T is also said to intertwin the representations. When there exists such map T
which is an isomorphism, the two representations are said to be isomorphic. This definition
extends similarly to the case of Lie algebra.

Definition 9.3.6 (Subrepresentation). A subrepresentation W ⊂ V of a representation
V on G is a subspace of V stable by G, i.e. such that for all g ∈ G, g(W ) ⊂ W . A
representation V is said to be irreducible when {0} and V are the only subrepresentations.
This definition extends similarly to the case of Lie algebra.

In the cases considered here, any representation can be decomposed into the direct sum
of irreducible representations [188, Section 4.4], making irreducible representations the
building blocks of the theory. The reason why irreducible representations are so appealing
is the so called Schur Lemma.

Lemma 9.3.7 (Schur Lemma). Let V and W be two irreducible complex representations
of a group G and let T : V 7→ W be a map of representations. Then, there exists C ∈ C
such that T = C Id. Furthermore, C = 0 if the two representations are not isomorphic. If
V and W are non-isomorphic real irreducible representations then T = 0.
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9.3.3 An alternative proof of (7.9)

As a first application of the theory, let us give an alternative proof of the first point of
Lemma 7.3.1. By invariance by transposition, the goal is to prove that∫

SOn(R)

(A+ AT

2
− TrA

n
In
)
MIn(A) dA = 0.

Let us introduce the map K : S0
n(R) → R defined on the space S0

n(R) of trace-free
symmetric matrices by

K(S) :=

∫
SOn(R)

(A · S)MIn(A) dA.

The goal is to prove that K = 0. Using the action of SOn(R) on S0
n(R) by conjugation

and the properties of the Haar measure, the map K satisfies for all U ∈ SOn(R) and all
S ∈ S0

n(R),
K(USUT) = K(S).

In other words, K is a map which intertwins the two representations S0
n(R) and R. The

trivial representation R is always irreducible and it can be shown that S0
n(R) is also

irreducible [110, Lemma 7.1]. These two representations do not have the same dimension
and therefore are not isomorphic. The conclusion follows by Schur lemma.

9.3.4 Proof of (9.35)

The proof of Lemma 9.3.2 is more difficult but it is based on the same idea: write
the two operators as maps of representations, decompose the domain and codomain
into the direct sum of irreducible representations and use Schur lemma on each pair
of irreducible representations. However, this time, the starting point is not a map of
representations of SOn(R) but rather a map of representations of the complex Lie algebra
son(C). The representations of a Lie algebra often gives the representations of the Lie
groups which share this Lie algebra. In our case, the irreducible representations of son(C)

lift into irreducible representations of SOn(C) [167, Proposition 23.13 (iii)]. The complex
irreducible representations of SOn(C) and SOn(R) are the same [167, §26.1, Section “Real
groups”] and in most cases these complex representations are complexification of real ones
which finally leads to real irreducible representations of SOn(R).

The first step is therefore to extend the map L to the space of antisymmetric matrices
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with complex entries:

L̃ : An(C)→ An(C), P + iQ 7→ L̃(P + iQ) = L(P ) + iL(Q).

The space An(C) is isomorphic to the space of exterior products Λ2(V ) with V = Cn and
where for d ≥ 2 and V = Cn,

Λd(V ) := Span
{
v1 ∧ . . . ∧ vd :=

∑
σ∈Sd

ε(σ)vσ(1) ⊗ . . .⊗ vσ(d)

∣∣ v1, . . . , vd ∈ V
}
⊂ V ⊗d,

(9.42)

In the case n 6= 4, the space Λ2(V ) is an irreducible representation of son(C) and
consequently of SOn(R) (for the action by conjugation). It is easy to check that the map
L̃ : Λ2(V )→ Λ2(V ) intertwins the two representations and thus by Schur lemma, it follows
that L̃(P + iQ) = C2(P + iQ) for a constant C2 ∈ C. Taking Q = 0 and since L(P ) has
real entries, we conclude that C2 ∈ R. Its expression follows by a direct computation.

The case n = 4 is more difficult because in this case Λ2(V ) is not an irreducible
representation of so4(C). It decomposes into the direct sum of two non-isomorphic
irreducible representations of so4(C) using [167, Theorem 19.2 (ii)]:

Λ2(V ) = Λ+ ⊕ Λ−, (9.43)

both having dimension 3. Furthermore, as before, Λ+ and Λ− lift into complex irreducible
representations of SO4(C) and thus, of SO4(R) [167, Proposition 23.13 (iii)]. The map L̃
can be decomposed by blocks using (9.43) on both its domain and codomain. Each block
being a complex irreducible representation of SO4(R), we can apply Schur lemma and
conclude that any map between two blocks is equal to 0 if the blocks are not isomorphic
and equal to CId for some constant C ∈ C if the blocks are isomorphic. The pairs of
isomorphic blocks are (Λ+,Λ+) and (Λ−,Λ−). It follows that there exist two constants
C+

2 , C
−
2 ∈ C such that

L̃ = C+
2 T+ + C−2 T−, (9.44)

where C+
2 , C

−
2 ∈ C and T± : Λ2(V )→ Λ± are the projections on the two subrepresentations.

The rest of the proof consists in computing these operators and constants, and in particular
it can be shown that C+

2 = C−2 and T+ + T− = IdΛ4(V ) which concludes the proof.
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9.3.5 Elements of proof of (9.36)

The second point (9.36) is again more difficult. The complexification of the map B defines
a symmetric bilinear map, denoted by B̆: Λ2(V )× Λ2(V )→ Sym2(V ) and given by

B̆(P1 + iQ1, P2 + iQ2) = B(P1, P2)−B(Q1, Q2) + i(B(P1, Q2) +B(Q1, P2)),

for all P1, P2, Q1, Q2 ∈ An(R) and where

Symd(V ) := Span
{
v1 ◦ . . . ◦ vd :=

∑
σ∈Sd

vσ(1) ⊗ . . .⊗ vσ(d)

∣∣ v1, . . . , vd ∈ V
}
⊂ V ⊗d.

(9.45)

Due to the universal property of the symmetric product [167, Appendix B], B̆ determines
a unique linear map B̃: Sym2(Λ2(V ))→ Sym2(V ) given for all v1, v2, w1, w2 ∈ V by

B̃
(
(v1 ∧ v2) ◦ (w1 ∧ w2)

)
= B̆(v1 ∧ v2, w1 ∧ w2).

Both Sym2(Λ2(V )) and Sym2(V ) are complex representations of SOn(R). Furthermore,
the invariance properties of the Haar measure imply that B̃ intertwins the two represen-
tations. So, we are led to find the decompositions of Sym2(Λ2(V )) and Sym2(V ) into
irreducible representations of SOn(R). As in the proof of (9.35), the starting point is
the decomposition of Sym2(V ) into complex irreducible representations of son(C). For
the space Sym2(Λ2(V )), things are more challenging and it needs to be first decomposed
into irreducible representations of the Lie algebra sln(C). This comes from the fact that
the spaces of symmetric tensors (9.45) and exterior products (9.42) of V are irreducible
representations of sln(C). Irreducible representations of sln(C) are not always irreducible
representations of son(C). However, their decomposition into irreducible representations
of son(C) can be obtained using a result called the Weyl contraction [167, Section 19.5].
The passage from son(C) to SOn(C) and SOn(R) has been illustrated before. The full
proof is detailed in [110, Appendix 9].
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Chapter 10

Conclusion and perspectives

10.1 Conclusion

10.1.1 First part

The first part of this thesis was devoted to the study of many-particle systems with a
probabilistic approach. Starting from a stochastic model, the fundamental concept of
propagation of chaos gives an asymptotic description when the number of particles grows to
infinity. This result can be understood as a kind of law of large numbers: by averaging out
the numerous interactions between the particles, only a statistical deterministic behaviour
is retained which reduces the initial high-dimensional complexity of the N -particle system
to a single nonlinear PDE. This idea which traces back to the roots of statistical physics
has been applied in the mathematical literature to various models and in particular in
collective dynamics during the last two decades. Several techniques reviewed in Chapter 3
have been developed in various settings. In Chapter 4, a new method inspired by [218] has
been described to treat the case of piecewise deterministic geometrically enriched models,
including the classical Vicsek model and the body-orientation coordination model studied
in the second part of the thesis. The two main contributions are a propagation of chaos
result and moderate interaction property which legitimate the study of PDE models with
purely local interactions. In addition to these rigorous convergence results, an efficient
numerical framework for the simulation of mean-field particle systems has been exposed
in Chapter 5. Thanks to recent hardware and software breakthroughs [78], the proposed
implementation speeds up traditional methods by one to three orders of magnitude within
a generalist and versatile Python library. This implementation was initially developed
in parallel to the theoretical study of the body-attitude coordination model. It both
confirms the results obtained analytically and offers an experimental tool to test new
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conjectures for various collective dynamics models. Moreover, the efficient simulation of
large systems of interacting particles has also been pushed by the recent development
of particle methods in data sciences and optimization. Within this perspective a new
sampling algorithm which generalizes the traditional Metropolis-Hastings algorithm to a
population of interacting particles has been introduced and studied in Chapter 6. Both
the analytical convergence properties obtained using the method developed in Chapter 4
and the GPU implementation which uses the same ideas as in Chapter 6 confirm its good
performances.

10.1.2 Second part

The second part of this thesis was devoted to the study of PDE models of body-orientation
coordination. The starting point was the kinetic PDE model obtained in Chapter 4 as the
mean-field limit of an individual based model. In Chapter 7 it has been shown that, in a
spatially homogeneous setting, the solution of this BGK equation has a complex behaviour
due to a phase transition phenomenon. In order to obtain a complete characterisation
and stability analysis of the different equilibria, new parallels have been drawn between
the initial body-orientation framework and some recent results in the nematic alignment
of high-dimensional polymers [330]. Then, using a framework developed in [122], a
macroscopic fluid model has been obtained as a scaling limit of the kinetic PDE, this was
an easy generalisation of the result obtained in [116]. Chapter 8 provides a theoretical and
numerical analysis of this fluid model. The main result is the existence of three classes of
explicit solutions which were not known in previous works and which are characterised
by a topological structure. Numerical experiments have been designed to explore the
links between this topological structure and the long-time stability and robustness of
the solutions. It may open the way to the study of the interplay between geometrically
enriched models in collective dynamics and a notion of topological protection. Finally, in
Chapter 9, a derivation of the generalised macroscopic fluid model in arbitrary dimension
is outlined using representation theory.

10.2 Perspectives

10.2.1 Topological protection in collective dynamics

A somehow unexpected finding of this work was the derivation of explicit solutions of
the macroscopic fluid model. The existence of such solutions is a direct consequence of
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the geometrical constraints inherent to SO3(R) as it can be seen by looking at the role
of the two operators r and δ which are specific to this model. However, these solutions
are also characterised by a nontrivial topological structure. The numerical experiments
in Chapter 8 suggest that these solutions enjoy some kind of stability and robustness
against noise. Although the setting is much different, this is reminiscent from the notion of
topological protection developed in the physics community [269, 270]. Collective dynamics
models associated to the Vicsek model have been shown to exhibit topological protected
edge states when the motion is constrained in appropriate geometrical configurations [299,
303, 304]. In our setting, the solutions derived should better be called bulk states as they
are not linked to boundary conditions and the topological properties are due to the internal
geometry of the particles. Following this work, there are at least two perspectives. The
first one is the study of the body-attitude coordination model with different boundary
conditions and in domains with a more complex geometry in order to observe topological
edged states. The second one is the analytical study of the stability of the solutions. This
is a difficult because the functions are constrained on the manifold SO3(R) and further
investigations are needed. In this direction, in a work in progress with Pierre Degond and
Adam Walczak, we study a simpler extension of the Vicsek model which also produces
topologically nontrivial states. This model is inspired by the swarmalator model [272, 271,
181, 182] which is a Vicsek model where each particle has an additional variable, called the
phase, which creates an attraction-repulsion force between particles with different phases.
This simpler model can be studied both analytically and numerically, in particular, using
a direct scheme for the macroscopic model (which is not known for the body-attitude
coordination model).

10.2.2 Full kinetic equations and hypocoercivity

In Chapter 7, the study is limited to the spatially homogeneous case and does not say
anything about the long-time behaviour of the full kinetic equation with a transport term.
Nevertheless, complex emerging phenomena do happen in a spatially in-homogeneous
setting. The most renowned example is the spontaneous emergence of high-density
travelling bands in the Vicsek model as reported in numerical simulations in Section 5.3.1.
Unlike previous works in the physics community [80], these simulations are obtained in a
mean-field regime in a framework where the propagation of chaos result applies. However
to the best of our knowledge, an analytical explanation of this emergence from the limit
kinetic equation still remains out of reach, despite some other numerical evidence at the
kinetic level [178]. Similarly, it is not known whether these structures can be obtained
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as solutions of a macroscopic model such as the one derived in [122]. Further numerical
simulations at the particle level using the SiSyPHE library also suggest that other complex
structures can emerge depending on the various non-local parameters. Finally, for some
models such as the ant trail formation model introduced by [39], the spatial structure
cannot be ignored and a rigorous analytical framework able to capture the full complexity
of the model is still lacking.

In the kinetic theory community, it is well-known that spatially in-homogeneous
equations are often not coercive, but rather, hypocoercive [327]. There is a vast literature
on the subject, mostly for linear and linearized equations. In the present case, for the
Vicsek and body-attitude coordination models, in addition to the nonlinearity, a major
difficulty arises due to the geometrical constraints so that the long-time behaviour of these
models at the kinetic level remains mostly an open, and active, question.

In a work in progress with Pierre Degond, Amic Frouvelle and Charles Elbar, we are
studying the hypocoercivity properties of the multi-dimensional generalisation of another
model introduced by [123]. In this model, which is an extension of the Vicsek model, the
alignment interactions are not directly implemented on the velocity variable as in (1.4)
but rather on an additional internal variable which is the curvature in dimension two and
an antisymmetric matrix in higher dimension. This model is also motivated by physical
considerations [73]. The spatially homogeneous version of this model still depends on two
variables: the curvature and the velocity. The structure of this equation shares similarities
with the spatially in-homogeneous kinetic Vlasov-Fokker-Planck equation where the couple
position and velocity is replaced respectively by the couple velocity and curvature. However,
compared to the Vicsek model, the geometrical complexity is delocalised to the velocity
which plays the role of a position in a classical setting, which makes things much easier to
study. Although it may seem quite far from the spatially in-homogeneous Vicsek model, we
hope that the techniques and tools developed for this model may help for the future study
of the Vicsek models and other models of collective dynamics in a spatially in-homogeneous
setting.

10.2.3 Long-time behaviour and mean-field limit

Most of the results developed in Part II concern the long-time behaviour of PDE models.
As these models are obtained as the limit of a particle system, it may be natural to wonder
whether the propagation of chaos result holds uniformly in time or at least, how the
long-time properties obtained for the PDE models really relate to the long-time behaviour
of the particle system. In turns out that in many cases, propagation of chaos does not hold
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uniformly in time and in certain cases, it can be shown that the two limits N → +∞ and
t→ +∞ do not commute, in particular when there is a phase transition as investigated
in [132]. More precisely, the authors study a class of McKean-Vlasov systems on the torus
which generalises the Kuramoto model. They introduce a diffusive rescaling of the particle
distribution function with N fixed, namely

f ε,Nt (θ1, . . . , θN) := εNdfNε2t(εθ
1, . . . , εθN),

where ε > 0 is the scaling parameter. In the Kuramoto model framework, the distribution
f ε,Nt is the law of a highly oscillating system with a frequency of order ε−1. Using a
gradient flow framework, one of the main results of the article [132, Corollary 1.27] is an
explicit counter example which proves that for some chaotic initial conditions and in an
appropriate convergence framework, the two limits N → +∞ and ε→ 0 exist but do not
always commute. Consequently, the propagation of chaos cannot hold uniformly in time.

A similar result has been found and quantified in [32] for the Kuramoto model outlined
in the introduction. With the same notations, if the propagation of chaos holds uniformly
in time, then the empirical measure µΘNt

necessarily converges towards a von Mises
distribution Mκe(θ0) as N, t→ +∞ for some parameters κ and θ0. This is not always the
case as shown by the large deviation principle proved in [32, Theorem 1.1]. When the
particles are initially independent, the authors show that, given a time T > 0, there exist
θ0 ∈ R and a sequence of processes (WN,T

t )t∈[0,T ] which converges weakly to a standard
Brownian motion as N → +∞ such that for all ε > 0:

lim
N→+∞

P

(
sup

τ∈[C(λ)/N,T ]

∥∥µΘNτN
−M

κe
(
θ0+D(λ)WN,T

τ

)∥∥
H−1 ≤ ε

)
= 1,

where C(λ), D(λ) > 0 depend only on the parameter λ, the initial condition and ε. As a
consequence, the propagation of chaos is not uniform in time and breaks down at times
proportional to N .

For the body-orientation dynamics, including in the spatially-homogeneous setting, the
long-time behaviour of the particle system is still not entirely known. It may be conjectured
that at least for the spatially-homogeneous diffusion model, a result analog to the one
in [32] holds, namely that the empirical measure behaves as a von Mises distribution with
a random parameter which performs a Brownian motion on SO3(R) around the average
body-orientation solution of the macroscopic model.
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10.2.4 Boltzmann interactions

As explained in Chapter 3, the models presented in this thesis are limited to mean-field
interactions. This type of interaction is perhaps the simplest one and the general behaviour
of mean-field models is relatively well-understood. However, from a modelling perspective,
mean-field interactions can sometimes hardly be justified. In some cases, the interactions
between the particles are better described by binary “collisional” instantaneous events
which happen between two particles only. Going back to the classical kinetic theory of
gas of Boltzmann, the classical example is the motion of N hard-spheres driven by the
free-transport and elastic collisions. More recently, examples can be found in various
modelling problems. For instance, in socio-economical models, an interaction between two
individuals is an exchange of opinions [313, 119], of wealth [248, 89, 148] or may model
the outcome of a one-versus-one game such as chess [149, 206]. These models are called
Boltzmann models and further examples in collective dynamics will be given below.

To distinguish Boltzmann models from mean-field models, a general framework has
been proposed in [76]. Similarly to (3.6), the motion of N particles is described by an
infinitesimal generator LN acting on N -particle test functions ϕN ∈ Cb(EN) of the form:

LNϕN =
N∑
i=1

L(1) �i ϕN +
1

N

∑
i<j

L(2) �ij ϕN . (10.1)

The operator L(1) acts on one-variable test functions and describes the individual
flow of each particle and possibly the boundary conditions. The operator L(2) acts on
two-variable test functions. We recall the notation for i < j:

L(2) �ij ϕN : (z1, . . . , zN) ∈ EN 7→ L(2)
[
(u, v) 7→

ϕN(z1, . . . , zi−1, u, zi+1, . . . , zj−1, v, zj+1, . . . , zN)
]
(zi, zj) ∈ R.

The operator L(2) is typically of the form

L(2)ϕ2(z1, z2) = λ(z1, z2)

∫∫
E×E
{ϕ2(z′1, z

′
2)− ϕ2(z1, z2)}Γ(2)(z1, z2, dz

′
1, dz

′
2), (10.2)

where
Γ(2) : (z1, z2) ∈ E × E 7→ Γ(2)(z1, z2, dz

′
1, dz

′
2) ∈ P(E × E),

is a given map which defines the post-collisional distribution of two colliding particles with

314



pre-collisional states (z1, z2) and

λ : (z1, z2) ∈ E × E 7→ λ(z1, z2) ∈ R+,

is a symmetric function which defines the (possibly non-homogeneous) collision rate
between each pair of particles. In order to preserve the exchangeability between the
particles, it is necessary to assume that Γ(2) satisfies for all z1, z2 ∈ E,

Γ(2)(z1, z2, dz
′
1, dz

′
2) = Γ(2)(z2, z1, dz

′
2, dz

′
1). (10.3)

When N → +∞, and similarly to mean-field particle systems, it is possible to prove under
certain conditions that a propagation of chaos result holds towards a limit distribution ft
which, in this case, solves the following weak Boltzmann equation: for any test function
ϕ ∈ Cb(E),

d

dt
〈ft, ϕ〉 = 〈ft, L(1)ϕ〉+ 〈f⊗2

t , L(2)(ϕ⊗ 1)〉,

or in a more symmetric form, using (10.3):

d

dt
〈ft, ϕ〉 = 〈ft, L(1)ϕ〉

+
1

2

∫
E4

λ(z1, z2)
{
ϕ(z′1) + ϕ(z′2)− ϕ(z1)− ϕ(z2)

}
Γ(2)(z1, z2, dz

′
1, dz

′
2)ft(dz1)ft(dz2).

(10.4)

This property is in general more difficult to obtain than for mean-field particle systems.
For the hard-sphere system this result is a renowned theorem due to Lanford [237] and
recently improved in [168]. For stochastic systems in classical kinetic theory, fundamental
results on the propagation of chaos and long-time properties of the solutions have been
obtained in particular by Kac [223], Sznitman [305] and more recently Mischler and
Mouhot [257]. For collective dynamics models, things are still quite open. A Boltzmann
interaction version of the Vicsek model was introduced in the physics community by [29, 30].
In this alignment model, the post-collisional orientations of two colliding particles with pre-
collisional orientations v, v′ ∈ Sd−1 are sampled from a distribution on the sphere centered
around the mean orientation (v + v′)/|v + v′|. The propagation of chaos property for this
model is proved using a BBGKY hierarchy approach in [60, 59]. However, the complete
description of the equilibria of the Boltzmann collision operator is still missing, see [58, 25]
for some results in this direction. Recently, an extension of this alignment mechanism has
been proposed in [199, 226] to model the swarming behaviour of myxobacteria. There are
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two main reasons which make the analysis much difficult. The first one is the stochasticity:
if the post-collisional orientations are exactly equal to the mean orientation, then the
associated collision operator is completely studied in [118]. The second difficulty is, again,
due to the geometrical constraints. Without these constraints the model has been widely
studied in particular in the literature on evolution dynamics where it is sometimes called
the infinitesimal model [20] and in other contexts in [274].

10.2.5 Metric and topological interactions

Ethological studies [15] suggest that in bird flocks, the individuals do not interact with
all their neighbours within a given interaction radius but rather with a fixed number of
neighbours, regardless of their distance. This is called a topological interaction mechanism.
More formally, given a particle i, the influence of a particle j on i at time t depends on
the rank Rij ∈ {1, . . . , N} of particle j defined such that particle j is the Rij-th nearest
neighbour of i:

Rij := #
{
k ∈ {1, . . . , N}, |X i

t −Xk
t | < |X i

t −Xj
t |
}
.

In a mean-field framework, it is more natural to use the normalised rank defined by
r[µXNt ](X i

t , X
j
t ) = Rij/N where given x, y, z ∈ Rd and µ ∈ P(Rd),

r[µ](x, y) :=
〈
µ, ψ(x, y, ·)

〉
, ψ(x, y, z) := 1[0,1)

( |x− z|
|x− y|

)
. (10.5)

All the swarming models previously described can be alternatively defined using topological
interactions by replacing the metric observation kernel K(|X i

t −Xj
t |) by the rank-based

observation kernel K
(
r[µXNt ](X i

t , X
j
t )
)
, where in this case K : [0, 1]→ [0,+∞) is a smooth

given function. This change has two consequences: first the interaction is no longer
symmetric and secondly, this adds a new source of nonlinearity (which is nevertheless of
mean-field type). Using mean-field arguments, the propagation of chaos limit can be derived,
at least formally. For the (deterministic) Cucker-Smale model, this is investigated in [192].
For Boltzmann interactions with a collision rate which depends on K

(
r[µXNt ](X i

t , X
j
t )
)
,

several models are discussed in [35, 36] and a rigorous propagation of chaos result is
proved in [107]. Apart from these works, topological interaction models have not been
much studied in the mathematics literature and despite their biological interest, a detailed
mathematical comparison between metric and topological models remains a largely open
research path.

316



Bibliography

[1] J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler. “The
Kuramoto model: A simple paradigm for synchronization phenomena”. Rev. Modern
Phys. 77.1 (2005), pp. 137–185.

[2] P. Aceves-Sanchez, M. Bostan, J.-A. Carrillo, and P. Degond. “Hydrodynamic limits
for kinetic flocking models of Cucker-Smale type”. Math. Biosci. Eng. 16 (2019),
pp. 7883–7910.

[3] S. M. Ahn and S.-Y. Ha. “Stochastic flocking dynamics of the Cucker–Smale model
with multiplicative white noises”. J. Math. Phys. 51.10 (2010), p. 103301.

[4] G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, and
J. Soler. “Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale
methods to applications and research perspectives”. Math. Models Methods Appl.
Sci. 29.10 (2019), pp. 1901–2005.

[5] L. Andreis, P. Dai Pra, and M. Fischer. “McKean–Vlasov limit for interacting
systems with simultaneous jumps”. Stoch. Anal. Appl. 36.6 (2018), pp. 960–995.

[6] C. Andrieu, A. Jasra, A. Doucet, and P. Del Moral. “Non-linear Markov Chain
Monte Carlo”. ESAIM: Proc. 19 (2007), pp. 79–84.

[7] C. Andrieu, A. Jasra, A. Doucet, and P. Del Moral. “On nonlinear Markov Chain
Monte Carlo”. Bernoulli 17.3 (2011), pp. 987–1014.

[8] I. Aoki. “A simulation study on the schooling mechanism in fish”. Bull. Japan. Soc.
Sci. Fish 48 (1982), pp. 1081–1088.

[9] A. W. Appel. “An Efficient Program for Many-Body Simulation”. SIAM J. Sci. and
Stat. Comput. 6.1 (1985), pp. 85–103.

[10] Y. Atchadé, G. Fort, E. Moulines, and P. Priouret. “Adaptive Markov Chain Monte
Carlo: Theory and Methods”. In: Bayesian Time Series Models. Ed. by D. Barber,
A. Taylan Cemgil, and S. Chiappa. Cambridge Univ. Press., 2011, pp. 32–51.

317



[11] Y. F. Atchadé and J. S. Rosenthal. “On adaptive Markov Chain Monte Carlo
algorithms”. Bernoulli 11.5 (2005), pp. 815–828.

[12] T. Aubin. Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Grundlehren
der mathematischen Wissenschaften 252. Springer New York, 1982.

[13] J. M. Ball. “Mathematics and liquid crystals”. Molecular Crystals and Liquid
Crystals 647.1 (2017), pp. 1–27. Publisher: Taylor &amp; Francis.

[14] J. M. Ball and A. Majumdar. “Nematic liquid crystals: from Maier-Saupe to a
continuum theory”. Molecular Crystals and Liquid Crystals 525.1 (2010), pp. 1–11.
Publisher: Taylor &amp; Francis.

[15] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,
V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic.
“Interaction ruling animal collective behavior depends on topological rather than
metric distance: Evidence from a field study”. Proc. Natl. Acad. Sci. USA 105.4
(2008), pp. 1232–1237.

[16] A. B. Barbaro, J. A. Canizo, J. A. Carrillo, and P. Degond. “Phase transitions in a
kinetic flocking model of Cucker–Smale type”. Multiscale Model. Simul. 14.3 (2016),
pp. 1063–1088. Publisher: SIAM.

[17] A. B. Barbaro and P. Degond. “Phase transition and diffusion among socially
interacting self-propelled agents”. Discrete Contin. Dyn. Syst. Ser. B 19.3 (2014),
pp. 1249–1278. Publisher: AIMS.

[18] J. Barnes and P. Hut. “A hierarchical O(N log N) force-calculation algorithm”.
Nature 324 (1986), pp. 446–449.

[19] J.-P. Bartier and J. Dolbeault. “Convex Sobolev inequalities and spectral gap”. C.
R. Math. Acad. Sci. Paris 342.5 (2006), pp. 307–312. Publisher: Elsevier.

[20] N. Barton, A. Etheridge, and A. Véber. “The infinitesimal model: Definition,
derivation, and implications”. Theor. Popul. Biol. 118 (2017), pp. 50–73.

[21] N. Bellomo, P. Degond, and E. Tadmor, eds. Active Particles, Volume 1: Advances in
Theory, Models, and Applications. Modeling and Simulation in Science, Engineering
and Technology. Springer International Publishing, 2017.

[22] N. Bellomo, P. Degond, and E. Tadmor, eds. Active Particles, Volume 2: Advances in
Theory, Models, and Applications. Modeling and Simulation in Science, Engineering
and Technology. Springer International Publishing, 2019.

318



[23] G. Ben Arous and M. Brunaud. “Methode de Laplace: étude variationnelle des
fluctuations de diffusions de type “champ moyen"”. Stochastics and Stochastics
Reports 31.1-4 (1990), pp. 79–144.

[24] G. Ben Arous and O. Zeitouni. “Increasing propagation of chaos for mean field
models”. Ann. Inst. Henri Poincaré Probab. Stat. 35.1 (1999), pp. 85–102.

[25] E. Ben-Naim and P. L. Krapivsky. “Alignment of rods and partition of integers”.
Phys. Rev. E 73.3 (2006), p. 031109.

[26] D. Benedetto, E. Caglioti, J. A. Carrillo, and M. Pulvirenti. “A Non-Maxwellian
Steady Distribution for One-Dimensional Granular Media”. J. Stat. Phys. 91.5/6
(1998), pp. 979–990.

[27] D. Benedetto, E. Caglioti, and M. Pulvirenti. “A kinetic equation for granular
media”. ESAIM: Mathematical Modelling and Numerical Analysis 31.5 (1997),
pp. 615–641.

[28] L. Berlyand, R. Creese, P.-E. Jabin, and M. Potomkin. “Continuum Approximations
to Systems of Correlated Interacting Particles”. J. Stat. Phys. 174.4 (2019), pp. 808–
829.

[29] E. Bertin, M. Droz, and G. Grégoire. “Boltzmann and hydrodynamic description
for self-propelled particles”. Phys. Rev. E 74.2 (2006), p. 022101.

[30] E. Bertin, M. Droz, and G. Grégoire. “Hydrodynamic equations for self-propelled
particles: microscopic derivation and stability analysis”. J. Phys. A 42.44 (2009),
p. 445001. Publisher: IOP Publishing.

[31] L. Bertini, G. Giacomin, and K. Pakdaman. “Dynamical Aspects of Mean Field
Plane Rotators and the Kuramoto Model”. J. Stat. Phys. 138 (2009), pp. 270–290.

[32] L. Bertini, G. Giacomin, and C. Poquet. “Synchronization and random long time
dynamics for mean-field plane rotators”. Probab. Theory Related Fields 160.3-4
(2014), pp. 593–653.

[33] J. Besag. “Comments on “Representations of knowledge in complex systems" by
U. Grenander and MI Miller”. J. R. Stat. Soc. Ser. B. Stat. Methodol. 56 (1994),
pp. 591–592.

[34] P. L. Bhatnagar, E. P. Gross, and M. Krook. “A model for collision processes in
gases. I. Small amplitude processes in charged and neutral one-component systems”.
Phys. Rev. 94.3 (1954), p. 511. Publisher: APS.

319



[35] A. Blanchet and P. Degond. “Topological Interactions in a Boltzmann-Type Frame-
work”. J. Stat. Phys. 163.1 (2016), pp. 41–60.

[36] A. Blanchet and P. Degond. “Kinetic Models for Topological Nearest-Neighbor
Interactions”. J. Stat. Phys. 169.5 (2017), pp. 929–950.

[37] G. Blelloch and G. Narlikar. “A Practical Comparison of N-Body Algorithms”. In:
Parallel Algorithms. Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, 1997.

[38] T. Bodineau, I. Gallagher, and L. Saint-Raymond. “The Brownian motion as the
limit of a deterministic system of hard-spheres”. Invent. math. 203.2 (2016), pp. 493–
553.

[39] E. Boissard, P. Degond, and S. Motsch. “Trail formation based on directed pheromone
deposition”. J. Math. Biol. 66.6 (2013), pp. 1267–1301.

[40] F. Bolley, J. A. Cañizo, and J. A. Carrillo. “Stochastic mean-field limit: non-
Lipschitz forces and swarming”. Math. Models Methods Appl. Sci. 21.11 (2011),
pp. 2179–2210. Publisher: World Scientific.

[41] F. Bolley, I. Gentil, and A. Guillin. “Uniform Convergence to Equilibrium for
Granular Media”. Arch. Ration. Mech. Anal. 208.2 (2013), pp. 429–445.

[42] F. Bolley and C. Villani. “Weighted Csiszár-Kullback-Pinsker inequalities and
applications to transportation inequalities”. Ann. Fac. Sci. Toulouse Math. (6) 14.3
(2005), pp. 331–352.

[43] E. Bolthausen. “Laplace approximations for sums of independent random vectors”.
Probab. Theory Related Fields 72.2 (1986), pp. 305–318.

[44] L. Boltzmann. “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen”.
Sitzungsberichte der Akademie der Wissenschaften 66 (1872), pp. 275–370. Transla-
tion: Further studies on the thermal equilibrium of gas molecules, in Kinetic Theory
2, 88–174, Ed. S.G. Brush, Pergamon, Oxford (1966).

[45] L. Bornn, P. E. Jacob, P. Del Moral, and A. Doucet. “An adaptive interacting
Wang–Landau algorithm for automatic density exploration”. J. Comput. Graph.
Statist. 22.3 (2013), pp. 749–773. Publisher: Taylor & Francis Group.

[46] M. Bostan and J. A. Carrillo. “Fluid models with phase transition for kinetic
equations in swarming”. Math. Models Methods Appl. Sci. 30.10 (2020), pp. 2023–
2065.

320



[47] P. Brémaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues.
Texts in Applied Mathematics 31. Springer New York, 1999.

[48] D. Bresch, P.-E. Jabin, and Z. Wang. “On mean-field limits and quantitative esti-
mates with a large class of singular kernels: Application to the Patlak–Keller–Segel
model”. C. R. Math. Acad. Sci. Paris 357.9 (2019), pp. 708–720.

[49] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Springer New York, 2011.

[50] M. Briant, A. Diez, and S. Merino-Aceituno. “Cauchy theory and mean-field limit
for general Vicsek models in collective dynamics”. arXiv preprint: arXiv:2004.00883
(2021).

[51] L. Caffarelli, M. Feldman, and R. McCann. “Constructing optimal maps for Monge’s
transport problem as a limit of strictly convex costs”. J. Amer. Math. Soc. 15.1
(2002), pp. 1–26.

[52] D. S. Calovi, U. Lopez, S. Ngo, C. Sire, H. Chaté, and G. Theraulaz. “Swarming,
schooling, milling: phase diagram of a data-driven fish school model”. New J. Phys.
16.1 (2014), p. 015026. Publisher: IOP Publishing.

[53] J. A. Cañizo and H. Yolda. “Asymptotic behaviour of neuron population models
structured by elapsed-time”. Nonlinearity 32 (2018).

[54] O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert. “Population Monte Carlo”. J.
Comput. Graph. Statist. 13.4 (2004), pp. 907–929.

[55] O. Cappé, R. Douc, A. Guillin, J.-M. Marin, and C. P. Robert. “Adaptive impor-
tance sampling in general mixture classes”. Stat. Comput. 18 (2008), pp. 447–459.
Publisher: Springer.

[56] P. Cardaliaguet. “Notes on mean field games (from P.-L. Lions’ lectures at Collège
de France)”. In: Lecture given at Tor Vergata. 2010, pp. 1–59.

[57] P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions. The Master Equation
and the Convergence Problem in Mean Field Games. Annals of Mathematics Studies
201. Princeton University Press, 2019.

[58] E. Carlen, M. C. Carvalho, P. Degond, and B. Wennberg. “A Boltzmann model for
rod alignment and schooling fish”. Nonlinearity 28.6 (2015), pp. 1783–1803.

[59] E. Carlen, R. Chatelin, P. Degond, and B. Wennberg. “Kinetic hierarchy and
propagation of chaos in biological swarm models”. Phys. D 260 (2013), pp. 90–111.

321



[60] E. Carlen, P. Degond, and B. Wennberg. “Kinetic limits for pair-interaction driven
master equations and biological swarm models”. Math. Models Methods Appl. Sci.
23.7 (2013), pp. 1339–1376.

[61] R. Carmona. Lectures on BSDEs, Stochastic Control, and Stochastic Differential
Games with Financial Applications. SIAM, 2016.

[62] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games with
Applications I, Mean Field FBSDEs, Control, and Games. Probability Theory and
Stochastic Modelling 83. Springer International Publishing, 2018.

[63] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games with
Applications II, Mean Field Games with Common Noise and Master Equations.
Probability Theory and Stochastic Modelling 84. Springer International Publishing,
2018.

[64] J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. “An analytical framework for
consensus-based global optimization method”. Math. Models Methods Appl. Sci.
28.06 (2018), pp. 1037–1066.

[65] J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. “Particle, kinetic, and hydro-
dynamic models of swarming”. In: Mathematical Modeling of Collective Behavior in
Socio-Economic and Life Sciences. Ed. by G. Naldi, L. Pareschi, and G. Toscani.
Birkhäuser Boston, 2010, pp. 297–336.

[66] J. A. Carrillo, S. Jin, L. Li, and Y. Zhu. “A consensus-based global optimization
method for high dimensional machine learning problems”. ESAIM Control Optim.
Calc. Var. 27 (2021), S5.

[67] J. A. Carrillo, Y.-P. Choi, and M. Hauray. “The derivation of swarming models:
Mean-field limit and Wasserstein distances”. In: Collective Dynamics from Bacteria
to Crowds. Ed. by A. Muntean and F. Toschi. CISM International Centre for
Mechanical Sciences 553. Springer, Vienna, 2014, pp. 1–46.

[68] J. A. Carrillo, M. R. D’Orsogna, and V. Panferov. “Double milling in self-propelled
swarms from kinetic theory”. Kinet. Relat. Models 2.2 (2009), pp. 363–378.

[69] J. A. Carrillo, M. Delgadino, and G. Pavliotis. “A λ-convexity based proof for the
propagation of chaos for weakly interacting stochastic particles”. J. Funct. Anal.
279.10 (2020).

[70] J. A. Carrillo, R. J. McCann, and C. Villani. “Kinetic equilibration rates for
granular media and related equations: entropy dissipation and mass transportation
estimates”. Rev. Mat. Iberoamericana 19 (2003), pp. 971–1018.

322



[71] J. A. Carrillo, R. J. McCann, and C. Villani. “Contractions in the 2-Wasserstein
Length Space and Thermalization of Granular Media”. Arch. Ration. Mech. Anal.
17 (2006), pp. 217–263.

[72] P. Cattiaux, F. Delebecque, and L. Pédèches. “Stochastic Cucker–Smale models:
Old and new”. Ann. Appl. Probab. 28.5 (2018).

[73] A. Cavagna, L. Del Castello, I. Giardina, T. Grigera, A. Jelic, . Melillo, T. Mora,
L. Parisi, E. Silvestri, M. Viale, and A. M. Walczak. “Flocking and Turning: a New
Model for Self-organized Collective Motion”. J. Stat. Phys. 158.3 (2015), pp. 601–
627.

[74] C. Cercignani. Ludwig Boltzmann, the Man Who Trusted Atoms. Oxford University
Press, 2006.

[75] C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute
Gases. Applied Mathematical Sciences 106. Springer-Verlag New York, 1994.

[76] L.-P. Chaintron and A. Diez. “Propagation of chaos: a review of models, methods
and applications”. arXiv preprint: arXiv:2106.14812 (2021).

[77] T. Champion and L. De Pascale. “The Monge problem in Rd ”. Duke Math. J. 157.3
(2011), pp. 551–572.

[78] B. Charlier, J. Feydy, J. A. Glaunès, F.-D. Collin, and G. Durif. “Kernel Operations
on the GPU, with Autodiff, without Memory Overflows”. J. Mach. Learn. Res.
22.74 (2021), pp. 1–6.

[79] J.-F. Chassagneux, L. Szpruch, and A. Tse. “Weak quantitative propagation of chaos
via differential calculus on the space of measures”. arXiv preprint arXiv:1901.02556
(2019).

[80] H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud. “Collective motion of self-
propelled particles interacting without cohesion”. Phys. Rev. E 77.4 (2008), p. 046113.

[81] P.-E. Chaudru de Raynal and N. Frikha. “From the backward Kolmogorov PDE on
the Wasserstein space to propagation of chaos for McKean-Vlasov SDE’s”. arXiv
preprint arXiv:1907.01410 (2019).

[82] L. Chizat and F. Bach. “On the Global Convergence of Gradient Descent for
Over-parameterized Models using Optimal Transport”. In: Advances in Neural
Information Processing Systems 31 (NeurIPS 2018). Ed. by S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Montreal, Canada:
Curran Associates, Inc., 2018, pp. 3040–3050.

323



[83] Y.-P. Choi and S. Salem. “Propagation of chaos for aggregation equations with
no-flux boundary conditions and sharp sensing zones”. Math. Models Methods Appl.
Sci. 28.02 (2018), pp. 223–258.

[84] Y.-P. Choi and S. Salem. “Collective behavior models with vision geometrical
constraints: Truncated noises and propagation of chaos”. J. Differential Equations
266.9 (2019), pp. 6109–6148.

[85] Y.-P. Choi and S. Salem. “Cucker-Smale flocking particles with multiplicative noises:
Stochastic mean-field limit and phase transition”. Kinet. Relat. Models 12.3 (2019),
pp. 573–592.

[86] G. Clarté, A. Diez, and J. Feydy. “Collective Proposal Distributions for Nonlinear
MCMC samplers: Mean-Field Theory and Fast Implementation”. arXiv preprint:
arXiv:1909.08988 (2021).

[87] M. Coghi and F. Flandoli. “Propagation of chaos for interacting particles subject
to environmental noise”. Ann. Appl. Probab. 26.3 (2016).

[88] E. G. D. Cohen and W. Thirring, eds. The Boltzmann Equation, Theory and
Applications. Acta Physica Austriaca Supplementum X. Springer Vienna, 1973.
Proceedings of the International Symposium "100 Years Boltzmann Equation" in
Vienna 4th-8th September 1972.

[89] R. Cortez and J. Fontbona. “Quantitative propagation of chaos for generalized Kac
particle systems”. Ann. Appl. Probab. 26.2 (2016), pp. 892–916.

[90] A. Costanzo and C. Hemelrijk. “Spontaneous emergence of milling (vortex state) in
a Vicsek-like model”. J. Phys. D: Appl. Phys. 51.13 (2018), p. 134004. Publisher:
IOP Publishing.

[91] I. D. Couzin and N. R. Franks. “Self-organized lane formation and optimized traffic
flow in army ants”. Proc. Biol. Sci. 270.1511 (2003), pp. 139–146. Publisher: The
Royal Society.

[92] I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks. “Collective
memory and spatial sorting in animal groups”. Journal of theoretical biology 218.1
(2002), pp. 1–12. Publisher: London, New York, Academic Press.

[93] R. V. Craiu, J. Rosenthal, and C. Yang. “Learn from thy neighbor: Parallel-chain
and regional adaptive MCMC”. J. Amer. Statist. Assoc. 104.488 (2009), pp. 1454–
1466. Publisher: Taylor & Francis.

324



[94] A. Creppy, F. Plouraboué, O. Praud, X. Druart, S. Cazin, H. Yu, and P. Degond.
“Symmetry-breaking phase transitions in highly concentrated semen”. J. R. Soc.
Interface 13.123 (2016), p. 20160575. Publisher: The Royal Society.

[95] A. Creppy, O. Praud, X. Druart, P. L. Kohnke, and F. Plouraboué. “Turbulence of
swarming sperm”. Phys. Rev. E 92.3 (2015), p. 032722.

[96] D. Crisan and A. Doucet. “A survey of convergence results on particle filtering
methods for practitioners”. IEEE Trans. Signal Process. 50.3 (2002), pp. 736–746.

[97] I. Csiszár. “Sanov Property, Generalized I-Projection and a Conditional Limit
Theorem”. Ann. Probab. 12.3 (1984), pp. 768–793.

[98] F. Cucker and S. Smale. “On the mathematics of emergence”. Jpn. J. Math. 2.1
(2007), pp. 197–227.

[99] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes. “Self-Propelled
Particles with Soft-Core Interactions: Patterns, Stability, and Collapse”. Phys. Rev.
Lett. 96.10 (2006), p. 104302.

[100] P. Dai Pra and F. den Hollander. “McKean-Vlasov limit for interacting random
processes in random media”. J. Stat. Phys. 84 (1996), pp. 735–772.

[101] D. Dawson. “Measure-valued Markov processes”. In: École d’Été de Probabilités de
Saint-Flour XXI-1991. Ed. by P. Hennequin. Lecture Notes in Mathematics 1541.
Springer Berlin Heidelberg, 1993.

[102] D. Dawson and J. Gärtner. “Large deviations from the McKean-Vlasov limit for
weakly interacting diffusions”. Stochastics 20.4 (1987).

[103] D. A. Dawson. “Critical dynamics and fluctuations for a mean-field model of
cooperative behavior”. J. Stat. Phys. 31.1 (1983), pp. 29–85.

[104] V. De Bortoli, A. Durmus, X. Fontaine, and U. Simsekli. “Quantitative Propagation
of Chaos for SGD in Wide Neural Networks”. arXiv preprint: arXiv:2007.06352
(2020).

[105] A. De Masi, A. Galves, E. Löcherbach, and E. Presutti. “Hydrodynamic Limit for
Interacting Neurons”. J. Stat. Phys. 158.4 (2015), pp. 866–902.

[106] P. Degond, A. Diez, and M. Na. “Bulk topological states in a new collective dynamics
model”. arXiv preprint: arXiv:2101.10864 (2021).

[107] P. Degond and M. Pulvirenti. “Propagation of chaos for topological interactions”.
Ann. Appl. Probab. 29.4 (2019).

325



[108] P. Degond. “Macroscopic limits of the Boltzmann equation: a review”. In: Modeling
and Computational Methods for Kinetic Equations. Ed. by P. Degond, L. Pareschi,
and G. Russo. Springer, 2004, pp. 3–57.

[109] P. Degond. “Mathematical models of collective dynamics and self-organization”. In:
Proceedings of the International Congress of Mathematicians ICM 2018. Vol. 4. Rio
de Janeiro, Brazil, 2018, pp. 3943–3964.

[110] P. Degond, A. Diez, and A. Frouvelle. “Body-attitude coordination in arbitrary
dimension”. arXiv preprint: arXiv:2111.05614 (2021).

[111] P. Degond, A. Diez, A. Frouvelle, and S. Merino-Aceituno. “Phase Transitions and
Macroscopic Limits in a BGK Model of Body-Attitude Coordination”. J. Nonlinear
Sci. 30.6 (2020), pp. 2671–2736.

[112] P. Degond, A. Frouvelle, and J.-G. Liu. “Macroscopic limits and phase transition
in a system of self-propelled particles”. J. Nonlinear Sci. 23.3 (2013), pp. 427–456.
Publisher: Springer.

[113] P. Degond, A. Frouvelle, and J.-G. Liu. “Phase transitions, hysteresis, and hyper-
bolicity for self-organized alignment dynamics”. Arch. Ration. Mech. Anal. 216.1
(2015), pp. 63–115. Publisher: Springer.

[114] P. Degond, A. Frouvelle, and S. Merino-Aceituno. “A new flocking model through
body attitude coordination”.Math. Models Methods Appl. Sci. 27.06 (2017), pp. 1005–
1049.

[115] P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases. “Quaternions in
Collective Dynamics”. Multiscale Model. Simul. 16.1 (2018), pp. 28–77.

[116] P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases. “Alignment of
Self-propelled Rigid Bodies: From Particle Systems to Macroscopic Equations”. In:
Stochastic Dynamics Out of Equilibrium, Institut Henri Poincaré, Paris, France,
2017. Ed. by G. Giacomin, S. Olla, E. Saada, H. Spohn, and G. Stoltz. Springer
Proceedings in Mathematics & Statistics 282. Springer, Cham, 2019, pp. 28–66.

[117] P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases. “Hyperbolicity of
SOHB models”. In preparation.

[118] P. Degond, A. Frouvelle, and G. Raoul. “Local Stability of Perfect Alignment for a
Spatially Homogeneous Kinetic Model”. J. Stat. Phys. 157.1 (2014), pp. 84–112.

326



[119] P. Degond, J.-G. Liu, S. Merino-Aceituno, and T. Tardiveau. “Continuum dynamics
of the intention field under weakly cohesive social interaction”. Math. Models
Methods Appl. Sci. 27.01 (2017), pp. 159–182.

[120] P. Degond, J.-G. Liu, S. Motsch, and V. Panferov. “Hydrodynamic models of
self-organized dynamics: derivation and existence theory”. Methods Appl. Anal. 20
(2013), pp. 89–114.

[121] P. Degond and S. Merino-Aceituno. “Nematic alignment of self-propelled particles:
From particle to macroscopic dynamics”. Math. Models Methods Appl. Sci. 30.10
(2020), pp. 1935–1986.

[122] P. Degond and S. Motsch. “Continuum limit of self-driven particles with orientation
interaction”. Math. Models Methods Appl. Sci. 18.Suppl. (2008), pp. 1193–1215.

[123] P. Degond and S. Motsch. “A macroscopic model for a system of swarming agents
using curvature control”. J. Stat. Phys. 143.4 (2011), pp. 685–714. Publisher:
Springer.

[124] P. Del Moral and J. Tugaut. “On the stability and the uniform propagation of chaos
properties of Ensemble Kalman–Bucy filters”. Ann. Appl. Probab. 28.2 (2018).

[125] P. Del Moral. “Measure-valued processes and interacting particle systems. Ap-
plication to nonlinear filtering problems”. Ann. Appl. Probab. 8 (1998), pp. 438–
495.

[126] P. Del Moral. Feynman-Kac Formulae, Genealogical and Interacting Particle Sys-
tems with Applications. Probability and Its Applications. Springer-Verlag New York,
2004.

[127] P. Del Moral. Mean field simulation for Monte Carlo integration. Monographs on
Statistics and Applied Probability 126. CRC Press, Taylor & Francis Group, 2013.

[128] P. Del Moral, A. Doucet, and A. Jasra. “Sequential Monte Carlo samplers”. J. R.
Stat. Soc. Ser. B. Stat. Methodol. 68.3 (2006), pp. 411–436. Publisher: Wiley Online
Library.

[129] P. Del Moral, A. Kurtzmann, and J. Tugaut. “On the Stability and the Uniform
Propagation of Chaos of a Class of Extended Ensemble Kalman-Bucy Filters”.
SIAM J. Control Optim. 55.1 (2017), pp. 119–155.

[130] P. Del Moral and J. Tugaut. “Uniform propagation of chaos and creation of chaos
for a class of nonlinear diffusions”. Stoch. Anal. Appl. 37.6 (2019), pp. 909–935.

327



[131] F. Delarue and A. Tse. “Uniform in time weak propagation of chaos on the torus”.
arXiv preprint: arXiv:2104.14973 (2021).

[132] M. G. Delgadino, R. S. Gvalani, and G. A. Pavliotis. “On the Diffusive-Mean Field
Limit for Weakly Interacting Diffusions Exhibiting Phase Transitions”. Arch. Ration.
Mech. Anal. (2021).

[133] M. G. Delgadino, R. S. Gvalani, G. A. Pavliotis, and S. A. Smith. “Phase transitions,
logarithmic Sobolev inequalities, and uniform-in-time propagation of chaos for
weakly interacting diffusions”. arXiv preprint: arXiv:2112.06304 (2021).

[134] B. Delyon and F. Portier. “Safe and adaptive importance sampling: a mixture
approach”. arXiv preprint arXiv:1903.08507 (2020).

[135] L. Desvillettes, C. Mouhot, and C. Villani. “Celebrating Cercignani’s conjecture for
the Boltzmann equation”. Kinet. Relat. Models 4.1 (2001), pp. 277–294.

[136] P. Diaconis and D. Freedman. “Finite Exchangeable Sequences”. Ann. Probab. 8.4
(1980), pp. 745–764.

[137] P. Diaconis, G. Lebeau, and L. Michel. “Geometric analysis for the Metropolis
algorithm on Lipschitz domains”. Invent. Math. 185.2 (2011), pp. 239–281. Publisher:
Springer.

[138] A. Diez. “Propagation of chaos and moderate interaction for a piecewise determin-
istic system of geometrically enriched particles”. Electron. J. Probab. 25 (2020).

[139] A. Diez. “SiSyPHE: A Python package for the Simulation of Systems of interacting
mean-field Particles with High Efficiency”. Journal of Open Source Software 6.65
(2021), p. 3653.

[140] G. Dimarco and S. Motsch. “Self-alignment driven by jump processes: Macroscopic
limit and numerical investigation”. Math. Models Methods Appl. Sci. 26.07 (2016),
pp. 1385–1410.

[141] G. Dimarco and L. Pareschi. “Numerical methods for kinetic equations”. Acta
Numerica 23 (2014), pp. 369–520.

[142] Z. Ding and Q. Li. “Ensemble Kalman inversion: mean-field limit and convergence
analysis”. Stat. Comput. 31.1 (2021), p. 9.

[143] Z. Ding and Q. Li. “Ensemble Kalman Sampler: Mean-field Limit and Convergence
Analysis”. SIAM J. Math. Anal. 53.2 (2021), pp. 1546–1578.

[144] R. L. Dobrushin. “Vlasov equations”. Funct. Anal. Appl. 13.2 (1979), pp. 115–123.

328



[145] R. Douc, A. Guillin, J.-M. Marin, and C. P. Robert. “Convergence of adaptive
mixtures of importance sampling schemes”. The Annals of Statistics 35.1 (2007),
pp. 420–448. Publisher: The Institute of Mathematical Statistics.

[146] A. Doucet, N. Freitas, and N. Gordon, eds. Sequential Monte Carlo Methods in
Practice. Information Science and Statistics. Springer-Verlag New York, 2001.

[147] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. “Hybrid Monte Carlo”.
Phys. Lett. B 195.2 (1987), pp. 216–222.

[148] B. Düring, N. Georgiou, S. Merino-Aceituno, and E. Scalas. “Continuum and
thermodynamic limits for a simple random-exchange model”. arXiv preprint:
arXiv:2003.00930 (2020).

[149] B. Düring, M. Torregrossa, and M.-T. Wolfram. “Boltzmann and Fokker–Planck
Equations Modelling the Elo Rating System with Learning Effects”. J. Nonlinear
Sci. 29.3 (2019), pp. 1095–1128.

[150] A. Durmus, A. Eberle, A. Guillin, and R. Zimmer. “An elementary approach to
uniform in time propagation of chaos”. Proc. Amer. Math. Soc. (2020).

[151] A. Eberle. “Reflection couplings and contraction rates for diffusions”. Probab. Theory
Related Fields 166 (2016), pp. 851–886.

[152] A. Eberle, A. Guillin, and R. Zimmer. “Quantitative Harris-type theorems for
diffusions and McKean-Vlasov processes”. Trans. Amer. Math. Soc. 371 (2019),
pp. 7135–7173.

[153] X. Erny. “Well-posedness and propagation of chaos for McKean-Vlasov equations
with jumps and locally Lipschitz coefficients”. arXiv preprint: arXiv:2102.06472
(2021).

[154] G. Estrada-Rodriguez and H. Gimperlein. “Interacting Particles with Lévy Strate-
gies: Limits of Transport Equations for Swarm Robotic Systems”. SIAM J. Appl.
Math. 80.1 (2020), pp. 476–498.

[155] A. Etheridge. Some Mathematical Models from Population Genetics. École d’Été
de Probabilités de Saint-Flour XXXIX-2009. Lecture Notes in Mathematics 2012.
Springer Berlin Heidelberg, 2011.

[156] S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence.
Wiley series in probability and mathematical statistics. New York: Wiley, 1986.

329



[157] P. Fearnhead, J. Bierkens, M. Pollock, G. O. Roberts, et al. “Piecewise deterministic
Markov processes for continuous-time Monte Carlo”. Statist. Sci. 33.3 (2018),
pp. 386–412. Publisher: Institute of Mathematical Statistics.

[158] M. Feldman and R. J. McCann. “Monge’s transport problem on a Riemannian
manifold”. Trans. Amer. Math. Soc. 354.4 (2001), pp. 1667–1697.

[159] J. Feydy. “Geometric data analysis, beyond convolutions”. PhD Thesis. Université
Paris-Saclay, 2020.

[160] A. Figalli, M.-J. Kang, and J. Morales. “Global Well-posedness of the Spatially
Homogeneous Kolmogorov–Vicsek Model as a Gradient Flow”. Arch. Ration. Mech.
Anal. 227.3 (2018), pp. 869–896.

[161] M. Fornasier, H. Huang, L. Pareschi, and P. Sünnen. “Consensus-based optimization
on hypersurfaces: Well-posedness and mean-field limit”. Math. Models Methods Appl.
Sci. 30.14 (2020), pp. 2725–2751.

[162] N. Fournier and A. Guillin. “On the rate of convergence in Wasserstein distance of
the empirical measure”. Probab. Theory Related Fields 162.3-4 (2015), pp. 707–738.
Publisher: Springer.

[163] N. Fournier and E. Löcherbach. “On a toy model of interacting neurons”. Ann. Inst.
Henri Poincaré Probab. Stat. 52.4 (2016).

[164] D. Frenkel and B. Smit. Understanding molecular simulation: from algorithms to
applications. 2nd ed. San Diego: Academic Press, 2002.

[165] M. Friesen and O. Kutoviy. “Stochastic Cucker-Smale flocking dynamics of jump-
type”. Kinet. Relat. Models 13.2 (2020), pp. 211–247.

[166] A. Frouvelle. “Body-attitude alignment: first order phase transition, link with rodlike
polymers through quaternions, and stability”. arXiv preprint: arXiv:2011.14891
(2020).

[167] W. Fulton and J. Harris. Representation theory: a first course. Vol. 129. Springer
Science & Business Media, 2013.

[168] I. Gallagher, L. Saint-Raymond, and B. Texier. “From Newton to Boltzmann: Hard
Spheres and Short-Range Potentials”. Zur. Lect. Adv. Math. 18 (2014).

[169] I. M. Gamba and M.-J. Kang. “Global Weak Solutions for Kolmogorov–Vicsek
Type Equations with Orientational Interactions”. Arch. Ration. Mech. Anal. 222.1
(2016), pp. 317–342.

330



[170] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. “Interacting Langevin
Diffusions: Gradient Structure and Ensemble Kalman Sampler”. SIAM J. Appl.
Dyn. Syst. 19.1 (2020), pp. 412–441.

[171] P. Gerlee, K. Tunstrøm, T. Lundh, and B. Wennberg. “Impact of anticipation in
dynamical systems”. Phys. Rev. E 96.6 (2017), p. 062413. Publisher: American
Physical Society.

[172] G. Giacomin, K. Pakdaman, and X. Pellegrin. “Global attractor and asymptotic
dynamics in the Kuramoto model for coupled noisy phase oscillators”. Nonlinearity
25.5 (2012), pp. 1247–1273.

[173] F. Golse. “On the Dynamics of Large Particle Systems in the Mean Field Limit”.
Lecture notes. arXiv:1301.5494 (2016), pp. 1–144. arXiv: 1301.5494.

[174] N. J. Gordon, D. J. Salmond, and A. F. Smith. “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation”. In: IEE proceedings F (radar and signal
processing). Vol. 140. IET, 1993, pp. 107–113.
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