99,862 research outputs found

    Sea ice trends in climate models only accurate in runs with biased global warming

    Full text link
    Observations indicate that the Arctic sea ice cover is rapidly retreating while the Antarctic sea ice cover is steadily expanding. State-of-the-art climate models, by contrast, typically simulate a moderate decrease in both the Arctic and Antarctic sea ice covers. However, in each hemisphere there is a small subset of model simulations that have sea ice trends similar to the observations. Based on this, a number of recent studies have suggested that the models are consistent with the observations in each hemisphere when simulated internal climate variability is taken into account. Here we examine sea ice changes during 1979-2013 in simulations from the most recent Coupled Model Intercomparison Project (CMIP5) as well as the Community Earth System Model Large Ensemble (CESM-LE), drawing on previous work that found a close relationship in climate models between global-mean surface temperature and sea ice extent. We find that all of the simulations with 1979-2013 Arctic sea ice retreat as fast as observed have considerably more global warming than observations during this time period. Using two separate methods to estimate the sea ice retreat that would occur under the observed level of global warming in each simulation in both ensembles, we find that simulated Arctic sea ice retreat as fast as observed would occur less than 1% of the time. This implies that the models are not consistent with the observations. In the Antarctic, we find that simulated sea ice expansion as fast as observed typically corresponds with too little global warming, although these results are more equivocal. We show that because of this, the simulations do not capture the observed asymmetry between Arctic and Antarctic sea ice trends. This suggests that the models may be getting the right sea ice trends for the wrong reasons in both polar regions

    Character education: themes and researches. An academic literature review

    Get PDF
    Character education is both a rooted and developing discipline. Even though there is no consensual definition, it can be widely described as a schoolbased process to promote personal development in youth, through the development of virtue, moral values, and moral agency. Starting from the growing interest about this theme in recent years, this article aims at using the \u201ccharacter education\u201d analysis category to conduct an exploratory research on the main tendencies in the international literature, defining which are the main topics, exploring the way these topics develop in terms of theory and empirical research and analyzing how they relate to each other. In view of this goal, titles and abstracts of 261 articles published in 145 peer-reviewed academic journals over the period 2005-2014 were selected from Education Source, ERIC, Psychology & Behavioral Sciences Collection and SocINDEX databases. Articles\u2019 titles and abstract were analyzed through the T-Lab software, using different content analysis techniques. Although many ambivalences and ambiguities affect the meaning attributed to the character education, some key trends emerge from this literature review and the considered studies seem to agree that character education can play an important role in the construction of children and adolescents\u2019 identity and can be a distinctive intervention for youth education and socialization

    PS-Sim: A Framework for Scalable Simulation of Participatory Sensing Data

    Full text link
    Emergence of smartphone and the participatory sensing (PS) paradigm have paved the way for a new variant of pervasive computing. In PS, human user performs sensing tasks and generates notifications, typically in lieu of incentives. These notifications are real-time, large-volume, and multi-modal, which are eventually fused by the PS platform to generate a summary. One major limitation with PS is the sparsity of notifications owing to lack of active participation, thus inhibiting large scale real-life experiments for the research community. On the flip side, research community always needs ground truth to validate the efficacy of the proposed models and algorithms. Most of the PS applications involve human mobility and report generation following sensing of any event of interest in the adjacent environment. This work is an attempt to study and empirically model human participation behavior and event occurrence distributions through development of a location-sensitive data simulation framework, called PS-Sim. From extensive experiments it has been observed that the synthetic data generated by PS-Sim replicates real participation and event occurrence behaviors in PS applications, which may be considered for validation purpose in absence of the groundtruth. As a proof-of-concept, we have used real-life dataset from a vehicular traffic management application to train the models in PS-Sim and cross-validated the simulated data with other parts of the same dataset.Comment: Published and Appeared in Proceedings of IEEE International Conference on Smart Computing (SMARTCOMP-2018

    Bivariate modelling of precipitation and temperature using a non-homogeneous hidden Markov model

    Full text link
    Aiming to generate realistic synthetic times series of the bivariate process of daily mean temperature and precipitations, we introduce a non-homogeneous hidden Markov model. The non-homogeneity lies in periodic transition probabilities between the hidden states, and time-dependent emission distributions. This enables the model to account for the non-stationary behaviour of weather variables. By carefully choosing the emission distributions, it is also possible to model the dependance structure between the two variables. The model is applied to several weather stations in Europe with various climates, and we show that it is able to simulate realistic bivariate time series

    Balancing Speed and Quality in Online Learning to Rank for Information Retrieval

    Full text link
    In Online Learning to Rank (OLTR) the aim is to find an optimal ranking model by interacting with users. When learning from user behavior, systems must interact with users while simultaneously learning from those interactions. Unlike other Learning to Rank (LTR) settings, existing research in this field has been limited to linear models. This is due to the speed-quality tradeoff that arises when selecting models: complex models are more expressive and can find the best rankings but need more user interactions to do so, a requirement that risks frustrating users during training. Conversely, simpler models can be optimized on fewer interactions and thus provide a better user experience, but they will converge towards suboptimal rankings. This tradeoff creates a deadlock, since novel models will not be able to improve either the user experience or the final convergence point, without sacrificing the other. Our contribution is twofold. First, we introduce a fast OLTR model called Sim-MGD that addresses the speed aspect of the speed-quality tradeoff. Sim-MGD ranks documents based on similarities with reference documents. It converges rapidly and, hence, gives a better user experience but it does not converge towards the optimal rankings. Second, we contribute Cascading Multileave Gradient Descent (C-MGD) for OLTR that directly addresses the speed-quality tradeoff by using a cascade that enables combinations of the best of two worlds: fast learning and high quality final convergence. C-MGD can provide the better user experience of Sim-MGD while maintaining the same convergence as the state-of-the-art MGD model. This opens the door for future work to design new models for OLTR without having to deal with the speed-quality tradeoff.Comment: CIKM 2017, Proceedings of the 2017 ACM on Conference on Information and Knowledge Managemen

    Regulatory Barriers to Value Based Payment Reform in NH: Stage 1

    Get PDF
    • …
    corecore