4 research outputs found

    Post-Disaster Recovery Efforts in Japan and New Zealand: What Worked Well? What Hasn't?

    Get PDF
    Natural disasters present significant threats to the infrastructure, economy, and most importantly, people. Land-use planning is fundamental to post-disaster management and the effects are often reflected in the efficiency of the policies and regulations in place. Post-disaster management in Japan is arguably regarded as the state of art, and this research seeks to evaluate the planning frameworks and policies that were developed in response to the 2011 Earthquake and Tsunami in Tōhoku, Japan. Disaster management comes in four stages: Mitigation, Preparedness, Response and Recovery. Mitigation measures can include a soft or hard approach. A softer approach can include maintaining the protective natural features such as sand dunes, wetlands and forests. A harder approach ranges from building retaining walls on hillslopes to sea walls in the coastal environments. Preparedness on the other hand, include educating the communities in case of an emergency; and responses to a disaster are often short-term measures such as providing food and water. This research intends to focus on the final stage of disaster management- recovery. The recovery stage involves responses to not just the physical destruction, but also the social and economic repercussions from natural disasters. This requires major financial and scientific inputs from a range of sectors, including the national government. A comparison of the disaster management frameworks between Japan and New Zealand is carried out to determine whether these policies have been effective in practice and to identify where improvements can be made to disaster management in New Zealand following the 2016 Kaikōura Earthquake

    Earthquake damage assessment in urban area from Very High Resolution satellite data

    Get PDF
    The use of remote sensing within the domain of natural hazards and disaster management has become increasingly popular, due in part to increased awareness of environmental issues, including climate change, but also to the improvement of geospatial technologies and the ability to provide high quality imagery to the public through the media and internet. As technology is enhanced, demand and expectations increase for near-real-time monitoring and images to be relayed to emergency services in the event of a natural disaster. During a seismic event, in particular, it is fundamental to obtain a fast and reliable map of the damage of urban areas to manage civil protection interventions. Moreover, the identification of the destruction caused by an earthquake provides seismology and earthquake engineers with informative and valuable data, experiences and lessons in the long term. An accurate survey of damage is also important to assess the economic losses, and to manage and share the resources to be allocated during the reconstruction phase. Satellite remote sensing can provide valuable pieces of information on this regard, thanks to the capability of an instantaneous synoptic view of the scene, especially if the seismic event is located in remote regions, or if the main communication systems are damaged. Many works exist in the literature on this topic, considering both optical data and radar data, which however put in evidence some limitations of the nadir looking view, of the achievable level of details and response time, and the criticality of image radiometric and geometric corrections. The visual interpretation of optical images collected before and after a seismic event is the approach followed in many cases, especially for an operational and rapid release of the damage extension map. Many papers, have evaluated change detection approaches to estimate damage within large areas (e.g., city blocks), trying to quantify not only the extension of the affected area but also the level of damage, for instance correlating the collapse ratio (percentage of collapsed buildings in an area) measured on ground with some change parameters derived from two images, taken before and after the earthquake. Nowadays, remotely sensed images at Very High Resolution (VHR) may in principle enable production of earthquake damage maps at single-building scale. The complexity of the image forming mechanisms within urban settlements, especially of radar images, makes the interpretation and analysis of VHR images still a challenging task. Discrimination of lower grade of damage is particularly difficult using nadir looking sensors. Automatic algorithms to detect the damage are being developed, although as matter of fact, these works focus very often on specific test cases and sort of canonical situations. In order to make the delivered product suitable for the user community, such for example Civil Protection Departments, it is important to assess its reliability on a large area and in different and challenging situations. Moreover, the assessment shall be directly compared to those data the final user adopts when carrying out its operational tasks. This kind of assessment can be hardly found in the literature, especially when the main focus is on the development of sophisticated and advanced algorithms. In this work, the feasibility of earthquake damage products at the scale of individual buildings, which relies on a damage scale recognized as a standard, is investigated. To this aim, damage maps derived from VHR satellite images collected by Synthetic Aperture Radar (SAR) and optical sensors, were systematically compared to ground surveys carried out by different teams and with different purposes and protocols. Moreover, the inclusion of a priori information, such as vulnerability models for buildings and soil geophysical properties, to improve the reliability of the resulting damage products, was considered in this study. The research activity presented in this thesis was carried out in the framework of the APhoRISM (Advanced PRocedures for volcanIc Seismic Monitoring) project, funded by the European Union under the EC-FP7 call. APhoRISM was aimed at demonstrating that an appropriate management and integration of satellite and ground data can provide new improved products useful for seismic and volcanic crisis management

    Interferometric Synthetic Aperture RADAR and Radargrammetry towards the Categorization of Building Changes

    Get PDF
    The purpose of this work is the investigation of SAR techniques relying on multi image acquisition for fully automatic and rapid change detection analysis at building level. In particular, the benefits and limitations of a complementary use of two specific SAR techniques, InSAR and radargrammetry, in an emergency context are examined in term of quickness, globality and accuracy. The analysis is performed using spaceborne SAR data

    Radar satellite imagery for humanitarian response. Bridging the gap between technology and application

    Get PDF
    This work deals with radar satellite imagery and its potential to assist of humanitarian operations. As the number of displaced people annually increases, both hosting countries and relief organizations face new challenges which are often related to unclear situations and lack of information on the number and location of people in need, as well as their environments. It was demonstrated in numerous studies that methods of earth observation can deliver this important information for the management of crises, the organization of refugee camps, and the mapping of environmental resources and natural hazards. However, most of these studies make use of -high-resolution optical imagery, while the role of radar satellites is widely neglected. At the same time, radar sensors have characteristics which make them highly suitable for humanitarian response, their potential to capture images through cloud cover and at night in the first place. Consequently, they potentially allow quicker response in cases of emergencies than optical imagery. This work demonstrates the currently unused potential of radar imagery for the assistance of humanitarian operations by case studies which cover the information needs of specific emergency situations. They are thematically grouped into topics related to population, natural hazards and the environment. Furthermore, the case studies address different levels of scientific objectives: The main intention is the development of innovative techniques of digital image processing and geospatial analysis as an answer on the identified existing research gaps. For this reason, novel approaches are presented on the mapping of refugee camps and urban areas, the allocation of biomass and environmental impact assessment. Secondly, existing methods developed for radar imagery are applied, refined, or adapted to specifically demonstrate their benefit in a humanitarian context. This is done for the monitoring of camp growth, the assessment of damages in cities affected by civil war, and the derivation of areas vulnerable to flooding or sea-surface changes. Lastly, to foster the integration of radar images into existing operational workflows of humanitarian data analysis, technically simple and easily-adaptable approaches are suggested for the mapping of rural areas for vaccination campaigns, the identification of changes within and around refugee camps, and the assessment of suitable locations for groundwater drillings. While the studies provide different levels of technical complexity and novelty, they all show that radar imagery can largely contribute to the provision of a variety of information which is required to make solid decisions and to effectively provide help in humanitarian operations. This work furthermore demonstrates that radar images are more than just an alternative image source for areas heavily affected by cloud cover. In fact, what makes them valuable is their information content regarding the characteristics of surfaces, such as shape, orientation, roughness, size, height, moisture, or conductivity. All these give decisive insights about man-made and natural environments in emergency situations and cannot be provided by optical images Finally, the findings of the case studies are put into a larger context, discussing the observed potential and limitations of the presented approaches. The major challenges are summarized which need be addressed to make radar imagery more useful in humanitarian operations in the context of upcoming technical developments. New radar satellites and technological progress in the fields of machine learning and cloud computing will bring new opportunities. At the same time, this work demonstrated the large need for further research, as well as for the collaboration and transfer of knowledge and experiences between scientists, users and relief workers in the field. It is the first extensive scientific compilation of this topic and the first step for a sustainable integration of radar imagery into operational frameworks to assist humanitarian work and to contribute to a more efficient provision of help to those in need.Die vorliegende Arbeit beschäftigt sich mit bildgebenden Radarsatelliten und ihrem potenziellen Beitrag zur Unterstützung humanitärer Einsätze. Die jährlich zunehmende Zahl an vertriebenen oder geflüchteten Menschen stellt sowohl Aufnahmeländer als auch humanitäre Organisationen vor große Herausforderungen, da sie oft mit unübersichtlichen Verhältnissen konfrontiert sind. Effektives Krisenmanagement, die Planung und Versorgung von Flüchtlingslagern, sowie der Schutz der betroffenen Menschen erfordern jedoch verlässliche Angaben über Anzahl und Aufenthaltsort der Geflüchteten und ihrer natürlichen Umwelt. Die Bereitstellung dieser Informationen durch Satellitenbilder wurde bereits in zahlreichen Studien aufgezeigt. Sie beruhen in der Regel auf hochaufgelösten optischen Aufnahmen, während bildgebende Radarsatelliten bisher kaum Anwendung finden. Dabei verfügen gerade Radarsatelliten über Eigenschaften, die hilfreich für humanitäre Einsätze sein können, allen voran ihre Unabhängigkeit von Bewölkung oder Tageslicht. Dadurch ermöglichen sie in Krisenfällen verglichen mit optischen Satelliten eine schnellere Reaktion. Diese Arbeit zeigt das derzeit noch ungenutzte Potenzial von Radardaten zur Unterstützung humanitärer Arbeit anhand von Fallstudien auf, in denen konkrete Informationen für ausgewählte Krisensituationen bereitgestellt werden. Sie sind in die Themenbereiche Bevölkerung, Naturgefahren und Ressourcen aufgeteilt, adressieren jedoch unterschiedliche wissenschaftliche Ansprüche: Der Hauptfokus der Arbeit liegt auf der Entwicklung von innovativen Methoden zur Verarbeitung von Radarbildern und räumlichen Daten als Antwort auf den identifizierten Forschungsbedarf in diesem Gebiet. Dies wird anhand der Kartierung von Flüchtlingslagern zur Abschätzung ihrer Bevölkerung, zur Bestimmung von Biomasse, sowie zur Ermittlung des Umwelteinflusses von Flüchtlingslagern aufgezeigt. Darüber hinaus werden existierende oder erprobte Ansätze für die Anwendung im humanitären Kontext angepasst oder weiterentwickelt. Dies erfolgt im Rahmen von Fallstudien zur Dynamik von Flüchtlingslagern, zur Ermittlung von Schäden an Gebäuden in Kriegsgebieten, sowie zur Erkennung von Risiken durch Überflutung. Zuletzt soll die Integration von Radardaten in bereits existierende Abläufe oder Arbeitsroutinen in der humanitären Hilfe anhand technisch vergleichsweise einfacher Ansätze vorgestellt und angeregt werden. Als Beispiele dienen hier die radargestützte Kartierung von entlegenen Gebieten zur Unterstützung von Impfkampagnen, die Identifizierung von Veränderungen in Flüchtlingslagern, sowie die Auswahl geeigneter Standorte zur Grundwasserentnahme. Obwohl sich die Fallstudien hinsichtlich ihres Innovations- und Komplexitätsgrads unterscheiden, zeigen sie alle den Mehrwert von Radardaten für die Bereitstellung von Informationen, um schnelle und fundierte Planungsentscheidungen zu unterstützen. Darüber hinaus wird in dieser Arbeit deutlich, dass Radardaten für humanitäre Zwecke mehr als nur eine Alternative in stark bewölkten Gebieten sind. Durch ihren Informationsgehalt zur Beschaffenheit von Oberflächen, beispielsweise hinsichtlich ihrer Rauigkeit, Feuchte, Form, Größe oder Höhe, sind sie optischen Daten überlegen und daher für viele Anwendungsbereiche im Kontext humanitärer Arbeit besonders. Die in den Fallstudien gewonnenen Erkenntnisse werden abschließend vor dem Hintergrund von Vor- und Nachteilen von Radardaten, sowie hinsichtlich zukünftiger Entwicklungen und Herausforderungen diskutiert. So versprechen neue Radarsatelliten und technologische Fortschritte im Bereich der Datenverarbeitung großes Potenzial. Gleichzeitig unterstreicht die Arbeit einen großen Bedarf an weiterer Forschung, sowie an Austausch und Zusammenarbeit zwischen Wissenschaftlern, Anwendern und Einsatzkräften vor Ort. Die vorliegende Arbeit ist die erste umfassende Darstellung und wissenschaftliche Aufarbeitung dieses Themenkomplexes. Sie soll als Grundstein für eine langfristige Integration von Radardaten in operationelle Abläufe dienen, um humanitäre Arbeit zu unterstützen und eine wirksame Hilfe für Menschen in Not ermöglichen
    corecore