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Introduction 

The use of remote sensing within the domain of natural hazards and disaster management 

has become increasingly popular, due in part to increased awareness of environmental 

issues, including climate change, but also to the improvement of geospatial technologies 

and the ability to provide high quality imagery to the public through the media and 

internet. As technology is enhanced, demand and expectations increase for near-real-time 

monitoring and images to be relayed to emergency services in the event of a natural 

disaster. During a seismic event, in particular, it is fundamental to obtain a fast and 

reliable map of the damage of urban areas to manage civil protection interventions. 

Moreover, the identification of the destruction caused by an earthquake provides 

seismology and earthquake engineers with informative and valuable data, experiences 

and lessons in the long term. An accurate survey of damage is also important to assess 

the economic losses, and to manage and share the resources to be allocated during the 

reconstruction phase.  

Satellite remote sensing can provide valuable pieces of information on this regard, thanks 

to the capability of an instantaneous synoptic view of the scene, especially if the seismic 

event is located in remote regions, or if the main communication systems are damaged. 

Many works exist in the literature on this topic, considering both optical data and radar 

data, which however put in evidence some limitations of the nadir looking view, of the 

achievable level of details and response time, and the criticality of image radiometric and 

geometric corrections. The visual interpretation of optical images collected before and 

after a seismic event is the approach followed in many cases, especially for an operational 

and rapid release of the damage extension map. Many papers, have evaluated change 

detection approaches to estimate damage within large areas (e.g., city blocks), trying to 

quantify not only the extension of the affected area but also the level of damage, for 

instance correlating the collapse ratio (percentage of collapsed buildings in an area) 

measured on ground with some change parameters derived from two images, taken before 
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and after the earthquake. Nowadays, remotely sensed images at Very High Resolution 

(VHR) may in principle enable production of earthquake damage maps at single-building 

scale. The complexity of the image forming mechanisms within urban settlements, 

especially of radar images, makes the interpretation and analysis of VHR images still a 

challenging task. Discrimination of lower grade of damage is particularly difficult using 

nadir looking sensors. Automatic algorithms to detect the damage are being developed, 

although as matter of fact, these works focus very often on specific test cases and sort of 

canonical situations. In order to make the delivered product suitable for the user 

community, such for example Civil Protection Departments, it is important to assess its 

reliability on a large area and in different and challenging situations. Moreover, the 

assessment shall be directly compared to those data the final user adopts when carrying 

out its operational tasks. This kind of assessment can be hardly found in the literature, 

especially when the main focus is on the development of sophisticated and advanced 

algorithms.  

In this work, the feasibility of earthquake damage products at the scale of individual 

buildings, which relies on a damage scale recognized as a standard, is investigated. To 

this aim, damage maps derived from VHR satellite images collected by Synthetic 

Aperture Radar (SAR) and optical sensors, were systematically compared to ground 

surveys carried out by different teams and with different purposes and protocols. 

Moreover, the inclusion of a priori information, such as vulnerability models for buildings 

and soil geophysical properties, to improve the reliability of the resulting damage 

products, was considered in this study.  

The research activity presented in this thesis was carried out in the framework of the 

APhoRISM (Advanced PRocedures for volcanIc Seismic Monitoring) project, funded by 

the European Union under the EC-FP7 call. APhoRISM was aimed at demonstrating that 

an appropriate management and integration of satellite and ground data can provide new 

improved products useful for seismic and volcanic crisis management. 

This thesis is organized in six chapters.  

Chapter 1 provides an overview of the role of remote sensing in disaster management and 

presents the state of the art related to earthquake damage and vulnerability assessment.  

Chapter 2 reviews scattering mechanisms determining the SAR response of a building 

and spectral properties of urban areas in the optical bands. Then, an overview of the 
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change detection process through Object Based Image Analysis (OBIA) approaches is 

provided, focusing on specific techniques exploited in this research work.  

After an introduction to the A Priori information for Earthquake damage mapping (APE) 

approach, proposed in APhoRISM to generate maps of damage through the integration of 

satellite data and a priori information, Chapter 3 provides a summary of the case study 

investigated in this thesis and describes remotely sensed and reference data exploited 

during the experiments.  

Chapter 4 presents object-oriented change detection methodologies developed to generate 

earthquake damage maps from VHR satellite images, as well as data fusion approaches 

implemented for integrating satellite data and a priori information layers. Results are 

presented and discussed.  

In Chapter 5, the Triple Collocation approach, a technique proposed for validating 

remotely sensed products from three different systems when the source of test data (e.g., 

ground data) does not represent a reliable reference, is extended to the classification 

problem. First, the proposed approach is tested on a simulated data set and then applied 

to the real case of the earthquake damage classification. 

Finally, Chapter 6 draws the conclusions of this work and discusses future developments. 
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1. Earthquake risk and Earth 

Observation 

1.1 Introduction 

Natural disasters are becoming more frequent and severe in the modern world and their 

impact on human lives and economy shows an increasing trend (Figure 1-1). According 

to the Centre for Research on the Epidemiology of Disasters (CRED), 346 natural 

disasters were reported worldwide in 2015. They claimed 22773 lives, affected over 98 

million others and caused economic damages of US$66.5 billion (CRED, 2016).  

The severity of the impact of disasters depends strongly on the level of exposure and 

vulnerability in the affected area, and evidence indicates that the risk has increased 

worldwide largely due to the increases in the exposure of people and assets (UNISDR, 

2016). Exposure is one of the major drivers of risk, and rapid demographic changes as 

well as the growing urbanization are key factors, causing more and more people to be 

exposed to risk (CEOS, 2015). According to the results of 2015 Revision of World 

Population Prospects released by the Population Division of the Department of Economic 

and Social Affairs of the United Nations Secretariat, the world population reached 7.3 

billion as of mid- 2015 implying that the world has added approximately one billion 

people in the span of the last twelve years. Depending on the expected growth rates, world 

population is estimated to reach 9.7 billion in 2050 and 11.2 billion in 2100 (UN, 2015). 

Today over half of the world's population (54 per cent.) lives in urban areas. The 

urbanization, encompassing both the movement of people from rural to urban areas and 

population growth within cities, results in larger concentrations of exposure, so, when 

cities are affected by a disaster, losses can be significant. Exposure increases as 

population grows in hazardous areas, and as improved socioeconomic conditions raise 

the value of assets (GFDRR, 2016). Cities in the developing world are facing increased 
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risk of disasters and the potential of economic and human losses from natural hazards is 

being exacerbated by the rate of unplanned urban expansion and influenced by the quality 

of urban management.  

To effectively reduce the impacts of a disaster a complete strategy for disaster 

management is required. Earth Observation (EO) data can provide valuable information 

supporting both research into natural hazards and their causes and operational decision-

making related to both planning and response (CEOS, 2012). 

 

Figure 1-1: Annual reported economic damages and time trend from disasters: 1980-2015 (source: 

CRED, 2016).  

1.2 Defining determinants of Risk: Hazard, Exposure, 

and Vulnerability 

As defined by United Nations- International Strategy for Disaster Risk Reduction a 

disaster is as a serious disruption of the functioning of a community or a society causing 

widespread human, material, economic or environmental losses which exceed the ability 

of the affected community or society to cope using its own resources (UNISDR, 2004-

2009).  

A disaster is a function of the risk process: it results from the combination of exposure to 

hazards, conditions of vulnerability and insufficient capacity or measures to reduce the 

potential negative consequences of risk. 

The term hazard indicates a potential damaging event, phenomenon or human activity 

that may cause loss of life, injury or other health impacts, property damage, loss of 

livelihoods and services, social and economic disruption, or environmental degradation 

(UNISDR, 2004-2009).  Hazards can be classified according to their origin. Natural 
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hazards are natural processes or phenomena in the earth's system that may constitute a 

damaging event (e.g. earthquakes, volcanic eruptions, hurricanes). Human-induced 

hazards are those resulting from modifications of natural processes in the earth's system 

caused by human activities that accelerate/aggravate the damage potential (e.g. land 

degradation, landslides, forest fires). Human-made hazards originate from technological 

or industrial accidents, dangerous procedures, infrastructure failures or certain human 

activities which may cause the loss of life or injury, property damage, social and 

economic disruption or environmental degradation (e.g. industrial pollution, nuclear 

activities and radioactivity, toxic wastes, dam failures, transport, industrial or 

technological accidents such as explosions, fires and oil spills) (Van Westen, 2013). 

Hazardous events turn into disasters when they affect human or economic systems that 

cannot withstand their impact (Deichmann et al., 2011). Therefore, disaster risk cannot 

solely be characterized as a function of a hazard, since elements exposed to a certain 

hazard can react differently depending on their degree of vulnerability. Exposure refers 

to people, property, systems, or other elements present in hazard zones that are thereby 

subject to potential losses. The vulnerability characterizes the susceptibility of exposed 

people, assets, and livelihoods to the harmful effects of hazards (UNISDR, 2009). 

Physical, or structural, vulnerability refers to the damage associated with buildings and 

infrastructure, which determines asset losses. Social vulnerability refers to people ability 

to cope with the impacts of asset losses on their livelihoods and security. These impacts, 

along with losses to public assets, are a focus for governments (GFDRR, 2016). Exposure 

and vulnerability are two distinct concepts. Exposure is a necessary, but not sufficient, 

determinant of risk. It is possible to be exposed but not vulnerable (for example by living 

in a floodplain but having sufficient means to modify building structure and behaviour to 

mitigate potential loss). However, to be vulnerable to an extreme event, it is necessary to 

be exposed (IPPC, 2012). 

1.3 Disaster Risk Management Cycle and Earth 

Observation 

Disaster risk management (DRM) aims to reduce the loss of life and damage to property 

from disasters. This involves both disaster risk reduction (DRR), such as pre-event 
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activities of mitigation and preparedness, and post event phases, as emergency response 

and recovery (see Figure 1-2) (Cova, 1999; Bitelli and Gusella, 2008; Joyce et al., 2009). 

 

Figure 1-2: Disaster risk management cycle.  

Disaster mitigation refers to any structural and non-structural measure undertaken to limit 

the adverse impact of hazards. Mitigation measures include building codes; vulnerability 

analyses updates; zoning and land use management; building use regulations and safety 

codes; preventive health care; and public education. Preparedness is concerned with 

actions that are taken in advance of an emergency to develop operational capabilities and 

facilitate an effective response to an emergency. Preparedness is based on analysis of 

disaster risk and good linkages with early warning systems and includes activities such 

as contingency planning, stockpiling of equipment and supplies, development of 

arrangements for coordination, evacuation and public information, and associated 

training and field exercises (UNISDR, 2004). The response phase involves actions that 

are taken immediately before, during, or directly after an emergency occurs, to save lives, 

minimize damage to property and enhance the effectiveness of recovery (Cova, 1999). 

The main focus of this phase is to carry out efficient search and rescue operations, 

evacuate potential victims, provide food, water and medical care to those in need. In many 

cases, hazard monitoring systems ensure authorities are promptly alerted to disaster onset 

by means of systematic forecasts (e.g., hurricanes). In other cases, such as earthquakes, 

pre-impact prediction is usually not available, and a prompt assessment of the impact area 

is essential to direct emergency response resources to the most severely affected areas 
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(Lindell et al., 2006a). After the catastrophic event, the overall goal of the recovery phase 

is returning the community, business, or other entity to conditions the same or better than 

existed before the disrupting event. It involves short- (relief and rehabilitation) and long-

term activities (reconstruction). In the short term, recovery is an extension of the response 

phase and it focuses on the immediate tasks of securing the impact area, housing victims, 

and establishing conditions under which households and businesses can begin the process 

of recovery (Lindell, 2013). 

Remote sensing can provide a valuable source of information throughout the emergency 

management cycle (Joyce et al., 2009). In the pre-event stages, remote sensing data can 

be exploited for detecting potentially hazardous areas, such as, for example, areas prone 

to floods and landslides. Understanding of hazards can support mitigation activities such 

as land use planning and building codes to reduce disaster risk. Very High Resolution 

(VHR) optical data can be used for land cover and land use mapping to obtain up-to-date 

information about buildings, infrastructure and other features that may be threatened by 

hazard events (Deichmann et al., 2011). This furthermore gives information about human 

exposure since inhabited structures in hazardous areas imply that people are likely to be 

exposed to injury or death, for example, when a building collapses after an earthquake. 

Response activities are primarily focused on protecting life and property during a disaster. 

Remote sensing can be used here to provide immediate damage assessment and to assist 

research and rescue activities and evacuation plan. Of course, during the response phase, 

the temporal relevance of remote sensing data is crucial (Joyce et al., 2009). 

The usefulness of EO data for disaster management has been proven by numerous 

ongoing national and international initiatives (Serpico et al., 2012).  

The International Charter on Space and Major Disasters is the main mechanism globally 

by which countries can access satellite EO data in support of their disaster response 

activities (CEOS, 2015). The International Charter1 aims to provide a unified system of 

space data acquisition and delivery to those affected by natural or man-made disasters 

worldwide. Starting with only three initial members (European Space Agency (ESA), 

Centre National d' Études Spatiales (CNES) and Canadian Space Agency (CSA)), the 

Charter has grown to a group of 16 members. It has been activated over 500 times (1 

                                                      
1 www.disasterscharter.org 

http://www.disasterscharter.org/
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August 2016), since it became operational in November 2000, providing meaningful 

mapping and analysis products to the civil-protection and relief organizations at 

appropriate scale in time and space. 

Similar to the Charter is the Emergency Management Service, of the European Program 

Copernicus2, previously known as GMES (Global Monitoring for Environment and 

Security). Copernicus collects data from EO satellites and in situ sensors such as ground 

stations, airborne and sea-borne sensors, processes these data and provides users with 

reliable and up-to-date information through a set of services related to environmental and 

security issues. The Copernicus program is supported by a family of dedicated satellites, 

the Sentinels, specifically designed to meet the needs of the Copernicus services and their 

users. Copernicus offers six different service lines: Emergency Management, Atmosphere 

Monitoring, Marine Environment Monitoring, Land Monitoring, Climate Change and 

services for Security applications. The Emergency Management Service has two main 

components: Early Warning and Mapping. The Early Warning component delivers alerts 

and risk assessments of floods and forest fires. The Mapping component addresses a wide 

range of emergency situations resulting from natural or man-made disasters, covering in 

particular floods, earthquakes, tsunamis, landslides, severe storms, fires, industrial 

accidents, volcanic eruptions and humanitarian crises. The service is provided in two 

modules. Rapid Mapping provides high-speed service delivery in the midst of or 

immediately after catastrophic events or humanitarian crises. Risk & Recovery Mapping 

is designed for pre- or post-crisis situations in support of recovery, disaster risk reduction, 

prevention, and preparedness activities.  

1.4 Earth Observation for earthquake disaster 

management 

Earthquakes with their unpredictability and devastating nature are a challenge for 

scientists and organizations around the world. Remote Sensing represents a powerful tool 

for monitoring deformation of the Earth's crust that is one of the most important 

parameters for the study of the seismic cycle. It provides important information used to 

                                                      
2 www.copernicus.eu 

 

http://www.copernicus.eu/
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model the mechanisms of tectonic stress accumulation (in the interseismic phase) and 

release (in the coseismic and postseismic phases) along fault zones. In each individual 

seismic cycle, the rapid and large surface displacements that accompany an earthquake 

are typically preceded by a long period of slow, gradual loading, where strain accumulates 

on the fault segments (interseismic phase). Geodetic observations of crustal strain during 

the interseismic phase can make important contributions to the assessment of seismic 

hazard, as the rate of strain accumulation on a fault may be directly related to the rate of 

earthquake occurrence. Once sufficient strain has been accumulated such that shear stress 

on the fault exceeds a fault's frictional strength, an earthquake occurs. This phase of the 

seismic cycle is referred to as the coseismic phase (Salvi et al., 2012; Tolomei et al., 

2015). 

Synthetic Aperture Radar (SAR) Interferometric (InSAR) techniques have demonstrated 

the capacity to obtain information on the dynamics of the deformation occurring during 

the various phases of the seismic cycle (Tolomei et al., 2015). Large earthquake can cause 

displacements in the order of decimeters that can be clearly identified in SAR 

interferogram generated using a pair of images collected before and after the seismic 

event. Landers earthquake occurred in 1992 was the first seismic event analyzed using 

the InSAR technique (Massonnet, 1993). Measuring interseismic deformation with 

InSAR is more challenging because the rates of deformation are small (<3 cm/yr) and the 

deformation signal can be distributed over tens of kilometers (Salvi et al., 2012). 

Focusing on urban areas, in the following sections EO capabilities for earthquake damage 

and vulnerability assessment are presented. 

1.4.1 Vulnerability assessment 

Due to the rapid sprawling of built-up areas, unplanned settlements and to the general 

rapid changes in modern cities and mega-cities, building inventory data and related 

seismic vulnerability information are often outdated, spatially aggregated and 

discontinuous and, in many earthquake prone regions of the world, simply inexistent. 

Conventional approaches to assess the seismic vulnerability of the building inventory 

involves detailed in situ building-by-building analysis by structural engineers, which 

could be costly and time consuming (Pittore and Wieland, 2013; Geiß at al., 2016). 

Remote Sensing technology appears to be a challenging and promising approach to rapid 

inventory and vulnerability assessment. VHR satellite imagery from optical sensor are 
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characterized by sub-metric resolution suitable for mapping the urban landscape. They 

have a great potential to extract different building parameters as vulnerability indicators 

(Mueller at al. 2006; Deichmann et al., 2011; Harb et al., 2015).  

Object based image analysis (OBIA) techniques can be exploited to highlight shape 

characteristics of the building footprint useful to infer the plan irregularity.  

Literature reports several examples that focused on extracting building height as an 

indicator of both exposure and vulnerability. Mück et al. (2013) derived height 

information from airborne radar data to calculate the building volume and to identify 

buildings with more than one storey in order to extract potential shelters for vertical 

evacuation. In Taubenböck et al. (2008) buildings height was derived from an IKONOS 

image considering the length of the shadows.  

The availability of context information is one of the big advantages of remote sensing 

data for visual inspection of a given study area. The position of a building in relation to 

other buildings or objects affects its behaviour in an earthquake event. This parameter can 

be well observed in VHR satellite images. Once the individual buildings are identified in 

an image scene, the position and distance to other buildings can be directly measured in 

the image.  

Due to change in building codes along the years, classifying the urban areas or single 

buildings according to their age is another useful indicator of vulnerability. The age of 

construction can be estimated from multitemporal data set as, for example, done in 

Taubenböck et al., (2008) or in Borfecchia et al., (2010). Landsat time series, for example, 

being available since 1979, can be used to obtain an estimation of building age at block 

level (Taubenböck, 2012). 

1.4.2 Damage assessment 

A rapid damage assessment, soon after a seismic event, can address the civil protection 

interventions towards the most affected areas. Satellite data can be very useful for this 

purpose, thanks to the wide coverage, the high spatial resolution, and their intrinsic 

capability to provide a synoptic view over remote regions in the world.  

Seismic damage assessment based on EO data can be carried out in two ways. One of 

them is the mono-temporal approach based on the use of just a satellite image collected 

after the seismic event. The other one is the multi-temporal approach, where two images, 

acquired before and after the earthquake respectively, are compared to detect changes 
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associated with the building damage. The spatial scale of the resulting damage map 

depends on the spatial resolution of the available EO data. Medium resolution (MR) 

satellite data allow to detect and quantify damage at city block level. In order to detect 

damages at single building scale, VHR images are necessary. Both optical and SAR data 

provide useful information for producing a damage map after an earthquake and several 

examples can be found in the literature. 

SAR sensors represent a valuable source of information for time-critical application, 

because they can deliver images in almost any weather condition and independently of 

solar illumination conditions that, instead, affect the observations in the optical spectral 

range. Serious damages or the buildings collapse after an earthquake modify the observed 

scenario and its electromagnetic response, thus a damage assessment can be performed 

comparing pre- and post-disaster SAR images. Multi-temporal SAR images can be used 

to detect changes in urban areas either looking at the backscattering intensity changes, 

but also exploiting the information on the phase of the returned signal. 

Matsuoka and Yamazaki (1999) investigated the different appearance of undamaged and 

damaged buildings in SAR imagery. By comparing pre- and post-event ERS and JERS 

SAR intensity data of the 1995 Hyogoken-Nanbu Earthquake, the authors observed that 

the SAR backscatter value decrease with increasing damage. Pan et al. (2010) 

investigated the relationship between building damage level and the differences of the 

backscattered SAR intensity values in pre- and post-disaster ALOS PALSAR imagery for 

the 2008 Wenchuan Earthquake. Based on ENVISAT ASAR data, Chini at al. (2013) 

reported a decrease of the SAR backscattering in damaged urban area due to the 2011 

Tohoku (Japan) earthquake and caused by the decrease of the double bounce effect. 

An index to estimate the damage level from SAR data combining amplitude changes and 

the related correlation coefficient has been proposed and applied to different case studies 

(Aoki et al., 1998; Matsuoka and Yamazaki, 2004, 2002). Hoffman et al. (2004) defined 

a damage index based on InSAR complex coherence which takes into account the phase 

of the echoed signal. Yonezawa and Takeuchi (2001) compared changes in the SAR 

backscattering intensity and phase with the damage observed after the 1995 Kobe (Japan) 

earthquake. This showed that intensity de-correlation and interferometric coherence 

reduction behave similarly. Using C-band ERS SAR imagery, Matsuoka and Yamazaki 

(2000) reported that the coherence is more useful to distinguish slight to moderate damage 
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levels, while the SAR intensity correlation is more sensitive to large surface changes (e.g. 

caused by stronger damage).  

Stramondo et al. (2006) applied SAR intensity correlation and the coherence, focusing on 

the 1999 Izmit Earthquake (Turkey) and on the 2003 Bam Earthquake (Iran). It was 

observed that the intensity correlation and the coherence detect different kinds of changes 

on the ground. Ito et al. (2000) assessed different SAR change indicators, derived from 

L-band and C-band sensors, and evaluated the frequency dependent effects of spatial and 

temporal de-correlations.  

Most of the approaches to damage detection from SAR images available in the literature 

are based on single polarization data. From this point of view an innovative approach is 

proposed in the work of Li et al. (2012) where, considering the 2010 Yushu (China) 

earthquake, the potential of polarimetric SAR for extracting collapsed building is 

investigated. The proposed methodology uses only a post-event acquisition (a 

RADARSAT-2 image) from which three parameters are generated: the entropy H that 

indicates the random degree of target scattering, the α parameter, representing the average 

target scattering mechanism and the circular polarization correlation coefficient, ρ, which 

is very sensitive to man-made targets. The H and α images are used to remove bare soil, 

while the circular polarization correlation coefficient is used for discriminating between 

collapsed and intact buildings. Subsequently, Zhao et al. (2013) improved the H-α-ρ 

method and replaced the parameter of ρ with the normalized circular-polarization 

correlation coefficient and, at the same time, the homogeneity texture feature was 

exploited to solve the problem represented by collapsed buildings and buildings divergent 

to satellite flight pass that can be being confused. 

Nowadays, VHR SAR sensors, in principle, allow producing damage maps at single-

building scale. However, the detection of sparse and isolated damages in urban areas by 

exploiting VHR SAR data is still a challenging task. Despite the capability to observe 

small details over the acquired scenario, the interpretation and analysis of VHR SAR 

images in urban environment are not easy tasks. Within urban settlements, the scattering 

mechanisms are complex and simple change detection analyses or classification 

procedures developed for MR data can hardly perform. As a matter of fact, new 

methodologies for damage detection have been proposed. Brett and Guida (2013) 

developed an approach to earthquake damage mapping based on the detection of changes 
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in the brightness of double bounce features. First, a ridge-detector is used to extract 

curvilinear features from the pre-event VHR SAR image. Next, the double-bounce 

candidates are selected using probability distribution functions derived from a simple 

geometrical building model. Finally, the amplitude ratio, between the pre- and post- event 

SAR images, is used to calculate a severity-of-change measure for each candidate object. 

The fundamental drawback of this approach is that, if no double-reflection line is present 

in the pre-event image due, for example, to adjacent buildings, even very heavy damages 

cannot be detected. By taking into account the SAR signature of an isolated building, 

Marin et al. (2015) developed a method for detecting new and fully destroyed buildings 

from a pair of VHR SAR images. In the first stage of this methodology, the log - ratio 

image is used in order to identify areas affected by changes in the backscattering at 

building scale, and an additional step is performed for detecting areas of change showing 

a size comparable to buildings. In order to identify new or destroyed buildings, each 

changed candidate building is analysed by means of four fuzzy rules, aiming at verifying 

the presence of both regions of increase and decrease in backscattering with specific 

spatial properties and a specific alignment. The fuzzy logic, as stated by the authors, 

makes the approach robust with respect to the possible deviations from the ideal model 

considered for changes. Brunner et al. (2010b) proposed a method to assess the structural 

status of individual buildings in an urban setting hit by an earthquake based on the use of 

pre-event VHR optical and post-event detected VHR SAR imagery. The method works 

under the assumption that the buildings have a rectangular footprint and are isolated. The 

VHR optical pre-event image is used for extracting buildings parameters such as width, 

length, height and pitch of the roof. These information are exploited along with the 

acquisition parameters of the post- event SAR scene to predict the SAR signature of the 

buildings, assuming them undamaged. This task is performed by means of a ray tracing 

based SAR simulator. The predicted SAR signature is compared to the actual VHR SAR 

scene using the Normalized Mutual Information as similarity measurement. Based on the 

value of this match parameter, the decision if a building belongs to the damaged or 

undamaged building class is taken. A Bayesian classifier is used for this purpose. 

Also optical data can provide valuable information on urban settlement conditions after 

an earthquake. The spatial resolution of satellite optical sensors has rapidly improved in 

the last few years, reaching less than 1 m (WorldView, Quickbird, Geo-Eye satellites), 
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thus becoming a reliable tool for detecting changes of individual buildings. As a matter 

of the fact, they are currently used in operational context, where the most used approach 

for damage assessment from space images is still the visual interpretation. 

In Stramondo et al. (2006) a good agreement between the collapse ratio (the percentage 

of collapsed buildings with respect to the total number of buildings within a region) from 

ground truth data, and the normalized difference between one pre-seismic and one post-

seismic panchromatic radiance image, was found. Chini et al. (2009a) developed a 

method for producing a damage map at single building level from VHR panchromatic 

data. In this approach the mathematical morphology is used to extract man made 

structures from the pre-event image. Then damaged buildings are detected by a threshold 

on the absolute value of normalized difference between pre- and post-seismic images.  

Bignami et al. (2011) exploited a pair of Quickbird images collected before and after the 

2003 Bam earthquake, to investigate the sensitivity of changes in objects textural features 

with respect to damage levels. The sensitivity analysis was carried out with respect to the 

damage level as defined by the European Macroseismic Scale 1998 (EMS-98) (Grünthal, 

1998). For this purpose, a total of 367 buildings were selected from a ground based 

damage map. Instead of the usual textural features extraction approach based on co-

occurrence matrix computed within a moving window, in this work, for each building, a 

co-occurrence matrix was computed, considering only pixels within the footprint of the 

building itself. For each object, contrast, dissimilarity, entropy and homogeneity were 

extracted following the formulation given in Haralick (Haralick, 1973). The mean value 

within damage classes from the ground survey was evaluated and the difference between 

post-seismic and pre-seismic features was computed as change indicator.  

Turker and Sumer (2008) detected buildings damaged after the earthquake occurred in 

Turkey in 1999, applying a watershed segmentation on a post-event optical image. 

Exploiting the relationship between the buildings and their shadows they correctly 

classify as either damaged or undamaged the 80% of the buildings. In Gusella et al. 

(2005), the number of collapsed buildings of the Bam earthquake in 2003, is quantified 

starting from the inventory of buildings obtained from a Quickbird images taken before 

the event. Another work that exploit the OBIA approach is presented in Chesnel et al. 

(2007). In this work, for each building, the footprint, defined in the reference image by a 

Geographic Information System (GIS) layer manually drawn, is translated in the crisis 
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image within a search window. For each offset, the correlation among pixels within the 

footprint is computed and its maximum value, corresponding to the minimum registration 

error, is considered as similarity measure to decide whether the building is damaged or 

not. Rastiveis et al. (2013) proposed a method to automatically estimate the damage rate 

of a building considering shape and structural properties of the roof in the pre- and post- 

event image. For each building in the scene, located by means of a vector map, the roof 

detection in the pre- and post- event image is performed using a segmentation approach 

based on textural and spectral information. After that, using morphological operators, 

noisy pixels are removed. Finally, by considering the shape and other structural properties 

of the intact roof part with its pre-event condition in a fuzzy inference system, the rate of 

damage for each candidate building is estimated.  

  



 

17 

 

 

2. Background and Methodologies 

2.1 Electromagnetic response of urban areas 

The characteristics of urban areas images acquired by SAR and optical sensors greatly 

differ. The SAR system is an active sensor that measures the backscatter of a transmitted 

signal, typically in a narrow microwave frequency band, providing information on both 

amplitude and phase of the returned signal. Backscattering is primarily determined by 

geometrical and dielectric properties of the target and the transmit/receive configuration 

of the SAR sensor (Brunner, 2010b). Optical sensors measure the radiometric properties 

of reflected sunlight in spectrally distinct regions of the visual and near-infrared spectrum 

or integrated in a single panchromatic band. The material properties of objects, the 

illumination conditions of the scene and the sensor perspective determine the radiometric 

and geometric appearance of distinct targets in optical imagery. 

In the development of automatic image analysis and change-detection techniques, sensor 

properties such as, geometrical, spectral and radiometric resolutions have to be taken into 

account to properly extract information from the considered data. The purpose of the 

following sections is to introduce relevant properties of urban areas mapped by SAR and 

optical sensors.  

2.1.1  Radar response of buildings 

In this section, the main scattering mechanisms determining the SAR response of a typical 

urban structure (Franceschetti et al., 2003; Brunner et al., 2010a, 2010b; Guida et al., 

2010; Marin et al., 2015) are analysed. For this analysis, we refer to a scene composed by 

an isolated flat-roof building modelled as a rectangular structure with uniform surfaces 

and flat surrounding, as the one shown in  

Figure 2-1. 

By proceeding on the SAR image at constant azimuth from near to far range, we first 
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identify a bright stripe corresponding to the superimposition of backscattering from 

ground, building wall and roof that are sensed at the same time being generated from 

scatterers equidistant from the SAR. This is a typical example of the so-called layover 

effect that arises whenever the slope of the observed surface is greater than the SAR 

incidence angle θ. In the ground range plane the length l of the area affected by layover 

is related to the incidence angle θ and the building height h through the following 

equation:  

 𝑙 = ℎ cot(𝜃) ( 2.1 ) 

 

Figure 2-1: Scattering mechanisms from a flat-roof building with width w at height h: a) 

backscattering from ground; b) double bounce; c) backscattering from vertical wall; d) 

backscattering from roof; e) shadow. Symbols l and s denote the length of the layover and shadow 

areas in ground projected image space. Θ is the SAR incidence angle. Different gray levels in the 

backscattering profile represent different amplitudes. (Brunner et al., 2010b).  

At the dihedral reflector composed by building wall and ground several double reflections 

occur. The superimposition of such contributions due to the fact that double-bounce ray 

paths all have the same length, equal to the distance between SAR sensor and the dihedral 

intersection, results in a bright line located in correspondence of the base of the building 

wall. The strength of the double bounce line depends on the building height. The higher 
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is the building, the stronger is the double bounce contribution (Brunner et al., 2010a). It 

also depends on the aspect angle, i.e. the angle φ that defines the orientation of the 

building with respect to the azimuth direction. When the building wall facing the radar is 

almost parallel to the azimuth direction (φ=0°), the double bounce contribution has a 

strong signature. An empirical study on the relationship between double bounce and the 

orientation of building (Ferro et al., 2011) pointed out that the strength of the double 

bounce drops off significantly if the aspect angle increases from φ = 0° up to 10° , whereas 

it decays moderately for higher angles.  

The bright stripe due to the double bounce effect is followed by a grey area corresponding 

to the return from the building roof. Finally, a dark area can be observed due to the 

shadowing effect that occurs because the region of ground immediately behind the 

building is prevented from being illuminated. Shadow effect is more pronounced for large 

SAR looking angle as can be inferred from the equation: 

 𝑙 = ℎ tan(𝜃) (2.2 ) 

which provide the length s of the shadow area as a function of building height and 

incidence angle. 

It is worth to note that, on the base of the relationship between SAR incidence angle and 

geometric parameter of the building, namely height and width along the range direction, 

the presented scenario, may change. In order to observe the backscattering profile 

described so far, the building width w along the range direction has to be greater than the 

limit value defined as:  

 𝑤𝑏 =
ℎ

tan(𝜃)
  (2.3 ) 

where h is the building height and θ is the incidence angle. 

If w ≤ wb, the whole roof contribution is sensed in the layover area before the double 

bounce with the difference that in the case w < wb, the layover area is splitted in two 

regions, the one corresponding to backscattering contributions from ground, building wall 

and roof, the other corresponding to contributions from only building wall and ground.  

The scattering effects of a gable roof building are different from what is observed for a 

flat roof building. The main difference is the presence of a second bright feature due to 

the direct backscattering from the part of the roof that is oriented towards the sensor. It 

appears closer to the sensor than to the double-bounce contribution (Brunner et al., 2010).  
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It is worth to note that double bounce and layover areas, as well as dark regions due to 

shadow effect, can be identified separately if the SAR image resolution is higher than the 

dimension of the building itself, while this distinction is not possible if the resolution is 

lower. As a matter of fact, an urban area imaged by a SAR sensor with a resolution in the 

order of tenths of meters, appears uniformly brighter than other land cover classes since 

the double-bounce effects are the dominant scattering component in the SAR resolution 

cell (i.e., the image pixel). 

2.1.2  Spectral signature of urban areas in the optical bands 

Urban areas are characterized by a complex spatial arrangement of spectrally 

heterogeneous land cover types which, typically, include man-made structures (buildings, 

transportation net and parking), green spaces (parks, gardens), bare soil zones and water 

bodies. 

Figure 2-2 shows reflectance curves for some land cover types found in urban areas 

derived from the Santa Barbara urban spectral library (Herold et al., 2003) 

 

Figure 2-2: Example spectra of typical urban land cover from the Santa Barbara spectral library 

(Herold et al., 2003).  

Focusing on the roof spectra, a great variability among signatures associated with 

elements belonging to the same semantic class, can be observed. Compared with other 
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roofing materials, red tile roofs and wood shingle roofs show distinct spectral signatures 

with a significant reflectance increase in the NIR (Near Infrared) and SWIR (Shortwave 

Infrared) wavelength regions. Due to the iron-oxide content, red tile roofs signature 

exhibits absorption features in the visible and NIR, while, the spectrum of roofs with 

wood shingles shows lignocellulose absorption features in the SWIR, typical of non-

photosynthetic vegetation. Conversely, other roof types have near constant, low 

reflectance, with no significate absorption features and they share similar spectral 

characteristics with other impervious surfaces such as asphalt roads and parking lots. 

Similarity can also be observed between wood shingle roofs and bare soil spectra (Roberts 

and Herold, 2004; Herold et al. 2003, 2004). Some urban land cover types are thus 

difficult to separate especially at coarse spectral resolution. 

Besides the spectral resolution, the discrimination among land covers depends on the 

sensor spatial resolution. In remotely sensed images, the measured spectral reflectance of 

a pixel is the integration of contributions from all the objects within the Ground 

Instantaneous Field Of View (GIFOV) of an optical sensor. Consequently, spectral 

heterogeneity at scales comparable to the GIFOV results in a preponderance of spectrally 

mixed pixels. This is the case of an urban area imaged by medium resolution sensors, 

such, for example, the Landsat TM/ETM+ and the Spot HRV sensors, characterized by 

spatial resolutions of  30 and 20 meters, respectively (Small, 2003). 

2.2 Image change detection approaches 

In the context of remote sensing, change detection is the process that leads to the 

identification of changes occurred on the Earth surface by jointly processing two or more 

images acquired on the same geographical area at different times (Bruzzone and Bovolo, 

2013). 

The latest generation of space-borne SAR and optical sensor provides images with metric 

or submetric resolution allowing the identification of individual urban structures and thus 

their changes. In metric resolution images, a single pixel represents a small area of the 

acquired scene, usually smaller than the size of the objects of interest. Hence, the 

information of a single pixel is strongly linked to the information carried by its neighbours 

which are part of the same object, pointing out the necessity to perform an object-oriented 

analysis, although the measureable statistics typically exploited for classification 
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purposes are necessarily pixel-based (Blaschke, 2010; Chini, 2014a). This aspect is very 

interesting, because it makes it possible to focus on a single object, for example a building 

or also other man-made structures, having the advantage of a valuable amount of pixels 

to characterise the object itself.  

As opposed to traditional pixel-based change detection methods which implicitly assume 

that neighbouring pixels are relatively independent to each other, OBIA techniques 

recognize that important semantic information is not always represented in single pixels 

but in meaningful image objects and in their contextual relations. Usually, object-based 

classification techniques comprises two steps: the image segmentation and the object 

classification. Image segmentation sub-divides the image into groups of contiguous pixels 

called objects or segments that correspond to meaningful features or targets in the field 

(Blaschke, 2010). Segmentation is based on the spectral information and local patterns or 

textural information that are inherent to groups of neighbouring pixels. As a result of the 

above step, the object-based classifications may consider a wide range of variables such 

as mean reflectance, texture, shape, size of objects, and can potentially produce more 

accurate and detailed maps than conventional classification strategies (Mathieu and 

Aryal, 2007; Blaschke, 2010; Chini et al., 2014b). 

A complete change detection algorithm, as shown in Figure 2-3, is composed of several 

steps in cascade that will be detailed in the following with particular attention to specific 

techniques exploited for this research work. 

 

Figure 2-3: Block diagram of a standard object based change detection approach.  
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2.2.1 Image pre-processing 

The image pre-processing for change detection aims at generating two images that are as 

much similar as possible unless in changed areas (Chen, 2007).  

An accurate co-registration of the images to be compared is the first indispensable 

processing step to properly perform change detection as it allows the derivation of a pair 

of images where corresponding pixels are associated to the same position on the ground. 

The second critical requirement for successful change detection is that images collected 

at different times are comparable in terms of radiometric characteristics (Coppin et al. 

2004).  

This usually does not happen for optical images for several reason, such as, for example, 

variations in solar illumination conditions, atmospheric scattering and absorption, 

changes in the sensor-target-illumination geometry. Therefore, in order to use multi-date 

images for quantitative analysis based on radiometric information, as in the case of 

change detection, radiometric divergences have to be corrected (Mas, 1999). Two 

approaches to radiometric correction are possible: absolute and relative. The absolute 

approach converts image Digital Numbers (DNs) in ground reflectance values and 

requires the use of ground measurements at the time of data acquisition for atmospheric 

correction and sensor calibration. The relative approach consider one image as reference 

and adjusts the DN values of the other image to match the reference.  Relative 

Radiometric Normalization methods may be further subdivided into three groups: 

statistical adjustments, histogram matching, and linear regression normalization. The 

statistical adjustments approach includes methods based on the linear adjustment of two 

images to resemble each other in terms of their dynamic range (minimum and maximum 

DN values), statistical mean and standard deviation, or other possible statistical variables. 

Histogram matching is a radiometric enhancement technique that transform an image so 

that its histogram correspond as closely as possible to the one of a reference image. It 

involves determining a lookup table that convert the histogram of one image to resemble 

that of another. It is, therefore, a useful technique for matching image data of the same 

scene acquired at different dates with slightly different sun angles or atmospheric effects. 

Linear regression normalization includes different methods such for example the 

radiometric normalization based on image regression. This approach involves relating 
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each pixel of the subject image with that in the reference image, band by band, to produce 

a linear equation through a least-squares regression (Yang and Lo, 2000).  

SAR has the advantage of being less affected by atmospheric condition. Nevertheless, 

SAR images should be calibrated and normalized if a proper change detection analysis is 

to be conducted. Radiometric calibration involves corrections to compensate for near 

range/far range differences caused by the antenna pattern, and normalization of radar 

cross section to the actual illuminated area within the resolution cell, which differs 

because of local incidence angle modulation due to topography. Radiometric 

normalization equalizes the backscattered energy in the range direction by a modified 

cosine correction, common to all pixels, in order to partially account for the change of 

backscattering coefficient with incidence angle (which in fact should be adapted to the 

target category) (Pierdicca et al. 2014). 

2.2.2 Image segmentation 

The segmentation technique appears as one of the main approaches to overcome the 

paradigm to consider the pixel as a reference unit for the classification analysis, 

transforming an image by merging pixels that belong to homogeneous areas. In a 

segmented image, the geometric structures of objects are depicted, making it possible to 

base subsequent statistical analysis on objects composed of several pixels rather than on 

single pixels.  

To single out spatial homogeneity and identify objects with different spatial extension, 

the mathematical morphology can be exploited (Benediktsson et al., 2005, 2003; Chini et 

al., 2009a; Pesaresi and Benediktsson, 2001; Pulvirenti et al., 2011). 

Erosion and dilation are the basic operators of the mathematical morphology (Soille, 

2003). They are applied to images by a structuring element (SE), which is a kind of 

filtering window of fixed shape, corresponding to specific geometrical figures, in order 

to evaluate how structures in the image match that specific element. The two 

morphological operators derived from erosion and dilation are the opening and closing 

ones. The function of opening is to dilate an eroded image in order to recover the original 

image as much as possible. On the contrary, the function of closing is to erode a dilated 

image in order to recover the initial shape of image structures that are dilated. In 

particular, they are used to isolate bright (opening) and dark (closing) structures in the 

image. For bright and dark, we mean brighter and darker with respect to other 
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neighbouring structures. The main characteristic of the filtering process performed by the 

opening and closing operators is that not all the structures within the original image are 

recovered when these operators are applied sequentially. The size of the SE with respect 

to the size of the actual structures of the scene influences the output of the filtering 

operation, so that it may be necessary to use SEs with different sizes and shapes for the 

characterisation of the various objects. Mathematical morphology can be exploited in a 

multi-scale approach based on a range of different SE sizes to investigate the various 

spatial domains in a scene (Pesaresi and Benediktsson, 2001). 

2.2.3 Change detection features extraction 

Once objects are extracted by image segmentation, they can be described and compared 

according to various features that include colour, texture, shape, and context properties in 

several forms. The simplest and more common methods for detecting changes from multi-

temporal SAR and optical imagery are Image Differencing and Image Rationing. Due to 

the multiplicative nature of the speckle, the ratio operator is often preferred when a pair 

of SAR images is considered. Both image difference and rationing assume that a change 

in the scene appear as a modification of the mean value of the image evaluated locally, 

i.e. considering only pixels pertained to a particular image object. 

  Change detection metrics based on textural characteristics 

Texture, a representation of the spatial relationship of grey levels in an image, is an 

important characteristic for the automated or semi-automated interpretation of digital 

imagery.  

Texture analysis provide supplementary information about image properties useful for 

discriminating objects with similar radiometric properties. In the remote sensing 

literature, many examples of the use of textural parameters have been proposed for the 

extraction of quantitative information of building density (Karathanassi et al., 2000) or 

for the recognition of different urban patterns (Zhang et al., 2003) from optical imagery. 

When changes occur in the land cover, textures also change. Therefore, texture can be 

exploited to improve change detection reliability.  

Many approaches to texture analysis exist, usually categorized into geometrical, 

statistical, model-based and signal processing methods (Tuceryan and Jain, 1993).  

Statistical methods (Srinivasan and Shobha, 2008) analyse the spatial distribution of grey 

levels by computing local features at each point in the image, and deriving a set of 
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statistics from the distributions of the local features. Depending on the number of pixels 

defining the local feature, statistics are classified into first-order (one pixel), second-order 

(two pixels) and higher-order (three or more pixels) statistics. First-order statistics 

describe texture properties based on individual pixel values, without considering the 

spatial relationship between image pixels. They can be computed from the local histogram 

of pixel intensities in the image. Variance and mean value of grey levels evaluated locally 

in the image are examples of the first-order statistics. Second- and higher-order statistics 

estimate properties of two or more pixel values occurring at specific locations relative to 

each other. The Gray Level Co-occurrence Matrix (GLCM) method is a way of extracting 

second order statistical texture features.  

The GLCM described in the original Haralick (Haralick et al., 1973) paper is a 

symmetrical matrix whose element G(i,j) of the GLCM counts how many times two 

pixels with grey levels i and j occur in the image separated by a given distance d along a 

given direction θ. 

Various texture measures can be derived from the GLCM. Among the 14 parameters 

originally proposed in Haralick et al., six parameters, namely Energy, Contrast, Variance, 

Correlation, Entropy and Inverse Difference Moment (also known as Homogeneity) are 

considered to be the most relevant, some of which are strongly correlated with each other 

(Cossu, 1988). 

Let g(i,j) be the element (i,j) of the normalized GLCM (i.e., the one having sum of its 

elements is equal to 1), the aforementioned features are defined as follows: 

 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ |𝑖 − 𝑗|2𝑔(𝑖, 𝑗)

𝑁𝑔

𝑖,𝑗=1

 ( 2.4 ) 

 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ (𝑖𝑗)𝑔(𝑖, 𝑗) − 𝜇𝑋𝜇𝑌

𝑁𝑔

𝑖,𝑗=1

𝜎𝑋𝜎𝑌
 

( 2.5 ) 

 𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑟 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 =  ∑ 𝑔(𝑖, 𝑗)2

𝑁𝑔

𝑖,𝑗=1

 ( 2.6 ) 

 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
1

1 + (𝑖 − 𝑗)2

𝑁𝑔

𝑖,𝑗=1

 𝑔(𝑖, 𝑗) ( 2.7 ) 
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 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ 𝑔(𝑖, 𝑗) log 𝑔(𝑖, 𝑗)

𝑁𝑔

𝑖,𝑗=1

 ( 2.8 ) 

 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑ (𝑖 − 𝜇)2𝑔(𝑖, 𝑗)

𝑁𝑔

𝑖,𝑗=1

 ( 2.9 ) 

where Ng is the number of distinct grey levels in the image, while µx, µy and σx, σy,  are 

mean values and standard deviations of the GLCM row and column sums. 

Energy, also known as Angular Second Moment, measures textural uniformity, i.e., pixel 

pairs repetitions. High energy values occur when the image segment under consideration 

is homogeneous (only similar grey levels are present) or when it is texturally uniform (the 

grey level distribution has a periodic form so that the shift vector always falls on the same 

(i,j) grey-level pair). In these cases, few elements of GLCM will be greater than 0 and 

close to 1, while many elements will be close to 0, leading to energy measurement close 

to its maximum, equal to 1. Variance is a measure of the heterogeneity and it is strongly 

correlated to first order statistics such as standard deviation. It quantifies the dispersion 

around the mean. Contrast take into account the difference between grey levels of 

neighbour pixels. A low contrast image segment is not necessarily characterized by a low 

variance value, but the low contrast corresponds to low spatial frequencies. Homogeneity 

assumes higher values for smaller DN differences in pair elements. Therefore, this 

parameter is sensitive to the presence of near diagonal elements in the GLCM. Entropy 

measures the disorder in an image. When the image is not uniform, many GLCM elements 

have very small values, which implies that Entropy is very large. If we consider a window 

with completely random grey tones, the histogram for such a window is a constant 

function, i.e., all g(i,j) are the same, and Entropy reaches its maximum.  

Correlation is expressed by the correlation coefficient between two random variables i 

and j, and it is a measure of the linear-dependencies between values within the image. 

High Correlation values imply a linear relationship between the grey levels of pixel pairs. 

Thus, Correlation is uncorrelated with Energy and Entropy, i.e. to pixel pair repetitions 

(Baraldi and Parmiggiani, 1995; Pacifici et al., 2009). 

 Statistical similarity measures from Information Theory 

Recently in the literature, statistical similarity measures such as Kullback-Leibler (KL) 

Divergence and Mutual Information (MI) have been successfully applied to highlight 
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change information in multitemporal images. The MI is a commutative measure of the 

difference between the joint probability distribution fX,Y(x,y) and the marginal probability 

distribution fX(x) and fY(x) of the random variables X and Y, respectively. It measures 

how much knowing one of the two variables reduces the uncertainty about the other and 

it is defined as (Erten et al., 2012): 

 𝑀𝐼(𝑿, 𝒀) =  ∫ ∫ log(
𝑓𝑋,𝑌(𝐱, 𝐲)

𝑓𝑋(𝐱)𝑓𝑌(𝐱)
)

𝑋𝑌

𝑓𝑋,𝑌(𝐱, 𝐲)𝑑𝐱𝑑𝐲 ( 2.10 ) 

The KL Divergence (Kullback and Laibler, 1951), also called Relative Entropy, is a 

measure of the difference between two probability density functions (pdfs) and then it 

can be used for assessing the similarity of pixel intensity distributions of two objects.  

Given two n-dimensional random vectors X and Y with pdfs 𝑓𝑋(𝐱) and 𝑓𝑌(𝐱), respectively, 

the KL Divergence between the two distributions or, equivalently, the relative entropy of 

X with respect to Y, is given by: 

 𝐾𝐿(𝑿, 𝒀) =  ∫𝑓𝑋(𝐱) log (
𝑓𝑋(𝐱)

𝑓𝑌(𝐱)
)𝑑𝐱 ( 2.11 ) 

The KL Divergence is always non-negative, and equals zero only if 𝑓𝑋(𝐱) = 𝑓𝑌(𝐱), but it 

is not a true metric because it is non symmetric. A symmetric version, called KL Distance 

(KLD), can be defined as: 

 𝐾𝐿𝐷(𝑿,𝒀) = 𝐾𝐿(𝑿, 𝒀) +  𝐾𝐿(𝒀, 𝑿)    ( 2.12 ) 

In order to estimate the KLD or the MI, the pdfs of the two variables to be compared have 

to be known. For two multivariate normal distributions, with mean vectors µX, µY  ℝn, 

covariance matrices CX, CY  ℝnxn, and cross-covariance matrix C, it is possible to derive 

a closed-form expression for both MI and KLD: 

 
𝐾𝐿𝐷(𝑿, 𝒀) =

1

2
[𝑡𝑟(𝑪𝑋

−1𝑪𝑌) +  𝑡𝑟(𝑪𝑌
−1𝑪𝑋)]

+
1

2
[(𝝁𝑋 − 𝝁𝑌)𝑇𝑪𝑋

−1(𝝁𝑋 − 𝝁𝑌)

+ (𝝁𝑋 − 𝝁𝑌)𝑇𝑪𝑌
−1(𝝁𝑋 − 𝝁𝑌)] − 𝑛 

 

( 2.13 ) 

 
𝑀𝐼(𝑿, 𝒀) =  −

1

2
log (

𝑑𝑒𝑡(𝑪)

𝑑𝑒𝑡(𝑪𝑋)𝑑𝑒𝑡(𝑪𝑌)
) ( 2.14 ) 

In the case of two univariate Gaussian distributions, with means µx, µY and variances σX
2, 

σY
2, and covariance σXY

2, equations (2.13) and (2.14) simplify to the following 
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expressions:  

 
𝐾𝐿𝐷(𝑋, 𝑌) =  

1

2
(
𝜎𝑋

2

𝜎𝑌
2 +

𝜎𝑌
2

𝜎𝑋
2) +

1

2
[
(𝜇𝑋 − 𝜇𝑌)2

𝜎𝑋
2 − 

(𝜇𝑋 − 𝜇𝑌)2

𝜎𝑌
2 ] − 1 

 

( 2.15 ) 

 
𝑀𝐼(𝑋, 𝑌) = −

1

2
log (

𝜎𝑋
2𝜎𝑌

2 − 𝜎𝑋𝑌
2

𝜎𝑋
2𝜎𝑌

2 ) = −
1

2
log(1 − 𝜌𝑋𝑌

2 ) ( 2.16 ) 

where ρXY is the correlation coefficient. It can be noted that, in the univariate case (2.16), 

the MI reduces to a function of the correlation coefficient. 

Inglada and Mercier (2007) derived an expression for the KLD that does not require a 

parametric assumption about the two pdfs to be compared. Assuming that the density to 

be approximated is not too far from a Gaussian pdf, they demonstrated that it is possible 

to model the shape of a statistical distribution using the infinite Edgeworth series 

expansion of cumulants truncated at a given order. In this work, the expansion of the two 

pdfs truncated to order of four has been introduced into the KLD expression, leading to 

the so-called cumulant-based approximation of the KLD (CKLD). The use of the 

Edgeworth series expansion allows involving in the comparison step statistics of higher 

order, such as skewness and kurtosis that provide information about symmetry and 

flatness of a pdf. The CKLD is useful for detecting change in SAR images that typically 

do not assume a Gaussian distribution. 

 Correlation based change metrics 

The use of correlation coefficient to detect changes stems from the consideration that grey 

levels from the same object observed at two different times tend to be highly correlated 

if the objects does not change, and less correlated when changes have occurred in the 

surface target. 

Given two objects extracted from SAR data, the correlation can be estimated considering 

backscattering intensity values as well as complex values describing both amplitude and 

phase of the radar returns (Chini et al., 2009a; Stramondo et al., 2006). The complex 

correlation coefficient ρC, also known as interferometric coherence, is mathematically 

obtained through the following equation: 

 
𝜌𝐶 = 

𝐸(𝑠1𝑠2
∗)

√𝐸(𝑠1𝑠1
∗)𝐸(𝑠2𝑠2

∗)
 ( 2.17 ) 

where s1 and s2 are the corresponding complex pixel values of the two considered images, 
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the symbol * denotes the complex conjugate and finally E(∙) represents the expected 

value. 

The intensity correlation ρI is defined as: 

 
𝜌𝐼 =

|𝐸[(𝐼1 − 𝐸(𝐼1))(𝐼2 − 𝐸(𝐼2))]|

√𝐸(𝐼1 − 𝐸(𝐼1))
2
𝐸((𝐼2 − 𝐸(𝐼2)))2

 
( 2.18 ) 

where e I1 and I2 are the corresponding values of the pixel intensity I = |s|. 

Although these two parameters can measure how much the object has changed between 

the two SAR acquisitions, they bring slightly different information about the changes in 

the scene. The intensity correlation is more related to the change in the statistics of 

magnitude of the radar return, while the complex coherence is mostly influenced by the 

phase difference between radar returns, a distinctive parameter measured by a coherent 

sensor such as a SAR, and it is particularly related to the spatial arrangement of the 

scatterers within the pixel and thus to their possible random displacements. The 

interferometric coherence is an important change indicator especially in urban areas, 

where man-made structures show themselves coherent in time unless sensible changes 

have occurred (Chini et al., 2015a). However it is worth to recall that the increase of 

spatial baseline, in particular its perpendicular component, implies a decrease of the 

coherence, thus reducing the capability of this feature to discriminate between changed 

and unchanged targets, especially in urban areas where the geometrical complexity of 

structures accentuate this effect (Bignami et al., 2004). 

2.2.4 Classification approaches 

Change detection can be carried out according unsupervised or supervised classification 

techniques. Unsupervised approaches identify regions of change without any additional 

information besides the raw images considered. Conversely, the supervised approach to 

change detection requires the availability of a suitable training set for classifier learning.  

The description provided in the following focuses on supervised classification techniques 

used in this research, including the Bayesian classification approach and Support Vector 

Machines. 

 Bayesian Classifiers 

The basic problem in classification is to formulate a decision rule, d(x): ℝd → {ω1, ω2, 

…, ωC}, for classifying a d-dimensional observation x into one of C competing classes. 
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In the Bayesian framework, a classification problem is solved predicting the most likely 

class for each observed features vector. Formally (Flusser et al., 2016), given a set of C 

possible classes Ω = {ω1, ω2, … , ωC} and an input sample described by a d-dimensional 

features vector x ={x1, x2, …, xd} representing the observed values of d attributes, the 

Bayesian classifier assign the sample to the class  ω*
  Ω such that:  

 𝜔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜔𝑘𝜖𝛺(𝑃(𝜔𝑘 | 𝐱)) ( 2.19 ) 

i.e to the class with the Maximum A Posteriori (MAP) probability 𝑃(𝜔𝑘 | 𝐱). 

According to the Bayes rule, the posterior probability for each class can be expressed as: 

 
𝑃(𝜔𝑘 | 𝐱) =   

𝑝( 𝐱 |𝜔𝑘 ) 𝑃(𝜔𝑘)

𝑝(𝐱) 
=

𝑝( 𝐱 |𝜔𝑘 ) 𝑃(𝜔𝑘)

∑ 𝑝(𝐱 |𝜔𝑐)
𝐶
𝑐=1 𝑃(𝜔𝑐)

 ( 2.20 ) 

being 𝑃(𝜔𝑘) the prior probability of the class ωk, , 𝑝( 𝐱 |𝜔𝑘 ) the class-conditional pdf also 

known as likelihood function, and 𝑝(𝐱)  the evidence. The latter acts as normalization 

factor ensuring that the sum of posterior probabilities, 𝑃(𝜔𝑘 | 𝐱) over all values of ωk 

equals one. 

If the naive Bayes approximation is made, i.e., if it is assumed that the features are 

conditionally independent given the class, the likelihood function 𝑝( 𝐱 |𝜔𝑘 ) can be 

factorized as follows: 

 

𝑝(𝐱 |𝜔𝑘 ) = ∏𝑝(x𝑖|𝜔𝑘 )

𝑑

𝑖=1

, 𝑘 = 1,2, …𝐶 ( 2.21 ) 

In practice, only the numerator of equation (2.20) needs to be evaluated, since the 

evidence is the same for all the classes, and therefore it does not influence the decision 

process. 

Prior probabilities can be empirically estimated from the relative proportion of each class 

in the training set. Such an approach, however, implies the assumption that the frequency 

distribution within the training set is representative of the entire domain from which new 

observations are made. If this assumption does not hold all classes are typically assumed 

to be equally likely (Yager, 2006). In this case, the classification task reduce to the 

problem of determining the class that maximizes the likelihood and the resulting classifier 

is known as Maximum Likelihood Classifier. 

Likelihood functions can be estimated from training data using either parametric or non-

parametric approaches. The parametric approach to density estimation assumes the shape 

of the pdf to be known. Such assumptions significantly simplify the problem, since only 
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the parameters of the chosen family of functions need to be determined. For example, in 

the case of a Gaussian distribution, the density estimation process reduces to determining 

the mean vector µ and the covariance matix Σ from the available data set.  

If a specific functional form does not provide a good representation of the true density, 

non-parametric approaches, can be used. The simplest methodology for non-parametric 

density estimation is represented by the histogram. Data range is divided into non-

overlapping regular bins, and the estimated density within each bin is assigned a uniform 

value, proportional to the number of observations that fall within (Tabak and Turner, 

2013). The shape of the resulting distribution is not smooth and dependent on the number 

of bins as well as the origin of the bins. Kernel Density Estimation (KDE) of a pdf, also 

known as Parzen window estimation, can be viewed as a generalization of the histogram 

that does not require a partition of the data range arbitrarily chosen. The KDE of a pdf is 

obtained as the sum of d-dimensional kernel functions, K(∙), (where d is the dimension of 

the features space) placed on each data point as shown in the following equation (Parzen, 

1962; Silverman 1986): 

 
𝑓(𝐱) =  

1

𝑛ℎ𝑑
∑𝐾 (

x − x𝑖

ℎ
) 

𝑛

𝑖=1

𝐱 ∈ ℝ𝑑 ( 2.22 ) 

where n is the number of samples used to estimate 𝑓(𝐱) and h is the so called bandwidth 

parameter. 

 Support Vector Machine 

A Support Vector Machine (SVM) is a supervised machine learning algorithm for solving 

classification, as well as, regression problems. 

Conceptually, given a binary classification problem, a SVM maps input patterns into a 

feature space of higher dimension where an optimal hyperplane is constructed in order to 

separate patterns belonging to different classes (Cortes and Vapnik, 1995; Vapnik, 1999), 

as sketched in Figure 2-4. 

A hyperplane in the feature space is described by the following equation: 

 
𝐰 ∙ 𝚽(𝐱) +  𝐛 = 𝟎 ( 2.23 ) 

where  Φ: ℝd → ℝH is a vector function which maps the d-dimensional input vector x into 

a H-dimensional (with H>d) feature space, w ℝH  is a vector perpendicular to hyperplane 

and b is a scalar term. 
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Figure 2-4: The idea of the SVM: mapping of the input patterns into a higher dimension feature 

space where an optimal hyperplane is constructed in order to separate patterns belonging to 

different classes.  

Given a set of N training samples (xi, y1), ..., (xN, yN), where xi ℝd is the d-dimensional 

feature vector representing the ith training sample, and yi {-1;1} is the class label 

associated with xi, a SVM constructs the best separating hyperplane solving the following 

constrained optimization problem: 

 

min
𝑤,𝑏,𝜉

 
1

2
𝐰 ∙ 𝐰 + 𝐶 ∑𝜉𝑖

𝑁

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
𝑦𝑖(w ∙Φ(xi)+ b) ≥ 1 − 𝜉𝑖, ∀ 𝑖 = 1, . . 𝑁   (𝑎)

𝜉𝑖 ≥ 0, ∀ 𝑖 = 1, . . 𝑁                                        (𝑏)
 

 

 

( 2.24 ) 

( 2.25 ) 

where the slack variables ξi and the regularization parameter C are introduced to deal with 

non linearly separable training data. 

When the training samples are linearly separable in the feature space, ξ i= 0 ∀ i =1,..,N. 

In this case the SVM algorithm constructs the so called maximum margin hyperplane 

which is the hyperplane that separates the training data without errors (i.e. the one 

satisfying the constraints 𝑦𝑖(w ∙Φ(xi)+ b) ≥ 1, ∀ i =1,..,N) and maximizes the distance 

between itself and the closest training vectors of each class. Such a distance, called 

margin, is equals to 2 (𝐰 ∙ 𝐰)⁄ and it is maximized by minimizing (𝐰 ∙ 𝐰) 2⁄ . Greater is 

the margin, greater is the SVM generalization ability. 

If training samples cannot be separated without error, the parameters (w, b) that minimize 

the functional in the (2.24) under the constraints defined by (2.25), determine the 

hyperplane that minimize the training error, measured through the sum of the slack 

variables ξ, and separates the rest of the elements with the maximum margin. For each 
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training sample lying on the wrong side of the decision boundary (i.e those with 

associated a slack variable ξi >1) but also for the training samples falling within the 

margin on the correct side of the decision boundary (i.e the samples for which 0 <ξi≤1 ) 

a penalty is introduced, increasing the objective function by Cξi. A too small C value, 

determines many misclassifications. Conversely, a too large C value may lead 

to overfitting problems. The user parameter C controls the tradeoff between the two goals 

of the optimization problem. 

The constrained minimization problem defined by the equations (2.24) and (2.25) is 

usually translated into the following dual problem: 

 

max
𝛼

 ∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑𝛼𝑖

𝑁

𝑗=1

𝛼𝑗

𝑁

𝑖=1

𝑦𝑖𝑦𝑗Φ(xi)∙Φ(xj)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {

0 ≤ 𝛼𝑖 ≤ 𝐶,      ∀ 𝑖 = 1, . . 𝑁   (𝑎)

∑𝛼𝑖

𝑁

𝑖=1

𝑦𝑖 = 0,           ∀ 𝑖 = 1, . . 𝑁   (𝑏)

 

   

( 2.26 ) 

( 2.27 ) 

where the variables αi are Lagrange multipliers corresponding to the constraints defined 

by (2.24a).The solution α* of such dual problem is related to the parameter w* defining 

the optimal hyperplane trough the following relation: 

 𝐰∗ = ∑𝛼𝑖
∗

𝑁𝑠

𝑖=1

𝑦𝑖Φ(xi) 
( 2.28 ) 

where the summation is limited to the training vectors for which αi ≠0, called support 

vectors. They are the only ones that determine the final decision function, i.e. removing 

a non support vector from the training set, does not change the solution found by the SVM 

algorithm. 

As for the scalar term b* of the optimal hyperplane, it is determined from the KKT 

(Karush Kuhn Tucker) complementarity conditions (Burges, 1998). 

The decision function corresponding to the optimal hyperplane can be written as: 

 𝑓(𝐱) = 𝑠𝑖𝑔𝑛(𝐰∗ ∙ Φ(𝐱) + 𝑏∗) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑖
∗

𝑁𝑠

𝑖=1

𝑦𝑖Φ(xi) ∙ Φ(𝐱) + 𝑏∗) 
( 2.29 ) 

It can be note that both the dual optimization problem (2.26-2.27) and the decision 

function (2.29) depend on the images of the samples in the feature space only through 
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their dot product. By replacing all dot products Φ(xi)∙Φ(xj) with a kernel function K: 

ℝd× ℝd → ℝ, such that: 

 𝐾(xi, xj) =  Φ(xi)∙Φ(xj)  
( 2.30 ) 

the mapping of the training data x in the feature space by means of the function Φ does 

not need to be explicitly performed. 

When the dot products are replaced with the kernel function, the decision function (2.29) 

became: 

 𝑓(𝐱) = 𝑠𝑖𝑔𝑛(𝐰∗ ∙ Φ(𝐱) + 𝑏∗) = 𝑠𝑖𝑔𝑛 (∑𝛼𝑖
∗

𝑁𝑠

𝑖=1

𝑦𝑖𝐾(xi, x) + 𝑏∗) 
( 2.31 ) 

where the parameters α* are retrieved maximizing the functional:  

 
𝑊(𝜶) = max

𝛼
 ∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑𝛼𝑖

𝑁

𝑗=1

𝛼𝑗

𝑁

𝑖=1

𝑦𝑖𝑦𝑗𝐾(xi, xj) ( 2.32 ) 

subject to the constraints defined by (2.27) 

Valid kernel functions are those satisfying the Mercer’s theorem (Mercer, 1909). The 

most commonly used are the following (Hsu et al., 2010): 

1. linear: 𝐾(xi, xj) = xi  ∙ xj  

2. polynomial: : 𝐾(xi, xj) = (𝛾𝐱𝐢  ∙ 𝐱𝐣 +  𝑟)
𝑑
, 𝛾 > 0 

3. radial basis function (RBF): 𝐾(xi, xj) = 𝑒𝑥𝑝 (−𝛾‖𝐱𝐢  ∙ 𝐱𝐣‖
𝟐
) , 𝛾 > 0 

4. sigmoid: 𝐾(xi, xj) = 𝑡𝑎𝑛ℎ(𝛾𝐱𝐢  ∙ 𝐱𝐣 +  𝑟) , 𝛾 > 0 

Here γ, r, d, are the kernel parameters, and they have to be tuned, together with the 

regularization parameter C, during the model selection phase.  

A cross-validation (CV) approach is typically used for this purpose. The training set is 

split into k disjoint subsets of approximately equal size. Each subset is used for validating 

the SVM trained on remaining k-1 subsets. At the end of the kth iteration, the 

classification performances are evaluated. Various parameters values are tried and the 

ones giving the best classification performance are chosen. Usually the percentage of data 

correctly classified during the CV procedure is considered as objective function. A grid 

search in the parameter space can be performed, which is an exhaustive method but, on 

the other hand, it can be time consuming. An alternative approach for carrying out the 
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parameters optimization is the use of a gradient descendent algorithm in order to find the 

parameters giving the minimum CV error (Chapelle et al., 2002). 

In the standard SVM algorithm introduced so far, the regularization parameter C equally 

penalizes misclassification of positive and negative samples. When faced with an 

unbalanced dataset where the number of negative instances is significantly higher than 

that of positive ones, SVMs that follow the formulation of equations (2.24-2.25) tend to 

produce a decision boundary severely skewed towards the minority class  (Akbani et al., 

2004;  Batuwita, and Palade, 2013). 

To cope with this issue, Veropoulos et al. (1999) proposed an approach that uses different 

misclassification costs, C+ and C-, for positive and negative classes. 

In this method, the SVM optimization problem defined by equation (2.24) and (2.25) is 

modified by replacing the penalty term, C∑ 𝜉𝑖
𝑁
𝑖=1 , with the sum of two terms, one for each 

class: 

𝐶 ∑𝜉𝑖  →  𝐶+ ∑ 𝜉𝑖 + 𝐶− ∑ 𝜉𝑖   

𝑖 | 𝑦𝑖=−1

  

𝑖 | 𝑦𝑖=1

 

𝑁

𝑖=1

 

By assigning a higher cost C+ to the misclassification of samples from the minority class, 

here assumed to be the positive one, the effect of class imbalance could be reduced. That 

is, the modified SVM algorithm would not tend to skew the separating hyperplane 

towards the minority class samples to reduce the total misclassifications as they are now 

assigned with a higher misclassification cost. 

As stated at the beginning of this section, SVMs are designed to solve binary classification 

problems. In order to address multiclass problem two methods are typically adopted: the 

One-Against-One (OAO) strategy and the One-Against-All (OAA) strategy (Melgani and 

Bruzzone, 2004; Pierdicca et al., 2014). The OAA approach constructs one SVM for each 

class. The mth SVM discriminates between samples belongings to mth class, considered 

as positive class, from the samples in all remaining classes, considered as negative class. 

The class assigned to a test sample xi is the one corresponding to the SVM with the highest 

value of the discriminant function fm(𝐱𝑖) =  𝐰m ∙  Φ(xi) + 𝑏m. The OAO strategy, 

instead, uses one SVM for each pair of classes. Given a test sample, for each 

classification, one vote is given to the winning class and the sample is assigned to the 

class having most votes.  
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2.2.5 Accuracy assessment 

An effective and widely used approach for assessing performances of a change detection 

algorithm with respect to reference data consists in the analysis of the classification 

Confusion Matrix (CM) (Congalton and Green, 1999; Foody, 2002; Foody, 2010; 

Powers, 2011). A CM is a square k×k array, where k is the number of classes, with rows 

and columns that usually represent predicted and true class labels, respectively. Each 

element nij of the CM denotes the number of objects from the actual class j that were 

assigned to the class i. Thus, the ideal CM is a k×k identity matrix. 

Table 2-1 shows the CM for a binary classification problem where an object have to be 

assigned to one out of the two classes “change” and “no-change”, which we refer to as 

positive and negative. The main diagonal entries indicate the number of True Positive and 

True Negative, i.e. the number of positive and negative cases for which classification and 

reference data agree. As for off-diagonal elements, they represent misclassifications. In 

particular, n12 gives the number of negative cases classified as positive, known as False 

Positives or False alarms, while n21 indicates the number of positive cases classified as 

negative, often referred to as False Negatives or misdetections.  

  Actual Class  

  change no-change Total 

P
re

d
ic

te
d

 C
la

ss
 

change 

n11 

True 

Positives 

n12 

False 

Positives 

n+1 

no-change 

n21 

False 

Negatives 

n22 

True 

Negatives 

n+2 

 Total n1+ n2+ N 

Table 2-1: Confusion matrix for a change detection problem.  

From the CM, different quality parameters can be derived, such as Overall Accuracy, 

Cohen’s Kappa coefficient, user’s and producer’s accuracy. While the overall accuracy 

represent the percentage of test cases correctly allocated, producer’s accuracy focuses on 
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the accuracy of each individual class. Indeed, it represent the percentage of test cases 

belonging to a specific class that the algorithm correctly recognize. The producer’s 

accuracies for the positive and negative classes of a binary problem are known as 

Sensitivity (also called Recall or True Positive Rate) and Specificity (or True Negative 

Rate), respectively, and they can be computed from the CM entries, as follows: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛11

𝑛11 + 𝑛21
= 

𝑛11

𝑛1+
  ( 2.33 ) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑛22

𝑛12 + 𝑛22
= 

𝑛22

𝑛2+
 ( 2.34 ) 

User’s accuracy instead is computed as number of corrected predictions relative to the 

overall number of times a specific class was predicted. For a binary classification 

problem, user’s accuracies for the positive and negative classes are respectively called 

Positive Predictive Value (PPV) or Precision and Negative Predictive Value (NPV) and 

they can be derived from the CM, according the following equations: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑟 𝑃𝑃𝑉 =
𝑛11

𝑛11 + 𝑛12
= 

𝑛11

𝑛+1
 ( 2.35 ) 

 𝑁𝑃𝑉 =
𝑛22

𝑛21 + 𝑛22
= 

𝑛22

𝑛+2
 ( 2.36 ) 

A further measure of agreement or accuracy frequently used in remote sensing is Cohen’s 

Kappa coefficient (K). Conceptually it is defined as: 

 
𝐾 =

𝑝0 − 𝑝𝑐 

1 − 𝑝𝑐 
 ( 2.37 ) 

where po is the proportion of cases in agreement (i.e., correctly allocated) and pc is the 

proportion of agreement that is expected by chance. 

Given a CM, the Cohen’s Kappa, can be computed as: 

 
𝐾 =

𝑁 ∑ 𝑛𝑖𝑖 − ∑ (𝑛𝑖+ ∙  𝑛+𝑖)
𝐾
𝑖=1

𝐾
𝑖=1

𝑁2  −  ∑ (𝑛𝑖+ ∙  𝑛+𝑖)
𝐾
𝑖=1

 ( 2.38 ) 

where k is the number of classes, thus the number of rows and columns of the CM, nii is 

entry (i,i) of the CM, ni+ and n+i are the marginal totals of row i and column i, respectively, 

and N is the total number of test samples.  
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3. Experiment Description 

3.1 Introduction and objective 

The research work reported in this thesis has been carried out within the framework of 

the APhoRISM (Advanced PRocedures for volcanIc and Seismic Monitoring) project.  

APhoRISM3 is a collaborative project under the theme FP7-SPACE-2013-1 of the 

Seventh Framework Programme of the European Commission, started in December 2013 

and completed three years later (December 2016).  It involved partners from five 

European countries: Istituto Nazionale di Geofisica e Vulcanologia (INGV), project 

leader, Italy; Sapienza - University of Rome, Italy; Centre Tecnològic de 

Telecomunicacions de Catalunya (CTTC), Spain; Bureau de Recherches Géologiques et 

Minières (BRGM), France; Gamma Remote Sensing Research and Consulting AG, 

Switzerland; University of Oxford, United Kingdom and ALMA Sistemi s.a.s, Italy. 

APhoRISM was aimed at developing and testing methods to generate products useful for 

seismic and volcanic risk management, through the integration EO satellite data from 

different sensors and ground data.  

As for the seismic theme, which is the subject of this work, APhoRISM has developed a 

methodology, called APE - A Priori information for Earthquake damage mapping, 

focused on the generation of products to address the detection and estimate of damage 

caused by a seism. The use of satellite imagery to survey earthquake damages has been 

investigated in the literature and exploited in many projects. Usually the approach is based 

on change detection techniques and classification algorithms applied to satellite images 

only. This presents many limitations because of the insufficient availability of images 

(limitations due to cloud cover and satellite revisit time) and the capability of detecting 

                                                      
3 www.aphorism-project.eu 
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certain type of damage from satellite (e.g., damage of internal structures). The novelty of 

APE relies on the exploitation of a priori information and concurrent data derived from 

many other sources, that include geological data (such as soil type, landslide and 

liquefaction susceptibility), structural, geometric and constructive characteristics of 

buildings, shakemaps and InSAR time series to measure surface antecedent movements 

which indicate zone prone to terrain deformation. The main goal of APE is to investigate 

the potentiality of such a priori information for increasing the reliability and accuracy of 

earthquake damage maps to be delivered to those involved in rescue management and 

damage assessment. The outputs of APE method are likelihood index damage maps 

(LIDaM) at different spatial scale. Two products can be generated, one at district level, 

where groups of buildings represent the elementary unit, the other at the scale of single 

buildings. In the first case, MR images can be exploited while, in the second case, images 

at VHR are needed. 

This thesis deals with the generation of damage maps at single buildings level. Procedures 

were developed considering the earthquake that hit L’Aquila (Italy) on April 6, 2009.  

 

3.2 The A Priori information for Earthquake damage 

mapping (APE) approach 

A prompt response after an earthquake is of primary importance to save lives and 

effectively manage the emergency. A rapid damage mapping can provide a valuable 

support to rescue teams and to all the stakeholders involved in the emergency 

management cycle. In such a context, satellite remote sensing has already proved its 

potential to contribute to post-earthquake damage assessment. When an earthquake 

occurs the presence of soil instability factors, such as liquefaction phenomena and 

seismically induced landslides, may severely damage the surroundings or worsen the 

damage in areas already affected by the ground shaking. During the interseismic period, 

soil instabilities, such as natural or anthropogenic subsidence or slow slope movements, 

may alter the dynamic behaviour of the soil and the overlying urban settlement. Slow or 

fast subsidence below may induce differential settlements of the building foundation, 

giving rise to additional stresses on the superstructure, that may increase the vulnerability 

and worsen the seismic response. When the subsidence rate is very fast, the rapid 
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deformation may produce the changes in the natural oscillation periods of weak soils. 

This change is caused by the thickness reduction and the stiffness increment due to the 

compaction. The sinking and stiffening of soil shorten the site oscillation period, which 

is the main parameter that controls the seismic response of the soil, thus producing a 

double resonance in case of structures with lower natural oscillation periods. The APE 

approach proposed in APhoRISM generates the  LIDaM taking into account these factors, 

that are known to influence the damage level during an earthquake (Kramer, 1996), 

together with the intrinsic building vulnerability with the aim to reduce false positives 

and misdetections on change detection maps from satellite imagery.  

 

Figure 3-1: Flowchart of the APE method.  

Figure 3-1 shows a flowchart of the method and the logical architecture used to generate 

the LIDaM (Devanthéry et al., 2016). Two main phases are foreseen: a preparedness 

phase (left side of Figure 3-1) and a crises phase (right side of Figure 3-1). During the 

preparedness phase, the APE procedure exploits a long sequence of pre-crisis SAR 

images in order to derive an InSAR velocity map by means of Persistent Scatterers 

Interferometry (PSI) (Crosetto et al., 2016). In particular, the Interferometric Point Target 

Analysis (IPTA) (Werner et al., 2003) method is adopted. The InSAR velocity map allows 

measuring possible slow surface deformations dealing with natural and/or anthropogenic 

activities. The outcomes of IPTA are coupled with geological information, such as soil 

natural oscillation period maps, landslide and liquefaction susceptibility maps, in order to 

obtain a parameter, called the seismic instability factor, which provide quantitative 
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information about factors able to increase the effects of an earthquake on buildings and 

infrastructures. The presence of a potential instability can be taken into account in the 

estimation of the building vulnerability together with information about building height, 

year of construction and structural typology, leading to the finalization of the so-called 

Vulnerability Scenario.  

As soon as an earthquake occurs, the crises phase begins. The institutions in charge of the 

seismic networks generate the shakemaps that provide information about the soil velocity 

and acceleration in the epicentral region. Shakemaps are exploited to infer the 

macroseismic intensity throughout empirical models. The latter is used, together with the 

a priori information layers, to generate the first input to the data fusion algorithm, namely 

an estimation of the damage for single buildings and/or for a wider area. Furthermore, as 

soon as SAR data are available, a coseismic interferogram is generated to measure the 

displacements that, in principle, will help to restrict the damage evaluation analysis to the 

regions affected by surface deformation. In the crises phase, APE generates the change 

detection maps using both SAR and optical images. The change detection problem 

towards damage mapping is faced by segmenting the image before the seismic event, and 

identifying the objects of interest where focus the analysis. Objects could be single 

buildings, or groups of buildings, depending on the expected level of details and on the 

resolution of the available images. Alternatively, objects can be obtained from external 

sources, e.g., from cartography or GIS layers. The image segmentation step is done in 

background, so that, soon after the event, the first image available, SAR or optical, can 

be compared with the pre-event one on an object basis in order to derive information on 

the changes occurred. The LIDaM is finally generate by integrating a priori information 

and change detection product from EO data. 

The work reported in this thesis contributed to the APE procedure implementation 

developing and testing object oriented change detection methodologies for mapping 

earthquake damages at single building scale, given a pair of VHR satellite images, both 

SAR and optical. Moreover, this thesis work has supported activity related to the 

implementation of the data fusion module by assessing different approaches to combine 

remote sensing change detection maps with a priori information layers generated 

according routines under the responsibility of different partners of the APhoRISM 

project.  
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3.3 Case study and datasets 

After providing a summary of the selected seismic event, this section describes remotely 

sensed and reference data exploited during the experiments. Ground truth layers available 

from different data sources are also compared. 

3.3.1 Event summary 

On April 6, 2009 at 1:32 GMT(Greenwich Mean Time), an earthquake hit L’Aquila city, 

in Central Italy. The mainshock was rated 6.3 on the moment magnitude (Mw) scale; the 

epicentre was located near L'Aquila, at a depth of about 9 km, and was followed in the 

next week by 7 aftershocks with Mw > 5. L’Aquila and the surrounding villages suffered 

the highest damage. The earthquake was felt throughout central Italy; 309 people died, 

making this event the deadliest earthquake that hit Italy since the 1980 Irpinia one. The 

earthquake caused damage to thousands of buildings in the medieval city centre of 

L'Aquila. Several buildings also collapsed resulting in a sparse damage distribution within 

a high-density urban area. 

3.3.2 Earth Observation datasets 

The satellite dataset exploited for the L’Aquila case study consists of two pairs of optical 

and SAR images collected before and after the earthquake from the Quickbird (QB) and 

the COSMO-SkyMed (CSK) sensors, respectively (see Table 3-1).  

The QB image taken before the earthquake is dated September 4, 2006, while the post-

seismic one was collected on April 8, 2009, only 2 days after the catastrophic event. Each 

acquisition is composed of a panchromatic (PAN) and a multispectral (MS) image. The 

latter is collected in four spectral channel in the blue (450-520 nm), green (520-600 nm), 

red (630-690 nm) and near-infrared (760-900 nm) wavelength regions. Nominally, at 

nadir, the spatial resolution of the PAN image is 0.6 m, while the MS image has a 2.44 m 

resolution (DigitalGlobe, 2014). 

The CSK system is a constellation of four satellites, developed in cooperation between 

ASI and the Italian Defense Ministry. The platforms host an X-band SAR, with right and 

left looking imaging capabilities, an incidence angle range of 20°- 60°, and a minimum 

revisit time of 12 h. The radar was designed to implement three different operation modes: 

1) Spotlight mode, for metric resolutions over small images; 2) Stripmap mode for metric 

resolutions over tens of km images with single and dual polarization capability; and 3) 



 

44 

 

ScanSAR mode, for medium to coarse (100 m) resolutions over large swaths (Covello et 

al., 2010). The pair of images used in this work is in Spotlight mode. The pre-event image 

was taken on April 5, 2009 while the post-event one, two weeks after the seism 

(21/4/2009). Both observations were performed along ascending orbit with a right-side 

looking and 50.57° of incidence angle. The spatial resolution is about 1 m in both range 

and azimuth. 

Optical Dataset (Quickbird) 

Date of Acquisition Acquisition Mode Looking Angles Spatial resolution 

04/09/2006 PAN + MS 

-3.7° in- track 

-10.3° cross-track 

10.9° off-nadir 

0.6 m PAN 

2.44 m MS 

08/04/2009 PAN + MS 

2.8° in- track 

3.9° cross-track 

4.8° off-nadir 

0.6 m PAN 

2.44 m MS 

SAR Dataset (COSMO-SkyMed) 

Date of 

Acquisition 

Acquisition 

Mode 
Polarization 

Look/ pass 

Direction 

Incidence 

Angle 

Spatial 

resolution 

05/04/2009 SPOTLIGHT HH 
Right/ 

Ascending 
50.57° 1 m 

21/04/2009 SPOTLIGHT HH 
Right/ 

Ascending 
50.57° 1 m 

Table 3-1: Earth Observation dataset available for the L’Aquila test case.  

3.3.3 Reference Data 

The ground truth data available for the L’Aquila test site comes from two different 

sources. The first one is the survey performed by the INGV macroiseismic team (QUEST 

- QUick Earthquake Survey Team, http://quest.ingv.it), while the second one was 

produced by the Italian Department of Civil Protection (DPC). 

After the catastrophic event, several groups of INGV researchers, in one week of 

fieldwork, collected information related to type of building and its vulnerability class, and 

the suffered damage. The macro-seismic survey was carried out according to the 

European Macroseismic Scale 1998 (EMS-98), which defines five damage grades: grade 

1 for negligible to slight damage, grade 2 for moderate damage, grade 3 for substantial to 

heavy damage, grade 4 for very heavy damage, grade 5 for completely collapsed buildings 
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(Grünthal, 1998). Figure 3-2 shows the classification of damage for masonry and 

reinforced concrete buildings, as reported in Grünthal (1998). 

 

Figure 3-2: EMS-98 scale: masonry (left) and reinforced concrete (right) building type.  

It is worth noticing that the inventory data were collected by a visual inspection, looking 

from outside the buildings, because the INGV teams were not allowed to enter the 

edifices, for safety reasons. More than 1600 buildings were surveyed in the central area 

of L’Aquila, and a georeferenced vector file was produced to map the collected data in a 

GIS (Tertulliani et al., 2011, Tertulliani et al., 2012). The resulting map is shown in Figure 

3-3.  

The DPC survey was carried out during the six months following the seismic event and 

includes a detailed review of the interior parts of the buildings. The final goal of this 

survey was classifying the building usability and assess the damage affecting the 

individual structural elements of each edifice. The surveyed buildings for this dataset are 

both for private and public use. As for private buildings, the form (Agibilità e Danno sugli 

Edifici pubblici e privati: AeDES) filled in by the field operators contains more than 250 

attributes for each building. The most relevant for our analysis are the geometrical 

characteristics (e.g. number of floor, area, volume, and regularity), the structural typology 

and the sustained damage level. The latter is provided for each structural element (vertical 
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structures, floor, stairs, roof, infills and partitions) as a damage grade following the EMS-

98 scale. In addition, a second dataset from the DPC survey is specifically related to the 

monumental and historical buildings in L’Aquila. The survey was performed in the frame 

of the Safeguard of Cultural Heritage from Natural Disasters action, independently on the 

acquisitions of the AeDES forms, collecting similar but not identical information.  

The digitized AeDES forms were made available to the APhoRISM project by DPC as 

Microsoft Excel© files (indeed, DPC is one of the potential user of APhoRISM). A 

geocoded version of the AeDES forms was provided as GIS layer by Istituto per le 

Tecnologie della Costruzione (ITC) of the Italian National Research Council (CNR). 

CNR-ITS partially contributed to perform the survey, developed the georeferenced 

database using the Carta Tecnica Regionale (CTR) of Regione Abruzzo as base 

cartography and also performed some evaluations. More specifically, a damage indicator 

and a vulnerability class were calculated following the EMS-98 scale. Figure 3-4 shows 

an overview of the EMS-98 damage grade classification in the downtown area of 

L’Aquila derived from the AeDES forms merged with the Cultural Heritage survey, as 

processed by CNR-ITC.  

 

Figure 3-3: Damage distribution of L’Aquila city centre according to INGV ground survey. The 

polygons of surveyed buildings, with colour representing the damage grade, are superimposed on a 

VHR panchromatic image acquired by the Quickbird satellite after the earthquake.  
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Figure 3-4: Damage distribution of L’Aquila city centre from the DPC-AeDES dataset processed by 

CNR-ITC. The polygons of surveyed buildings, with colour representing the damage grade, are 

superimposed on a VHR panchromatic image acquired by the Quickbird satellite after the 

earthquake.  

Figure 3-5 provides a statistical summary, i.e., the number of occurrence of different 

damage grades, comparing the two surveys. We can notice the different distribution of 

damage, which is somehow related to the different purposes and the different conditions 

the surveying team encountered during their field work, but also to the method adopted 

to interpret and summarise the information collected in the field. More specifically, the 

distribution of the INGV damages is mostly concentrated on damage grade D=3 and 

reports only 74 collapses (D=5). The DPC-AEDES distribution is more uniform, 

exhibiting both many low (D=0) and high (D=5) damage grades. 

The matching between the two available ground surveys was analysed in detail since they 

were used as a reference to assess the accuracy of the classification of the satellite images. 

To properly compare the two ground surveys, same processing of the corresponding GIS 

layer was necessary to reduce as much as possible co-registration errors.  First of all, 

INGV damage grades, originally mapped on polygons manually drawn on a satellite 

image, were associated to polygons from the CTR which represents the geographical base 

map of the DPC survey as provided by the ITC. When necessary CTR polygons were 
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aggregated or disaggregated, in order to match the original INGV ground truth layer. 

Depending on which buildings were really surveyed and how a certain built up area was 

(or was not) split into single elements (i.e., polygons), when intersecting the layers, ‘one-

to-one’,  ‘one-to-many’, ‘many-to-one’ or ‘many-to-many’ correspondences can be found.  

In order to evaluate a CM between the two surveys, we have considered only polygons 

that are in common between the two datasets (i.e., that have an intersecting area above a 

threshold of ~15%). 

 

Figure 3-5: Damage frequencies in the INGV ground survey (left) and from the DPC-AEDES 

dataset processed by CNR-ITC (right).  

    DPC   

    D0 D1 D2 D3 D4 D5 n.a.   

IN
G

V
 

D0 14 7 2 2 0 0 5 25 

D1 40 35 21 12 3 0 27 111 

D2 52 84 92 63 22 9 51 322 

D3 41 96 232 196 105 38 77 708 

D4 10 13 21 71 75 28 49 218 

D5 2 3 8 7 10 31 13 61 

    159 238 376 351 215 106 222 1445 

             

Percentage of coincident 

outcomes 
30.7% Cohen’s Kappa 11.4% 

Table 3-2: INGV vs DPC ground truth confusion matrix. The n.a. column reports, for each damage 

grade, the number of buildings for which the damage assessment from the DPC is not available.   

From such analysis, we can identify a high dispersion mainly due to the different human 

evaluations of damage classes, even though coming from expert teams working on the 
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field. Out of 74 buildings that have sustained a damage of grade 5 according the INGV 

survey, 61 AeDES forms were filled and only 31 of them confirm the damage grade 5 

(see Table 3-2). The percentage of equally classified objects is 30.7%, while the Cohen’s 

kappa is equal to 11.4%. When the binary classification problem to distinguish between 

damage grade 5 and damage grade less than 5 is considered, a Cohen’s kappa of 33.6% 

and  an overall accuracy equals to 92.7% were found. 
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4. Data analysis and results 

4.1 Introduction  

The new generation of spaceborne SAR and optical sensors provides metric or submetric 

resolution imagery, thus allowing, in principle, the detection of single building damaged 

after an earthquake. However, the complexity of the image forming mechanisms within 

urban settlements, especially of radar images, makes the automatic detection of damaged 

buildings still a challenging task. To cope with time constraints and accuracy 

requirements of emergency response activities, the visual interpretation of VHR optical 

imagery is still the most widely used technique to assess urban damage from EO data 

(Chini et al., 2009a; Ehrlich et al., 2009).  

Considering the earthquake that hit L’Aquila city (Italy) on April 6, 2009, this chapter 

presents semiautomatic procedures exploiting VHR images acquired before and after the 

seismic event from both SAR and optical sensors for providing damage assessment 

products at single building scale. In order to make the delivered product suitable for the 

user community (e.g. civil protection), it is important to rely on a damage scale which is 

recognized as a standard. To this aim we considered the EMS-98 scale and assessed the 

possibility to discriminate between collapsed or heavy damaged (D = 5 in the EMS-98 

scale) buildings and less damaged or undamaged buildings (D < 5 in the EMS-98 scale).  

The proposed methodologies were developed and tested using optical images from 

Quickbird satellite and Spotlight CSK SAR imagery (see section 3.3.2). In our 

experiments, we considered the whole L’Aquila historical centre comparing classification 

results with ground based damage maps. This kind of assessment can be hardly found in 

the literature, especially when the main focus is on the development of sophisticated and 

advanced algorithms. Most of the works provide a change map as final product and report 

only a qualitative validation, based on the comparison with visual interpretation results, 
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often related to a limited area.  

In the wider context of the APE approach, the OBIA techniques, described in sections 4.3 

and 4.4 of this chapter, are exploited, soon after an earthquake occurs, to compare the first 

available image, either SAR or optical, with the pre-event one in order to derive 

information on the changes occurred. Change detection products from EO data are then 

integrated with a priori information layers and concurrent data for the generation of the 

LiDAM at single building level. A data fusion module accomplish this task processing 

information that each module of the APE approach is able to provide, according to 

different strategies that will be described in section 4.5 of this chapter. 

4.2 Visual interpretation benchmark  

In order to have a reference when assessing the performance of an automatic algorithm 

in detecting damage, a photointerpretation of pre- and post- event Quickbird images was 

performed building by building. The comparison between photointerpretation results and 

INGV ground truth is reported in Table 4-1 that provides a sort of benchmark against 

which automatic algorithms can be judged.  

 

Ground Truth data (INGV)  

D = 5 D = 4 D = 3 D <=2 total 

Visual 

inspection 

damaged 45 46 4 0 95 

undamaged 29 221 781 541 1572 

 
total 74 267 785 541 1667 

Table 4-1: Confusion matrix of the photointerpretation of Quickbird data.  

A missed detection error of 39.2% and 82.8% was found for buildings that, according the 

INGV ground survey, sustained a damage of grade 5 and 4, respectively. Just 4 out of 785 

buildings classified as damage grade 3 were recognized as damaged by visual inspection. 

This result demonstrates that only the detection of the damage grade 5 is feasible using 

remote sensing data.  

A few samples of the appearance of buildings and the problems that can be encountered 

when an automatic algorithm is used for damage detection are shown in Figure 4-1. This 
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figure compares pre- and post- event Quickbird images for some buildings classified as 

damage grade 5 by the INGV ground survey. Provided that the ground survey is telling 

the truth, the building collapse in Figure 4-1 (a) and (b) is easily detectable by visual 

inspection, whereas the same is not true for the building in Figure 4-1 (c) that appears 

unchanged. 
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 (a) (b) (c) 

Figure 4-1: Comparison of the pre- (upper panels) and post- event (lower panels) Quickbird images 

for some buildings classified as damage grade 5 by the INGV ground survey.  

 

4.3 Damage assessment from VHR optical imagery 

To assess the feasibility of a damage product at level of individual building from a pair 

of VHR optical data, we implemented a change detection approach that works at object 

scale. In the contest of the earthquake damage assessment from optical data, segmenting 

the pre-event image into objects corresponding to a building allows the change analysis 

to be focused on the objects of interest, avoiding false alarms due for example to 

vegetation changes and temporary objects. In this work, the segmentation of the scene is 

carried out using a pre-existing building map provided as GIS layer, which is generally 

available in most of the cases. When a map of the urban area is not available, objects 

corresponding to buildings can be identified exploiting image segmentation algorithms, 

as described for example in Chini et al. (2009a). Within each building footprint (i.e., an 
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image object) a number of features, potentially capable of detecting changes associated 

with the building collapse, were computed from pre- and post-seismic images, both 

panchromatic and multispectral. Different classification approaches were tested and 

compared.  

4.3.1 Pre-processing 

This section describes the pre-processing carried out on Quickbird images. Panchromatic 

images were orthorectified exploiting the Rational Polynomial Coefficients (RPC) 

provided with the data and a Digital Terrain Model (DTM) obtained from a LiDAR 

overflight of the study area. Pan-sharpened (PSH) pre- and post-event images were 

produced from PAN and MS imagery using the Gram-Schmidt Pan Sharpening method 

(Brower and Laben, 2000) implemented into IDL/ENVI©. Furthermore, these data were 

orthorectified exploiting the RPCs of PAN images and the LiDAR DTM according to the 

same procedure used for PAN data. A further registration between orthorectified images 

was required in order to achieve a better alignment of the images at street level and with 

the GIS map. Namely, a rigid shift of 0.6 meters in the North-South direction and of -4.8 

meters in West-East direction was applied to the pre-event image. As for the post-event 

image, a shift of -2.4 meters in the North-South direction and a shift of 7.8 meters toward 

the East were necessary. 

As the orthorectification was done with respect to the surface level (i.e., street level), in 

order to better superimpose the building footprints reported in the GIS layer to the actual 

image pixels associated to the roof we compensated the parallax error, i.e. the apparent 

displacement of building roofs with respect to their bases. The parallax displacement 

occurs along the sensor Line Of Sight, over a distance that depends on building height h 

and off-Nadir view angle θ, according to the equation: 

∆𝑠 = ℎ tan 𝜃 

Fixed a Cartesian reference frame where the x-axis is oriented towards the geographic 

East, the y-axis towards the geographic North and the z-axis is oriented along the vertical 

upward direction, the displacement components along x- and y-axes can be found as 

follows: 

∆𝑠𝑋 = ∆𝑠 sin 𝜑  

∆𝑠𝑌 = ∆𝑠 cos 𝜑, 
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where φ is the sensor azimuth measured clockwise from the North. Based on the building 

height reported in the CTR of Regione Abruzzo, building polygons were shifted, 

generating two layers matching pre-and post-event images, respectively. 

The results of this fine registration step can be appreciated in Figure 4-2. Figure 4-2(a) 

and Figure 4-2(b) show respectively pre- and post-event PAN images orthorectified and 

co-registered. Buildings outlines shifted for compensating the parallax error are reported 

in yellow, while red dashed polygons represent buildings footprints in their original 

position. The improvement of the position of the polygons with respect to the roofs is 

particularly evident in the pre-event image (Figure 4-2(a)) that was collected with a 

greater off-nadir angle (see Table 3-1).  

 

                                 (a)                                                           (b) 

Figure 4-2: Pre- (a) and post- (b) event PAN images superimposed with buildings footprints in their 

original position (red dashed polygons) and shifted for compensating the parallax error (yellow 

polygons).  

Before extracting change detection features, a histogram matching was performed to 

radiometrically compensate for the different season and illumination conditions of the 

pre- and post-seismic acquisitions. A linear transformation was applied to each band of 

the post-event image in order to get a data distribution with the same median and 

interquartile range of the corresponding pre-event data. We carried out this step 

considering only urban pixels that have been identified using the building polygons 

shifted for compensating parallax error, as described before. 
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4.3.2 Feature extraction and classification 

In this work, we performed an extensive investigation of many change parameters with 

the objective of identifying the most suitable set for damage detection purpose. In 

particular, we have considered a set of 13 features that can be grouped in four categories: 

standard change detection metrics, change indicators from information theory, features 

describing texture and colour changes, as shown in Table 4-2. According to the OBIA 

approach, features were locally evaluated considering only pixels pertaining to image 

object corresponding to buildings.  

Group Name Description 
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MIpan Mutual Information from PAN images 

KLDpan Kullback-Leibler Divergence from PAN images 

MIpsh Mutual Information from PSH images 

KLDpsh Kullback-Leibler Divergence from PSH images 
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Δcon Change in Contrast (Δcon=conpost - conpre) 

Δcor Change in Correlation (Δcor=corpost - corpre) 

Δene Change in Energy (Δene=enepost - enepre) 

Δhom Change in Homogeneity (Δhom=hompost - hompre) 

Δent Change in Entropy  (Δene=entpost - entpre) 

C
o

lo
u

r 
fe

a
tu

re
s 

(f
ro

m
 P

S
H

 

im
a
g
es

) 

Δhue Change in Hue  (Δhue=huepost - huepre) 

Δsat Change in saturation (Δsat=satpost - satpre) 

Δlum 
Value component difference (Δlum=lumpost - 

lumpre) 

standard change 

detection features 
Δint_pan 

Change in the intensity from PAN images 

(Δint_pan=int_panpost - int_panpre) 

Table 4-2: Change detection features extracted from VHR optical data.  

Statistical similarity measures, such as KLD e MI, were extracted from PAN images, 

using equations (2.15) and (2.16), and from PSH images, according to equations (2.13) 

and (2.14). 
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As a difference in the spatial arrangement of pixel intensity is expected as a consequence 

of the building collapse, changes in the object texture were considered in our analysis. 

Texture changes were assessed by means of five parameters: Contrast, Correlation, 

Energy, Homogeneity and Entropy. They were derived from GLCMs computed at object 

scale. Considering four angular directions (0°, 45°, 90°, 135°) and a fixed distance d=1, 

four symmetrical GLCMs were derived for each object and afterward summed for 

obtaining the rotational invariant GLCM from which texture descriptors were extracted. 

Features were computed from pre- and post- event images according to equations (2.4), 

(2.5), (2.6), (2.7) and (2.8), and their difference was considered to detect possible changes. 

As additional source of information for discriminating between damaged and undamaged 

buildings, changes in the Hue (H), Saturation (S), Value (V) colour space were taken into 

account, considering for instance that rubbles are expected to have low saturation as 

opposed to changes due to building restoration. The RGB value of a pixel was first 

transformed into the HSV space using a method suggested in Smith (1978). For each HSV 

colour channel, the mean value within the building footprint was calculated. The 

difference between the mean values of each HSV component computed respectively from 

the post- and pre-event image were then evaluated in order to obtain the change metric.  

Let Θ = {θ1,θ2, ..., θd} be the change parameters vector extracted from the pre- and post-

event optical images and associated to a building. Let Ω = {ω1, ω2} be the set of classes, 

identifying a building with damage grade D = 5 or D < 5. We carried out the classification 

task considering two supervised learning algorithms, namely, the Bayesian Maximum A 

Posteriori criterion and Support Vector Machine. Training and test sets in our analysis 

were provided by the INGV ground survey. Since the dataset is very unbalanced (the 

number of instances for the damaged buildings class is much lower than the number of 

samples belonging to the class of buildings with damage grade less than 5) and the number 

of collapsed building is low, it was not possible to split data into training and test samples. 

Thus, we exploited a k-fold CV procedure to assess the classification performances. The 

dataset was split into k=10 disjoint subsets of approximately equal size, preserving the 

original class proportions: in turn, each of the k subset was used for testing the classifier 

trained on the remaining k-1 subsets. For each iteration, we derived the CM referred to 

the current test set and finally, by summing up all the k CMs, we generated a global CM 

to assess the classification performances on the whole dataset. Classification accuracy 
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measures have to be considered with care in case of unbalanced sets and just one 

parameter could be not enough for assessing the classification results. Here, several 

parameters were derived: overall accuracy, sensitivity, precision, and Cohen’s Kappa 

with and without normalization with respect to the number of samples belonging to each 

class. The normalized Cohen’s Kappa, is computed from a normalized form of the 

confusion matrix, where each element represent the percentage of occurrence with respect 

to the total number of samples falling into each class. 

Following the implementations of the Bayesian MAP criterion, given the observed feature 

vector Θ, we assign the building to the class ωk (k=1,2) with the highest a-posteriori 

probability 𝑃(𝜔𝑘|Θ). 

We estimate the posterior probabilities assuming that both classes are equally likely a 

priori. As for the class-conditional pdfs, , also known as class likelihood functions, they 

are estimated from the training set through the non-parametric approach known as Parzen 

window method, assuming, moreover, the class-conditional independence of all the 

features, i.e., the Naïve hypothesis. In detail, given a set of nk training samples from class 

k, and considering a Gaussian kernel, the Parzen window method estimates the 

distribution 𝑝(Θ |𝜔𝑘) by the following (Parzen, 1962): 

 

𝑝(Θ|𝜔𝑘) =  ∏𝑝(𝜃𝑖|𝜔𝑘) = ∏
1

𝑛𝑘√2𝜋ℎ𝑖

∑𝑒𝑥𝑝(−
1

2
(
𝜃𝑖 − 𝜃𝑖𝑗

(𝑘)

ℎ𝑖
)

2

)

𝑛𝑘

𝑗=1

𝑑

𝑖=1

𝑑

𝑖=1

 ( 4.1 ) 

where θij
(k) is the jth observation of the ith feature from the kth class, and h is the so called 

bandwidth parameter or kernel width. Equation (4.1) shows that, for each feature, the pdf 

of the data given the class, 𝑝(𝜃𝑖|𝜔𝑘), is estimated as sum of Gaussian kernel functions 

placed on each training data point. 

As discussed in section 2.2.4.1, when a SVM is used to solve a binary classification 

problem, new input data are mapped in a higher dimensional feature space where they are 

labelled based on which side of the optimal separating hyperplane, constructed during the 

training phase, they fall. We recall that the non linear mapping of the input data into a 

high dimensional feature space is implicitly provided by a kernel function, i.e. a function 

returning the inner product Φ(x)∙Φ(y) between the images of two data points x, y in the 

feature space. For this work we chosen the Radial Basis Function (RBF) kernel defined 

in section 2.2.4.2. Moreover, dealing with an unbalanced dataset, we exploited the cost-

sensitive SVM algorithm proposed by Veropoulos et al. (1999) where two different 



 

58 

 

misclassification cost, C+ and C-, are considered for positive and negative classes (see 

section 2.2.4.2 for more details).  

Both the selected classification algorithms have parameters that need to be tuned. In 

order to estimate the class-conditional pdf, the kernel widths of the Parzen window 

method have to be specified. In this study, we used a single bandwidth h for each of the 

d dimensions (hi=h, for all i). To make input data more spherical and justify the use of a 

common bandwidth for each dimension, data were preliminarily standardized to have 

mean of zero and standard deviation of one. Many different techniques are available in 

the literature for choosing the optimal bandwidth from the data. A review of these 

methods can be found for example in Chiu (1996). Most of these bandwidth selection 

methods minimize the mean integrated square error (MISE) between the true pdf and its 

kernel based estimate. However, the bandwidth that is optimal for the MISE of a density 

estimator may not always be good for discriminant analysis, where the main emphasis is 

on the minimization of misclassification rate (Ghosh et al., 2006). For example, 

sometimes the bandwidth that minimizes the misclassification rate might be much larger 

than the bandwidth minimizing MISE (Ghosh and Chanduri, 2004). One of the most 

popular methods for selecting the kernel width is the Silverman’s rule (Zang et al., 2006) 

which assume that the true distribution is normal. In this work, we used such rule for 

initializing our algorithm that empirically search for the optimal kernel width, as detailed 

in the following. For the SVM algorithm, the hyperparameters to tune are the 

regularization parameters of the positive and negative classes (C+ and C− respectively) 

and the parameter γ of the RBF kernel which define its width. We expressed the 

misclassification cost C+ of the positive class, which is the minority class we are 

interesting in, as a function of the misclassification cost C− of the negative class, through 

the relation C+=wC-, were w is a weight greater than 1. Then, the parameters we tuned 

were C-, w and γ. 

In order to optimize the parameters φ of the classifiers, i.e. the kernel width h for the 

MAP classifier (𝛗𝑀𝐴𝑃 = {ℎ}) and the parameters C-, w and γ for SVM (𝛗𝑆𝑉𝑀 =

 {C−, w, 𝛾}) we ran a repeated k-fold CV, with k = 10. For each repetition of the CV a 

different set of classifier parameters was tested and chosen according to simulated 

annealing algorithm, implemented through a built-in Matlab® function, which solves 

minimization problems. We initialised the kernel width of the Parzen window method to 
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a value h0 computed according the Silveman’s rule (Zang et al., 2006). Then we searched 

for its optimal value in the range [h0/10, 10h0]. As for the hyperpameters of SVM, 𝛗𝑆𝑉𝑀 =

 {C−, w, 𝛾} they were inizìtialised to 𝛗𝑆𝑉𝑀0
= {10, 1, 1 𝑑⁄ } where d is the dimension of the 

feature vector used as input. The regularization parameter C- and the weight w were varied 

in the ranges [1, 10] and [2, 50], respectively The RBF kernel width γ was tuned in the 

range [10-3, 2].  

The additive inverse of Cohen’s Kappa was chosen as objective function of the 

optimization algorithm. We preferred the Cohen’s Kappa to other classification 

performance measures, such as the overall accuracy, because the latter is inappropriate 

when dealing with unbalanced datasets. If the dataset is highly unbalanced, the 

classification algorithm can achieve high overall accuracy simply assigning all the 

samples to the majority class. As a consequence, searching for the classifier parameters 

giving the best cross validated performances in terms of overall accuracy can lead to a 

classifier strongly biased towards the majority class. The Cohen’s Kappa, considers also 

the off-diagonal elements of the CM, thus providing a more reliable estimate of the 

capability of a classifier in discriminating between two classes.  

In detail, for each given set of change features, our approach for searching the classifiers 

parameters vector φ that provide the best cross-validated classification performances, 

works as follows.  

For a fixed classifier parameters vector φ, the training and the validation are repeated k 

times until all data are used. At the end of kth iteration of the CV, the Cohen’s kappa, K= 

-f(φ), obtained with the current parameters vector, φ, is derived from the global CM. 

Then, following a simulated annealing algorithm, (Dekkers and Aarts, 1991; Goffe et al., 

1994; Bouleimen and Lecocq, 2003), the classifier parameters are updated.  

A pseudo-code description of the algorithm is reported Figure 4-3.  

Starting from the current point φ, a new trial solution φ’ is selected from a neighbourhood 

of φ according to the equation: φ’= φ + θn Δrn, where θn∈Rd, with ||θn|| = 1, is a direction 

vector randomly generated, and Δrn, is the step length defining the distance φ’ from φ for 

the nth iteration of the optimization algorithm. Then, a CV is performed in order to 

evaluate the objective function for the trial solution φ’ which is compared with value of 

the objective function achieved using φ. If the difference in the objective function, Δ= 

f(φ’)-f(φ) is less or equal to zero, φ’ is chosen to replace the current solution φ. If in 
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addition f(φ’) is the lower value of the objective function found so far, φ’ becomes the 

best solution φopt. 

The algorithm avoids being trapped in local minima, allowing a neighborhood of a worse 

solution φ’ to be explored, if specific conditions are met. Whenever f(φ’) is greater than 

f(φ), an acceptance probability p=exp(-Δ/Tn) is computed and compared to y, a random 

number generated from a uniform distribution on [0, 1]. If p is greater than y, φ’ is 

accepted to replace the current solution φ, otherwise another trial solution φ’ is selected 

from the neighbourhood of φ. 

The acceptance probability depends on the difference in the objective function values, Δ, 

and on the value of the parameter Tn at the current iteration of the algorithm. At each 

iteration, such parameter, called temperature, is lowered according an exponential cooling 

scheme Tn = T0×0.95n, where T0 is the initial temperature. Besides controlling the 

acceptance probability, the temperature determines the distance of the trial point from the 

current solution. Thus, as the algorithm progresses the probability of accepting worse 

solution decreases and increasingly smaller neighbourhood of the current solution are 

explored. The algorithm stops when a specified number of iteration is reached or when 

the average change in the objective function observed in a given number of iterations is 

smaller than a given tolerance, returning the best achieved solution φopt. 

 

Figure 4-3: Pseudo-code of the simulated annealing algorithm exploited for optimizing the MAP 

classifier and SVM parameters.  
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4.3.3 Feature selection and classification results 

A careful selection of the considered change detection features (see Table 4-2) was carried 

out. We searched for the most relevant subsets of features according to a wrapper 

approach which consists in ranking subset of features based on the classification results 

that they achieve (Guyon and Elisseeff, 2003).  

We evaluated the effect on the classifiers performances by varying the number and the 

combination of the features used as input. We considered classification results obtained 

after tuning classifiers parameters and, for each set of d features, where d ranges from 1 

to 13, we selected the combinations that provided the best results in terms of the Cohen’s 

Kappa. In particular, due to the uncertainty in the Cohen’s kappa estimation, for each 

group of d features, we selected those combinations giving a Cohen’s Kappa within the 

range [maxKappa(d), maxKappa(d) - 0.02], where maxKappa(d) is the maximum 

Cohen’s kappa achieved with d features. We performed this analysis independently for 

MAP classifier and SVM. Results, for groups of features of size from 1 to 5, are 

summarized in Table 4-3 and Table 4-4, which refer respectively to MAP classifier and 

SVM. These tables consist of five columns indicating the number of features, and 13 

rows, one for each of the considered change parameters. Coloured cells in each sub-

column represent selected features. The first sub-column of each group, reports the 

combination of features giving the best performance, i.e. the combination of d features 

for which the Cohen’s Kappa was equal to maxKappa(d).  

When a single feature was considered as input of the change detection algorithm, change 

in the contrast provided the best results, either with SVM or MAP classifier. Looking at 

Table 4-3, it can be seen that the best results of the MAP classifier were all achieved with 

feature sets containing change in the contrast, which is the most selected feature also in 

the case of SVM (see Table 4-4). When a building collapses the contrast generally 

increases due to presence within the building footprint of pixels with very different grey 

levels close each other. Consistent performances were also achieved using feature subset 

including changes in Homogeneity and Entropy, which are frequently included in the 

optimal subsets showing that changes in textural properties are the most reliable features 

for detecting changes due to the building damage. Being inversely but strongly correlated, 

Homogeneity and Entropy are interchangeable. In fact, either using SVM or MAP 

classifier, these two features are selected alternatively. 
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Table 4-3: Exhaustive feature selection based on Cohen’s Kappa for different feature vector size 

using MAP classifier.  

 

Table 4-4: Exhaustive feature selection based on Cohen’s Kappa for different feature vector size 

using SVM.  

Comparing Table 4-3 and Table 4-4 it can be seen that there are some features that 

demonstrated their usefulness depending on the classification approach. The Mutual 

Information, for example, being very sensitive to residual registration errors between the 

two images, generally determines a lot of false alarms when used as input to the MAP 

classifier, while it provides satisfactory results if exploited, in combination with other 

features, as input to SVMs. In combination with other features, high values of such 
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parameter can help avoiding false positive due to changes not attributable to the 

earthquake but associated, for example, to a building restoration intervened in the 

timeframe between the two image acquisitions. It can be noted that, in the case of the 

MAP classifier, feature combinations providing the best results in terms of Cohen’s kappa 

often include change in the colour saturation which conversely does not appear within the 

features subset for which SVM provided the best results. This is likely because the Mutual 

Information from PSH images (i.e., multispectral data), which is one of the most 

frequently selected features in the case of SVM, brings colour signature as well.  

Figure 4-4(a) reports the Cohen’s Kappa as a function of the features number for both 

SVM and MAP classifier, considering the best subset for each group of d features. In 

Figure 4-4(b) and Figure 4-4(c) classification approaches are compared in term of 

sensitivity and precision, respectively. In the context of damage detection, the sensitivity, 

computed from the global CM using equation (2.33), represents the percentage of 

building to which a damage grade 5 was assigned from both ground survey and 

classification algorithm. As for the precision, defined by equation (2.35), it represents the 

percentage of buildings classified as damage grade 5 from satellite data that have actually 

sustained a damage of grade 5, according the ground survey.  Looking at Figure 4-4(a), it 

can be seen that increasing the number of features improves the classification Cohen’s 

Kappa, until reaching the highest value with a subset of five features, for both the 

considered classification approaches. Then, the performances in term of Cohen’s Kappa 

tend to decrease as the input space dimensionality increases. From Figure 4-4(b) and 

Figure 4-4(c), it can be noted that increasing the number of features from 1 to 5 does not 

improve the sensitivity of the algorithms to the damage detection, but it increases its 

precision, i.e. the rate of buildings classified as damage grade 5 that are real damages (i.e., 

decrease of false alarms).  The results we obtained using SVM outperform those achieved 

by the MAP classifier. With respect to the MAP classification approach, SVMs are able 

to provide classifications characterized by a lower rate of false alarms. This could be due 

to the complexity of the input data that a SVM, working in a higher dimensional feature 

space, is more able to recover. Besides providing better performance in term of precision, 

in most of case, SVM correctly recognize a greater number of building with damage grade 

5. However, performances in term of sensitivity are not so markedly distinct and both 

algorithms often fail in detecting a building with damage grade 5 according to the ground 
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survey, mainly because, as pointed out, in section 4.1, about 40% of these damages are 

not detectable even by visual inspection.  

 

Figure 4-4: Classification performances of SVM and MAP classifier as a function of the number of 

features used as input: (a) Cohen’s Kappa (b); Sensitivity; (c) Precision.  

 (a) 

(b) 

 (c) 
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The confusion matrix shown in Table 4-5 summarizes the results of the MAP 

classification approach with the subset of five features that achieved the highest Cohen’s 

Kappa. Using changes in Contrast, Energy, Entropy, Hue and Saturation the MAP 

classification algorithm exhibits an overall accuracy of 96.2% and a Cohen’s Kappa of 

45.6%. We correctly detect 39.2% of buildings with damage grade 5, generating 19 false 

positives. 

    INGV           

    (D=5) (D<5)          

cl
a

ss
if

ie
r (D=5) 29 19 48  60.4% precision 

 

(D<5) 45 1574 1619  97.2% NPV 
 

    74 1593 1667  overall Cohen’s normalized 

    sensitivity specificity   accuracy kappa kappa 

 39.2% 98.8%   96.2% 45.6% 38.00% 

        

 Table 4-5: Confusion Matrix obtained using the MAP classifier with the optimal subset of features 

(changes in Contrast, Energy, Entropy, Hue and Saturation).  

The result in terms of false alarms can be considered satisfactory, especially if it is 

considered that 5 false positives are determined by buildings that suffered a damage D < 

5 that is apparent according to the photointerpretation, as shown in Figure 4-5(a) and 

Figure 4-5(b), where two buildings classified respectively as damage grade 4 and 3 in the 

INGV survey, are reported.  

As for the low sensitivity to the damage, it is worth pointing out that the buildings 

correctly recognized as damaged from our algorithm represent about 60% of the buildings 

with damage level 5 that we were able to identify by visual inspection of the Quickbird 

images. In other word, most of missed detection of damage 5 according to INGV were 

not detectable even by visual interpretation of the images. As discussed in section 4.1, the 

class of the buildings to which a damage grade 5 was assigned is very heterogeneous. In 

some cases, the damage sustained by the building roof, although detectable by a human 

image interpreter, was not so extensive, thus preventing its identification without 

generating a large amount of false alarms. An example is reported in Figure 4-6(a). There 

are, in addition, same buildings suffering floor collapse while retaining an intact roof 

(pancake type collapse), such as that shown in Figure 4-6(b). In these cases, buildings 

were wrongly classified as belonging to the class of damage D < 5. 
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 (a) (b) 

Figure 4-5: Examples of false positives generated by the MAP classifier. Upper panels: pre-event 

Quickbird images. Lower panels: post-event Quickbird images. Polygons delineate buildings that 

have sustained a damage of grade 4 (figure (a)) and 3 (figure (b)) according the INGV ground 

truth. Because the roof of both buildings is evidently damaged, they were wrongly classified as 

damage of grade 5.  
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 (a) (b) 

Figure 4-6: Examples of false negatives generated by the MAP classifier. Upper panels: pre-event 

Quickbird images. Lower panels: post-event Quickbird images. (a) The roof is almost completely 

intact, except for the portion within the yellow ellipse. (b) Due to the pancake type collapse, the only 

change is the presence of dust and debris around the building footprint.  

Using SVM we obtained better result, as shown in the confusion matrix reported in Table 

4-6 which refers to the SVM outcomes when Mutual Information from PSH images, 

changes in Energy, Entropy, Hue and Intensity from PAN images were used as input.  

    INGV           

    (D=5) (D<5)          

cl
a

ss
if

ie
r (D=5) 31 10 41  75.6% precision 

 

(D<5) 43 1583 1619  97.4% NPV 
 

    74 1593 1667  overall Cohen’s normalized 

    sensitivity specificity   accuracy kappa kappa 

 41.9% 99.4%   96.8% 52.4% 41.26% 

        

Table 4-6: Confusion Matrix obtained using SVM with the optimal subset of features (Mutual 

Information from PSH images, changes in Energy, Entropy and Hue, change in Intensity from 

PAN images).  
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Sensitivity and Precision increase to 41.9% and 75.6%, respectively. We correctly 

classify 31 out of 74 buildings with damage grade 5, identifying about 68% of those 

detected by visual inspection. Even in this case some of the false alarms (3 out of 10) are 

due to buildings recognized as damaged by photointerpretation.  

The classification performances against the INGV ground survey demonstrates the 

challenge of detecting earthquake damage at single building scale from satellite data. 

However, it is very important to notice that the classification results assessed against the 

INGV ground truth (overall accuracy=96.2%, Cohen’s kappa=45.6% using the MAP 

classifier; overall accuracy=96.8%, Cohen’s kappa=52.4% using SVM) are quite similar 

and even better than the direct comparison between the INGV and DPC ground surveys, 

for which, as reported in section 3.3.3, an overall agreement of 92.7% and a Cohen’s 

kappa of 33.6% were found. In other words, the damage map obtained using satellite data 

over the entire historical town of L’Aquila shows a mismatch with respect to the INGV 

ground truth comparable to the mismatch of the two ground surveys. It demonstrates the 

undoubted value of remote sensing for a rapid response, when compared to the 

uncertainty, highly costly and time consuming ground survey. This aspect will be further 

detailed in the chapter 5 of this thesis. 

4.4 Damage detection from VHR SAR images 

In a medium resolution SAR image, build-up areas appear almost uniformly bright, 

although with a complex texture, due to the predominance of the double reflections from 

the ground to the buildings wall facing the radar. Thus, the decrease of the backscattering 

is a key feature for detecting severely damaged urban settlement from a pair of SAR 

images with a resolution in the order of tens of meters (Chini, 2014). In metric resolution 

SAR images, such as those provided by CSK or TerraSAR-X, a building appears as a 

complex of image structures associated to different scattering mechanisms (Chini et al., 

2015b), as discussed in section 2.1.1. We can observe bright linear features with different 

thicknesses as well as dark areas. The former are related to double-bounce or, as the line 

thickness increases, to layover areas, where the roof or the facade scattering may be 

dominant depending on the building characteristics. The latter are due to the shadow 

effect (Ferro et al., 2013).  

When a building collapses the double bounce and the layover areas drastically decrease 
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their brightness. At the same time, an increase of backscattering it is expect due to the 

scattering from debris laying within the building footprint and to the return coming from 

the ground previously occluded by the building itself (Anniballe et al. 2014, 2015, 2016; 

Marin et al., 2015), as sketched in Figure 4-7.  

Taking advantage from the theoretical model of building SAR response and its expected 

changes after a collapse, we developed an object-oriented change detection approach for 

mapping earthquake damage at single building level. 

 

 

Figure 4-7: Decrease and increase of the backscattering intensity after the building collapse. Double 

bounce and layover effects are no longer observed. The scattering contributions from debris 

determine the increase of the backscattering within the building footprint. The region previously 

occluded by the shadow becomes visible.  

4.4.1 Methodology 

The present study has been conducted using a pair of Spotlight CSK images collected 

before and after L’Aquila earthquake (see section 3.3.2). 

The proposed procedure for identifying collapsed buildings goes through several steps.  

After some preprocessing, where pre- and post- event images are co-registered and 

radiometrically calibrated, the pre-event image is segmented to extract layover areas and 

bright stripes due to the double bounce (DB/LO objects), that are the regions where a 

decrease of the backscattering in the post-event SAR image is expected when a building 

collapses. The identification of DB/LO is performed using open and close morphological 

filters and assuming linear SEs with different orientation and length (Chini et al., 2015b).  
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In the case of partially collapsed buildings it may happen that the radar illuminates an 

undamaged building wall, and then the damage cannot be identified looking only at 

changes in the DB/LO area. Taking into account this aspect, the second stage of our 

methodology aims at identifying changes occurred within the building footprint and in 

the shadow area, generally characterized by an increase of backscattering in case of 

collapse (INC objects). For this purpose a thresholding and region growing based 

approach exploiting the KLD, computed between pre- and post- event SAR image after 

masking DB/LO regions, is used. Other scientists of the APhoRISM project team 

developed the segmentation procedures for singling out DB/LO and INC regions. They 

have been applied in the frame of the present thesis work to the L’Aquila images taken 

from CSK. In the following section a summary of those algorithms is provided. Once 

extracted from the images, DB/LO and INC objects are associated to polygons 

representing individual buildings. The association of DB/LO objects to a building is 

performed after correction of range displacement of the building itself to compensate for 

layover which depends on building height and radar incidence angle, as detailed in section 

2.1.1. At the end of this step, a building may be associated to only one or both types of 

objects. Finally, exploiting change features extracted using only pixel belonging to 

DB/LO and INC objects, a classification step based on the Bayesian MAP criterion is 

performed. Each stage of the proposed methodology is explained in detail in the next 

subsections. 

 Image segmentation 

Segmentation aims at identifying structures rather than making statistical analysis at 

single pixel bases (Blaschke and Strobl, 2001). It implicitly assumes that the actual 

scenario imaged by a SAR consists of regions that are homogeneous, i.e., considers a 

uniform backscattering within segments (Caves et al., 1998), with abrupt changes in the 

edges; it is the case of urban areas when we work with VHR SAR data, where a mixture 

of very bright and dark backscattering values is present. 

Double-bounce and layover objects are the image features that mostly enable the 

identification of damages due to an earthquake. In order to extract these features from a 

single pre-event SAR image, a methodology, made up of two steps in cascade was 

implemented (Chini et al., 2015b). 

In a first step, to highlight geometric characteristics of objects we are interested in, such 
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as bright thin lines and ridge representative of the double bounce and layover area, we 

extracted a multiscale morphological profile using the opening and closing operators 

described in section 2.2.2. Since structural classes from mathematical morphology 

depend on the size of the SE it is important to define the most suitable shape and 

dimension for classifying a certain type of target. The dimension of SE is directly related 

to pixel resolution and to the objects in the scene (Chini et al., 2009b). Since our target 

are the DB/LO objects which are basically linear, we implemented an anisotropic SE with 

linear shape, where anisotropic means that the filtering window privileges some specific 

directions. In particular, we have applied the opening and closing operators to the original 

pre-event CSK intensity image, using a linear SE with eight different directions (0°, 45°, 

90°, 135°, 180°, 225°, 270°, 315°) and three different lengths (5, 9, 13 pixels). In this 

way, we obtained additional features for describing each image pixel besides the pre-

event SAR image itself.  

In the second step, we used the morphological profiles and the pre-event SAR image itself 

as input to a K-means clustering algorithm (Richards and Jia, 2006) to obtain the DB/LO 

objects. The number of clusters in the K-means was fixed to 10 after a trial and error step, 

where different numbers were tested, and the one that maximizes the Jeffries Matusita (J-

M) distance (Richards and Jia, 2006) between clusters was selected. The procedure for 

extracting the DB/LO objects was performed in the SAR slant range geometry, in order 

to preserve as much as possible the geometric characteristics of the linear structures we 

are looking for. Once identified, DB/LO were projected onto ground, using a LiDAR 

DTM, in order to assign the geographic coordinates, which allow their association to the 

buildings provided by a digital cartography of the area.  

The second stage of our approach to damage detection aims to highlight changes occurred 

within the building footprint and in the shadow area. Given two SAR images collected on 

the same geographical areas at two different times, the most widely used approach to 

automatically detect regions of change is applying a thresholding algorithm to a further 

image generated from the original multitemporal images according to some comparison 

operator, such for example the ratio. In this work, for the automatic extraction of changes, 

we adopted a statistical-based approach, which exploits the KLD change feature and 

assumes it has a bimodal distribution locally. The KLD was estimated from pre- and post- 

event SAR intensity images using a moving window of 7x7 pixels, after masking DB/LO 
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objects. One major constrain for the statistical modelling-based algorithms is that they 

need a sufficient number of changed pixels to estimate a reliable threshold. Indeed, 

statistical modelling-based automated algorithms require that the changed class is 

identifiable, so that a pdf can be parameterized for this class. This is not the case when 

changes represent only a small portion of the area of interest. The Split-Based Approach 

(SBA) has been proposed in the literature to deal with images characterized by small 

percentages of changed pixels with respect to the total number of pixels (Bovolo and 

Bruzzone, 2007). The idea behind this approach is to split the image resulting from the 

comparison between two acquisitions, to which we refer as change image, into sub-

images and to extract a threshold based on the statistics of each obtained tile. An 

alternative is to consider all tiles containing a sufficient number of changed pixels and to 

estimate one global threshold value that is applied to all tiles. SBA has also been used to 

map flood extent by considering only backscatter statistics inferred from a single flood 

image as a way to separate the ‘flood’ class from the rest (Pulvirenti et al., 2014). Usually 

SBA is applied with tiles of fixed size, defined, by the expert, based on the sensor 

resolution, the image size and the extension of the expected areas of change. 

Here we considered a Hierarchical Split-Based Approach (HSBA) (Chini et al., under 

review), where the size of tiles, is not fixed a priori. Instead, a hierarchical tiling of the 

change image, i.e. the KLD image, is carried out in order to automatically select tiles (of 

potentially different sizes) where the statistical distribution function attributed to changes 

of backscatter values can be parameterized. Subsequently, based on the statistics of the 

selected tiles, we automatically delineate changed regions, making use of a methodology 

where, based on the fitted distribution functions, an optimization procedure is run in order 

to extract the optimal thresholds for generating the seed data set of a subsequent region 

growing step. 

In the HSBA a hierarchical tiling of the change image is realized by starting with 40 tiles 

(i.e. the entire image) on the first level and iteratively subdividing the image into 4L sub-

images, where L is the hierarchical level of splitting. In other words, at L = 1 we are 

splitting the image into quarters, with L = 2 the image is subdivided into sixteenths, etc. 

Depending on L, tiles will thus be characterized by different sizes. At each level, 

descending from the upper level to the lower one, only tiles fulfilling the following criteria 

are retained: 
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a) The histogram computed with pixels of the change image located in the considered 

tile must be bimodal.   

b) The smallest population in the change image pixels histogram must represent at 

least 10% of the considered tile. 

Regardless of their size (i.e. the hierarchical level to which they belong) all tiles fulfilling 

the previous criteria are used to create a bimodal mask, which is binary. This mask is then 

applied to change image to extract areas where High and Low KLD values, corresponding 

to “Change” and “Non-change” regions, are present with a sufficient amount of pixels 

and the related distribution function is identifiable. In other words, the histograms of the 

masked areas in the change image are assured to be bimodal.  

To calibrate the parameters of the two Gaussian distributions composing the histogram 

of each tile, we exploited the Levenberg-Marquardt algorithm (Marquardt, 1963) which 

is a standard technique used to solve nonlinear least squares problems, combining the 

steepest descent and inverse-Hessian function fitting methods. Once all distributions are 

fitted, the Ashman D (AD) coefficient (Ashman et al., 1994) was used for evaluating the 

bimodality. This coefficient quantifies how well two Gaussian distributions are separated, 

by considering the distance between mean values and their dispersions, i.e. standard 

deviations. For a mixture of two Gaussian distributions AD > 2 is required for a clean 

separation of the distributions. 

Once tiles fulfilling conditions a) and b) have been identified, they were exploited to 

identify seed pixels for the subsequent region growing step through which regions of 

change (INC objects) were extracted. Starting from seed pixels, the region growing 

algorithm search for pixels within the whole change image that are connected neighbours 

of the seeds and that lie within a tolerance of the KLD value (Haralick and Shapiro, 1985). 

The choice of the threshold value for generating seed regions and the identification of the 

tolerance KLD value represent critical aspects. Our strategy is to select as seeds of the 

region growing step those pixels that have KLD values with a particularly high likelihood 

of belonging to the change class. To this aim, the histogram related to the pixels located 

in all the selected tiles has been fitted to a distribution given by the sum of two Gaussian 

functions, representing populations with high and low KLD values. Then, pixels with 

KLD value greater than the mean value of high KLD distribution were selected as seeds 

of the region growing algorithm. As for the tolerance we choose a KLD value that is 
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higher than the seeds threshold and that minimizes the RMSE between the theoretical 

high KLD distribution and the empirical distribution, which is the histogram of detected 

changed pixels resulting from the region growing. 

 Feature extraction and classification 

We carried out the change analysis considering four change indicators, such as: intensity 

ratio, interferometric coherence (equation (2.17)), intensity correlation equation (2.18)), 

and Kullback-Leibler divergence. The latter was computed according its cumulant-based 

approximation, proposed by Inglada et al. (2007). We evaluated these parameters for each 

DB/LO and INC object and two independent classifications were performed: the one 

based on features extracted from DB/LO objects, the other based on features evaluated 

on the INC objects. The classification step has been carried out according the Bayesian 

MAP criterion considering two classes, discriminating between collapses (D = 5 in the 

EMS-98) and less severe damages (D < 5 in the EMS-98). For those building having 

associated both DB/LO and INC objects, a fusion of INC and DB/LO MAP classifications 

was performed. Given the features vectors ΘDB/LO and ΘINC associated to DB/LO and INC 

objects, respectively, we assign the building to the class ωk (k = 1, 2) with the highest a-

posteriori probability conditioned to the observed DB/LO and INC features, 

𝑃(𝜔𝑘 | ΘDB/LO) and 𝑃(𝜔𝑘 | ΘINC), i.e. to the class:  

 𝜔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜔𝑘𝜖𝛺{𝑃(𝜔𝑘 | ΘDB/LO), 𝑃(𝜔𝑘 | ΘINC)} ( 4.2 ) 

As in the case of optical data, we retrieved the class conditioned pdfs from training data 

according to the Parzen window method considering again a Gaussian kernel. The 

simulated annealing algorithm, described in section 4.3.2, was used to tune the kernel 

width. The performances were assessed against the INGV ground truth using a Leave One 

Out CV (LOOCV) approach. LOOCV requires N iterations, where N is the number of 

sample in the data set. At each iteration, the training is performed using all the available 

data except for one sample, which is used for filling the classification CM. 

4.4.2 Results 

Figure 4-8(a) shows a multi-temporal SAR image for a portion of L’Aquila city generated 

by assigning to the Red channel the pre-event image and to the Green and Blue channels 

the post-event image. In such an image, red colour indicates the decrease of the 

backscattering in the post-seismic image due to the buildings collapse, while cyan pixels 
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single out the increase in the backscattering values due to the presence of debris and to 

the vanishing of the building SAR shadow. In Figure 4-8(c) and DB/LO and INC maps 

for the same area are reported, respectively. Polygons superimposed to each image 

delineate buildings that have sustained a damage of grade 5, according to the INGV 

ground survey. As expected, DB/LO regions associated to damaged buildings (DB/LO 

objects within the red dashed circles in Figure 4-8(b)) appear red in Figure 4-8(a) while 

INC objects are those regions where, in most of cases, a decrease of the backscattering 

can be observed in Figure 4-8(a). 

 

Figure 4-8: (a) RGB composite of pre-event (Red and Green) and post-event (Blue) CSK intensity 

images. Red and cyan areas single out respectively the decrease and the increase of backscattering 

in the post-seismic image. Polygons delineate buildings that have sustained a damage of grade 5.  

(b) DB/LO objects extracted from the pre-event image. Red dashed circles highlight DB/LO objects 

associated with damaged buildings. (c) INC objects extracted from the KLD map.  

Figure 4-9 shows the four change detection features calculated for each DB/LO object. 

All parameters exhibit a certain degree of sensitivity to the damage. DB/LO objects 

associated to damaged buildings, generally are characterized by high values of intensity 

ratio and KLD, and low values of intensity correlation and interferometric coherence. 

Drawing the attention on the intensity ratio (Figure 4-9(a)) it is possible to see how the 

brighter DB/LO objects (where the change is higher) are those associated to damaged 

buildings except for the buildings in the lower left corner of the figure. This happens 

because the layover effect due to the topography prevents the correct separation of 

objects, so, more objects, corresponding to damaged and undamaged buildings have been 



 

76 

 

classified as unique one. However, it can be noted that interferometric coherence (Figure 

4-9(d)) and KLD (Figure 4-9(b)) single out this damage.  

 

Figure 4-9: Change features calculated for each DB/LO object. Polygons delineate buildings that 

have suffered a damage of grade 5. Circles highlight the associated DB/LO objects.  

 

(a) (b) 

 

(c) (d) 
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In order to evaluate the usefulness of the investigated features and assess their 

contributions to the classification performances, we varied the number and the 

combination of features used as input space of the MAP classification algorithm.  

KLD, coherence and intensity ratio turned out to be the most significant features for 

discriminating between collapsed and not collapsed buildings from changes in DB/LO 

regions. Combining DB/LO and INC classification results, the best performance in term 

of Cohen’s kappa, was obtained classifying INC object based on all the available features. 

When the classification was performed based on features extracted only from DB/LO 

objects, 29.7% of the building with damage grade 5 were correctly identified. An increase 

of the sensitivity (40.5%) to the damage grade 5 was observed when also the INC objects 

were considered. All the results are summarized in the CMs reported in Table 4-7 and 

Table 4-8. 

    INGV           

    (D=5) (D<5)          

cl
a
ss

if
ie

r (D=5) 22 78 100  22.0% precision 
 

(D<5) 52 1515 1567  96.7% NPV 
 

    74 1593 1667  overall Cohen’s normalized 

    sensitivity specificity   accuracy kappa kappa 

 29.7% 95.1%   92.2% 21.3% 24.83% 

        

Table 4-7: Classification confusion matrix (features from DB/LO objects).  

    INGV           

    (D=5) (D<5)          

cl
a

ss
if

ie
r (D=5) 30 94 124 

 

24.2% precision 
 

(D<5) 44 1499 1543 

 

97.1% NPV 
 

    74 1593 1667 

 

overall Cohen’s normalized 

    sensitivity specificity 
  

accuracy kappa kappa 

 40.5% 94.1% 
  

91.7% 26.2% 34.64% 

        

Table 4-8: Classification confusion matrix (features from DB/LO and INC objects).  

The high rate of misdetection can be ascribed to the fact that some buildings classified as 

damage grade 5 by the ground survey are not easily detectable even by visual inspection 
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of optical imagery; indeed, the complexity of L’Aquila urban fabric represents a challenge 

for damage detection from space. Most of the buildings not recognized as damaged are 

located in the city historical centre. Instead, considering the new build-up area shown in 

Figure 4-8(a) better classification performances in terms of sensitivity to the damage were 

achieved. Being this area less densely settled with respect to the historical centre, the SAR 

response of the buildings is more similar to the canonical one, so that we are able to detect 

all the damaged buildings except one, probably due to its small size. Comparing Table 

4-8 and Table 4-5 it can be seen that SAR data allow comparable performance to that 

obtained classifying optical images according to the MAP criterion in terms of sensitivity 

to the damage grade 5. (40.5% and 39.2% for SAR and optical data, respectively). 

However, optical data provide better performance in term of false alarm rate (5.9% and 

1.2% for SAR and optical data, respectively) and thus precision (24.2% and 60.4% for 

SAR and optical data, respectively). 

4.5 Data Fusion  

This section presents data fusion strategies implemented for integrating damage detection 

products from EO data with a priori information as foreseen by the APE approach 

proposed in APhoRISM and described in section 3.2. For L’Aquila earthquake case study 

it was possible to assess data fusion results using a significant set of heterogeneous data, 

namely features extracted from optical and SAR images, data related to the structural 

vulnerability of buildings and to the soil instability. The interseismic deformation from 

SAR data and ground shaking from in situ measurements were also analysed, as foreseen 

by the APE approach, however no significant dynamic of this parameters was found in 

L’Aquila central area to assume a positive contribution to the final damage assessment. 

Two data fusion approaches were attempted, the one based on the Bayesian probability 

theory, the other exploiting SVMs. 

The Bayesian data fusion approach implemented in this work merges damage 

probabilities from four independent modules: optical, SAR, geotechnical and structural. 

Under the assumption of conditional independence, the outputs of the modules are 

combined sequentially according to their availability. By expressing n observations 

coming from different modules as a vector X= (X1, X2, … Xn), we determine how the 

posterior probability P(D| X1, … Xn) evolves as we observe increasingly more features Xi 
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(i.e., we gather additional information), according to the following incremental formula:  

 𝜆0 = 𝑝(𝐷) 

( 4.3 ) 

 𝜆𝑖 = 𝑝(𝐷|𝑋𝑖)   for all i 

 𝑃(𝐷|𝑋1, … , 𝑋𝑛)

=
𝑃(𝐷|𝑋1, … , 𝑋𝑛−1)𝜆𝑛

𝑃(𝐷|𝑋1, … , 𝑋𝑛−1)𝜆𝑛 − (1 − 𝑃(𝐷|𝑋1, … , 𝑋𝑛−1))(1 − 𝜆𝑛)
 

So, we can treat the posterior having observed (X1, …, Xk) as the “prior” for the remaining 

data (Xk+1,…, Xn), and obtain the equivalent result to seeing all the data at once.  

The posterior probabilities P(D| XEO) coming from the EO modules, both optical or SAR, 

are evaluated according the non-parametric approach described in sections 4.3 and 4.4 of 

this work. The same approach is used to estimate the posterior probability P(D| XGEO) 

from the soil resonant period, provided by the geotechnical module. As far as the posterior 

probability coming from the structural module P(D|XSTR) is concerned, we have adopted 

an approach available from the literature (Giovinazzi, 2005). It is a macroseismic method 

that leads to a probabilistic framework consistent with the Damage Probabilities Matrices 

(DPM) implicitly contained in the EMS-98 scale. It is parametric, in the sense that it 

assume a Beta pdf to represent the damage distribution around the mean value of the 

expected damage grade µD, as shown in Figure 4-10.  

 

Figure 4-10: Structural module – Building damage pdf and collapse probability pc. µD is the mean 

value of the expected damage grade.  

The mean damage grade µD is a function of the macroseismic intensity and depends on 

the building vulnerability index, V. The latter is a parameter that quantifies the disposition 

of a building to be damaged by an earthquake. It has been defined taking into account the 
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EMS-98 vulnerability table (Table 4-9) which establishes a correspondence between 

vulnerability classes and building typologies categorized based on the construction 

material (masonry, reinforced concrete, wood and steel). Six vulnerability classes are 

defined, ranging from class A, the most vulnerable, to class F, the less vulnerable. 

 

Table 4-9: EMS-98 building typologies and identification of their seismic behavior by vulnerability 

classes.  

As it can be seen from Table 4-9, the correspondence between vulnerability classes and 

building typologies is not deterministic because the seismic behaviour of a building does 

not only depends on the behaviour of its structural system but it is affected by many other 

factors such as, for example, the height, the plan and vertical irregularity and the condition 

of maintenance. This aspect suggested the following definition for the vulnerability index: 

 𝑉 = 𝑉0 + ∆𝑉 ( 4.4 ) 

where V0 is the score that depends on the building typology and ∆V represents a 

contribution to take into account the presence of seismic behaviour modifiers.   

For L’Aquila earthquake, the AeDES forms provided the information reported in Table 

4-9, necessary to evaluate the vulnerability index V, namely the type of structure and the 

year of construction. The latter defines the parameter ERD (Earthquake Resistant 
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Design), according to the date when modern codes (i.e., the rules that specify the 

minimum standards for constructed aseismic objects) are actually used in the country 

under examination. In addition, AeDES forms provided information about the building 

height, exploited to compute the term ∆V of equation (4.4).  

To evaluate the benefits of the Bayesian data fusion procedure, Table 4-10 first reports 

confusion matrices and performances of each independent module, assessed against the 

INGV ground truth. For the sake of clarity we point out that, for same buildings surveyed 

by INGV, information from structural and geotechnical module was missing This is due 

to the lack of same AeDES forms and to the fact that the available soil resonant period 

map does not cover the complete test area.  

Looking at Table 4-10 it can be noted that, the optical module, which uses the 13 features 

listed in Table 4-2, produces the best classification performances. The Cohen’s Kappa 

measures the performance of the classifier, with and without normalization with respect 

to the number of samples within each class (cardinality of the test set). In this case, the 

optical module achieve a Cohen’s Kappa of 29%. The second remote sensing module, the 

SAR one, which exploits the four features described in section 4.3, provides worse 

performance with respect to the optical module (Cohen’s Kappa, K=21.3%), since it is 

able to detect almost the same number of collapsed buildings at the expense of a higher 

number of false positives. The geotechnical module, in the L’Aquila test case, has just 

one feature related to soil resonant period. It was quite expected that the performance of 

this module was poor (K=3.6%) because soil oscillation period was found slightly 

correlated to the damage, but very much scattered when observed at the scale of a single 

building. Finally, the structural module, that also uses just one feature (the parameter µD), 

is not able to detect collapsed buildings, due to the fact that the posterior collapse 

probability conditioned to the vulnerability class never raises over the value of 0.5, at 

least according to the approach adopted in this work. It is worth noticing that confusion 

matrices from EO data, reported in Table 4-10, were derived without performing any 

optimization of the classifier parameters. If a calibration is possible using a training set, 

satellite false alarms are very much reduced and the data integration, which allows only 

the decrease of the collapse probability, as will be shown in the following, does not 

provide a significant contribution to the damage assessment. 
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Table 4-10: Independent module classifications.  

Table 4-11 shows the results of the incremental classification procedure, starting from the 

optical module, and combining one at time the posterior probabilities of the other 

modules. The first iteration combines optical and SAR module. The overall effect is quite 

negligible, likely because the optical dataset holds a similar and in the average richer 

information with respect to the SAR dataset. The second iteration combines damage 

probabilities estimated from the geotechnical module with the results of the data fusion 

obtained at the first iteration (optical+SAR). Since posterior probabilities from the 

geotechnical module are not very different between classes, the result of the classification 

remains almost unchanged, with a small reduction of false alarms. The third iteration is 

the most interesting, because the posterior probabilities of the structural module, despite 

of the very poor classification when used alone, are suitable to change the belief of 

previous modules. The building class vulnerability, i.e., the contribution coming from the 

structural module, is capable to supersede the belief of remote sensing mainly removing 

elements previously leading to the false positive collapses in the confusion matrix. 

Knowing that a building falls into a class of “low vulnerability” (i.e. steel, new reinforced 

concrete frame) imply a very low probability that the building has collapsed, regardless 

of what is observed from remote sensing data, optical or SAR.  

At the expense of a reduction of 5 damage detections (going from 36 to 31), which 

represents 13% of the initial number of buildings correctly detected as collapsed, the data 

fusion reduces the number of false positives of 44 units. This result suggest that, when 

remotely sensed data processing cannot take advantage from a suitable training set for 

collapsed 36 35 42 0

false alarms 107 157 617 0

misdetections 38 39 32 46

not collapsed 1486 1436 945 1312

total 1667 1667 1636 1358

sensitivity 48,6% 47,3% 56,8%

precision 25,2% 18,2% 6,4%

overall accuarcy 91,3% 88,2% 60,3%

Cohen's kappa 29,0% 21,3% 3,6%

normalized kappa 41,9% 37,4% 17,3%
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optimizing the classification algorithm, a priori information can improve the final damage 

assessment product. 

 

Table 4-11: Incremental module classifications.  

Finally, it is important to note that, as a consequence of the conditional independence 

hypothesis at the base of the data fusion procedure, the final result does not depend on 

the sequence of combination of outcomes of individual modules. Reversing or mixing the 

order of posterior probability of individual modules, one would get the same result. 

In parallel to the experiment using the Bayesian approach, it was implemented a data 

fusion approach exploiting SVMs. 

In order to integrate information coming from different data sources using SVMs, two 

approaches can be used. The first method combines features from different data sources 

in a unique feature vector, which is used as input to a unique SVM classifier. The second 

strategy uses a SVM for independently classifying each dataset. Then there are two 

options: the resulting rule-images, proportional to the distance of the sample from the 

hyperplane, can be combined using an additional SVM, or it can be kept the final decision 

based on the SVM that provides the output function with the maximum absolute value 

(Waske and Benediktsoon, 2007). 

We exploited SVMs to integrate information coming from the optical module with that 

provided by structural and geotechnical modules. As a first approach, a unique SVM is 

used for classifying buildings described by a set of 17 attributes: the 13 optical features 

listed in section 4.3.2; the soil resonant period at the building site from the geotechnical 

module; building height, ERD and EMS-98 vulnerability class provided by the structural 

collapsed 36 37 36 31

false alarms 107 99 96 63

misdetections 38 37 38 43

not collapsed 1486 1494 1497 1540

total 1667 1667 1667 1677

sensitivity 48,6% 50,0% 48,6% 41,9%

precision 25,2% 27,2% 27,3% 33,0%

overall accuarcy 91,3% 91,8% 92,0% 93,7%

Cohen's kappa 29,0% 31,3% 31,0% 33,6%

normalized kappa 41,9% 43,8% 42,6% 38,0%

Optical + SAR + 

Geotechnical + 

Structural

Optical + SAR + 

Geotechnical

p
e

rf
o

rm
a

n
ce

s

Optical Optical + SAR

C
M



 

84 

 

module. The second strategy integrates data at level of decision function. Such approach 

exploits two SVMs for independently classifying optical data and information from both 

structural and geotechnical modules. An additional SVM is used for integrating the 

resulting rule images fOPT(x) and fSTRUCT-GEO(x), as sketched in  

Figure 4-11. Buildings for which attributes from structural and/or geotechnical modules 

were missing have been classified using a SVM trained with only optical features. 

A k-fold cross validation approach with k=10 was used for evaluating the classification 

performances. 

 

Figure 4-11: Schematic diagram of the SVM- based rule image fusion.  

In Table 4-12 data fusion results are compared with classification performances achieved 

using a SVM exploiting only optical features. As in the case of the Bayesian data fusion 

approach, confusion matrices were derived without performing any optimization of the 

classifier parameters. 

 

Table 4-12: SVM Data Fusion Results.  

collapsed 30 28 33

false alarms 57 35 56

misdetections 44 46 41

not collapsed 1536 1558 1567

total 1667 1667 1697

sensitivity 40,5% 37,8% 44,6%

precision 34,5% 44,4% 37,1%

overall accuarcy 93,9% 95,1% 94,3%

Cohen's kappa 34,1% 38,4% 37,5%

normalized kappa 37,0% 35,6% 41,1%pe
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The results we obtained show that integrating optical data with information from different 

data sources can improve the results of the damage detection but not so significantly. 

When different data sets are integrated at features level, a considerable decrease of the 

false alarm rate is achieved at the expense of a slight reduction of the sensitivity to 

damage. Overall the results are slightly better, as shown by the increase of the Cohen’s 

Kappa (driven by the decrease of false alarms), and only a small decrease of its 

normalized version (due to the decrease of correct detection). When the integration is 

performed at decision level, the results are not very much different with respect to those 

obtained using only optical features. In this case, however, an improvement of both 

Cohen’s Kappa and its normalized version is observed, driven by a better sensitivity to 

damage (more detections) and a slight improved accuracy (less false alarms).  
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5. Triple Collocation to assess 

Classification Accuracy 

5.1 Introduction 

Assessing the accuracy of an image classification product is a fundamental step when 

remote sensing is used to produce or update thematic maps. There are many works in the 

literature addressing this problem (Congalton and Green, 1999; Foody 2002). Speaking 

about thematic accuracy, a first step is the acquisition of a set of reference samples 

belonging to well-known classes and the computation of the CM, which counts the 

occurrences of each category in the classification and what is considered the ground truth. 

From the confusion matrix different quality parameters can be derived, such as the 

Overall Accuracy (percentage of cases correctly allocated), the Cohen’s Kappa 

coefficient, and the user’s and producer’s accuracy (see section 2.2.5). 

In many cases, getting samples of the ground truth is not feasible; they can be affected by 

errors and thus do not represent the real situation (Foody 2002; Baraldi et al., 2005). 

Indeed, errors can affect test sets acquired from aerial images and visual interpretation 

used as reference to validate an automatic image classification algorithm. Moreover, even 

a ground survey can be affected by errors, especially when it is carried out in a difficult 

situation or is conceived for a purpose different from providing a reference for satellite 

image classification assessment. This is the case, for instance, of ground surveys 

performed after a disastrous event like an earthquake. The survey teams act in unsafe 

conditions (with a limited access to the affected area) with the purpose of giving a rapid 

assessment of the seismic intensity or checking the structural integrity of the buildings 

after the earthquake and their usability.  
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In Foody (2002) the impact of imperfect reference data on the assessment of classification 

performances was simulated considering errors either statistically independent or 

correlated to a certain degree. The case of a change map was considered, where the 

objective is discriminating between changed (∆ = 1) or not changed (∆ = 0) samples. It 

was found that in order to cope with the problem of imperfect reference and recover the 

real accuracy of the map, one should know exactly the quality of the reference set (which 

is not always the case), or to rely on latent class analysis when this information is not 

available at all (Foody, 2010). In addition, in Carlotto (2009) it was shown that when the 

reference data are affected by errors we could still compare the accuracy of two 

classifications relatively, but only if the number of test samples is large, although the 

retrieved accuracies remain biased. 

A similar problem is faced in the field of medical diagnostic, when an accurate diagnostic 

test (denoted as gold standard) is not feasible, being too expensive or invasive. Therefore, 

the prevalence of a disease in a population has to be inferred by tests that have some 

unknown errors (Rutjies et al. 2007; Pepe and Janes, 2007). It can be note that in medical 

diagnostic generally a 2-classes problem is considered (positive or negative test result in 

a patient), whereas land cover classification implies a general number of N categories. 

In a quite different field of remote sensing, i.e. the retrieval of geophysical parameters, a 

similar problem exists. Validation of remotely sensed products become questionable 

when the true values of the target parameter are not surely known, as the source of 

validation data is known to have its own errors. The Triple Collocation (TC) technique is 

successfully applied to cope with this problem. TC is able to retrieve the error variances 

of three systems observing the same target parameter, assuming their errors are 

independent. The technique has been originally conceived to assess the accuracy of wind 

speed retrieval over sea (Stoffelen, 1998) and successively largely adopted for testing soil 

moisture retrieval from space sensors or hydrological models (Dorigo et al., 2010; 

Pierdicca et al., 2015a), even combining retrievals from four systems (Pierdicca et al., 

2015b). In the TC the unknown target parameter as well as the errors are continuous 

random variables, so that the method is not directly applicable to a classification problem.  

In this chapter, we propose a method to assess the accuracy of thematic maps without 

ground truth, (i.e., a gold standard) which is a common situation in post-disaster damage 

mapping. We exploit the TC idea to test the classification accuracy, which in our case 
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consists in comparing three different classifications of the same test samples to infer their 

CMs with respect to the unknown class the samples actually belong to. The main 

assumption is the conditional independence of the errors committed by the three systems. 

The proposed novel TC for Classification Assessment (TCCA) method represents a 

manageable way to solve a latent class model (Foody, 2010). We formulate it for a general 

number N of classes, and then solve it numerically for the 2-class problem. We first 

demonstrate the reliability of the proposed approach considering a simulated scenario, 

then we apply the TCCA to the problem of detecting collapsed building from a pair of 

VHR optical images collected before and after L’Aquila earthquake. The damage 

classification map was compared with two ground based damage maps resulting from the 

surveys carried out after the earthquake by INGV and DPC with different purposes and 

protocols.  

Section 5.2 presents the TCCA approach, with all the mathematical details included in 

the Appendices. Section 5.3 analyses the proposed approach considering a simulated 

scenario. Section 5.4 presents the results of the TCCA, and finally Section 5.5 draws the 

conclusions. 

5.2 TCCA theory 

TC is used for validating geophysical parameter retrievals (e.g., wind speed, soil 

moisture) assuming that three systems, X, Y, Z, measuring the same target parameter , 

are affected by systematic calibration and additive random errors. Let us consider one 

system as the reference (i.e. unitary gain and zero bias) and assume the additive random 

errors are statistically independent and independent from the true parameter . Three 

variance-covariance matrices can be computed from the three sets of observations x, y, z 

of the same target parameter. It can be demonstrated that the unknown gains and variances 

of the random errors affecting each system can be derived. Although slight differences in 

the solution may exist, as discussed in Pierdicca et al. (2015a), the fundamental 

hypothesis of uncorrelated errors is common to most papers on this topic.  

In a problem of image classification, three classification systems, X, Y, and Z, associate 

to each sample a label x, y, z, respectively, which is an integer between 1 and N, for an N-

classes problem. Since we do not have a gold standard, all of them are imperfect indicators 

of the unobserved (latent) status of the samples (Foody, 2010). 
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We can therefore build three different CMs from each pair of classification systems. This 

can be translated into a probabilistic formulation as follows. If we normalize the three 

CMs with respect to the number of samples in the test set (getting the three normalized 

confusion matrices NCMs, from now on denoted as XY, XZ and YZ), we obtain an 

estimate of the joint probabilities 𝑃𝑋𝑌(𝑥, 𝑦), 𝑃𝑋𝑍(𝑥, 𝑧), 𝑃𝑌𝑍(𝑦, 𝑧). With regard to XY, and 

similarly for the others, one can write: 

 

𝑃𝑋𝑌(𝑥, 𝑦) ⟷ XY =

[
 
 
 
𝑝11

𝑋𝑌 𝑝12
𝑋𝑌 … 𝑝1𝑁

𝑋𝑌

𝑝21
𝑋𝑌 𝑝21

𝑋𝑌 … …
… … … …

𝑝𝑁1
𝑋𝑌 𝑝𝑁2

𝑋𝑌 … 𝑝𝑁𝑁
𝑋𝑌 ]

 
 
 
 ( 5.1 ) 

Then, XY contains the joint probabilities arranged in a matricial form. 

Actually, one wants to know the joint probabilities 𝑃𝑋Θ(𝑥, 𝜃), 𝑃𝑌Θ(𝑦, 𝜃) and 𝑃𝑍Θ(𝑧, 𝜃)of the 

three system outcomes with respect to the latent variable, i.e. the NCM with respect to 

the class the samples really belong to. With reference to system X, we should retrieve 

X, which corresponds to the joint probability𝑃𝑋Θ(𝑥, 𝜃):  

 

𝑃𝑋Θ(𝑥, 𝜃) ⟷ XΘ =

[
 
 
 
𝑝11

𝑋 𝑝12
𝑋 … 𝑝1𝑁

𝑋

𝑝21
𝑋 𝑝22

𝑋 … …
… … … …

𝑝𝑁1
𝑋 𝑝𝑁2

𝑋 … 𝑝𝑁𝑁
𝑋 ]

 
 
 
 ( 5.2 ) 

where rows indicate the outcomes of the classifier and columns the true classes, so that 

𝑝𝑖𝑗
𝑋 is the joint probability of getting class i out of the classifier, being j the true class. The 

diagonal terms indicate the probability of correct classification. Similarly, we refer to Y 

and Z as the NCMs of the other systems with elements 𝑝𝑖𝑗
𝑌  and 𝑝𝑖𝑗

𝑍 .  

By adapting the hypothesis of TC, we assume that the errors of each classification system 

are conditionally independent to the errors of the other systems (e.g. the outcome of one 

classifier cannot be deduced from the outcome of the others) (see also Foody (2010) for 

a discussion on this hypothesis). It is demonstrated in the Appendix A that, under this 

assumption, we can derive the following equations for X, Y and Z, which are 

expressed as function of the known matrices XY, XZ, YZ derived from the test set: 

 𝑋𝛩 ∙ 𝑃 ∙  𝑋𝛩𝑇 = 𝑋𝑍  ∙ 𝑌𝑍−1 ∙ 𝑋𝑌𝑇

𝑌𝛩 ∙ 𝑃 ∙  𝑌𝛩𝑇  =  𝑌𝑍 ∙ 𝑋𝑍−1 ∙ 𝑋𝑌

𝑍𝛩 ∙ 𝑃 ∙  𝑍𝛩𝑇 =  𝑌𝑍 𝑇 ∙ 𝑋𝑌−1 ∙ 𝑋𝑍

 ( 5.3) 

where superscripts “T” and “-1” indicate transposition and matrix inversion, respectively. 

P is a diagonal matrix containing the inverse of N unknown probabilities pj (j=1, … N) of 
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the classes (sometime denoted as prevalence of the classes), which can be computed from 

any of the target NCMs, so that the following 3N constraints also apply:  

 
𝑝𝑗 = ∑ 𝑝𝑖𝑗

𝑋
𝑁

𝑖=1
= ∑ 𝑝𝑖𝑗

𝑌
𝑁

𝑖=1
= ∑ 𝑝𝑖𝑗

𝑍
𝑁

𝑖=1
 ( 5.4 ) 

They correspond to the marginalization of any of the joint probabilities, i.e. 

𝑃𝑋𝛩(𝑥, 𝜃), 𝑃𝑌𝛩(𝑦, 𝜃) or 𝑃𝑍𝛩(𝑧, 𝜃), to get the prevalence of the classes. 

Note that matrices in equations (5.3) (e.g. XΘ ∙ P ∙ XΘT) are symmetric, so each matricial 

equation corresponds to N(N+1)/2 polynomial equations in the N2 unknown 𝑝𝑖𝑗
𝑋,𝑌,𝑍, plus 3 

constraints requiring that by marginalizing the joint probability we get one, i.e., ∑∑𝑝𝑖𝑗
𝑋 =

∑∑𝑝𝑖𝑗
𝑌 = ∑∑𝑝𝑖𝑗

𝑍 = 1.  

In TTCA we can also build a 3-dimensional NCM, denoted as XYZ, representing the joint 

probability 𝑃𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧), with elements 𝑝𝑖𝑗𝑘 being the probability of encountering a 

sample labeled as classes i, j, and k by the three classifiers, respectively. This leads to 

other constraints for the target NCMs (see Appendix A):  

 

𝑝𝑖,𝑗,𝑘 = ∑
𝑝𝑖𝑚

𝑋 𝑝𝑗𝑚
𝑌 𝑝𝑘𝑚

𝑍

𝑝𝑚
2

𝑁

𝑚=1
 ( 5.5 ) 

which are not all independent, as by marginalizing with respect to the classes one obtains 

∑ 𝑝𝑖,𝑗,𝑘𝑘 = 𝑝𝑖,𝑗
𝑋𝑌, ∑ 𝑝𝑖,𝑗,𝑘𝑗 = 𝑝𝑖,𝑗

𝑋𝑍, ∑ 𝑝𝑖,𝑗,𝑘𝑖 = 𝑝𝑖,𝑗
𝑌𝑍. 

If we expand the matricial relations (5.3) we get, together with equations (5.4) and (5.5) 

a polynomial system of equations in the unknown probabilities 𝑝𝑖𝑗
𝑋,𝑌,𝑍.The analysis of its 

solution (i.e. existence and unicity) for the general case of N classes is beyond the scope 

of this work and is left to future studies. Here, we face the case of a 2-class problem, 

which is typical of any change detection problem, such as the detection of collapsed 

building after an earthquake. The solution is found in Appendix B. It requires to solve the 

equation (B.5) for the prevalence of class i = 1 (i.e. p1), where 𝑝11
𝑋,𝑌,𝑍, 𝑝12

𝑋,𝑌,𝑍, 𝑝21
𝑋,𝑌,𝑍, 𝑝22

𝑋,𝑌,𝑍 

as function of p1 are given by equations (B.4). This method will be used in section 5.3 for 

a simulated scenario and in section 5.4 to compare damage classifications provided by 

satellite remote sensing and two ground surveys.  

The hypothesis of conditional independence of the errors of the three systems is often 

assumed when exploiting the latent class analysis, as discussed in Foody (2010). Such 

paper investigated the presence of correlated errors by a simulated experiment and 

concluded that the satisfaction of the model assumption is critical. Indeed, in case a 
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correlation between system errors exists, with only three systems there is no way to solve 

for the unknown correlation, which should be known a priori. Solutions to this issue were 

proposed for TC, for instance using four systems instead of three (Gruber et al., 2016). 

This issue for TCCA is left for future studies.   

The test data should be properly sampled in order to estimate the CMs and any other 

quality parameter. This is common to any classification assessment based on a truth (a 

gold standard). Then, the TCCA method is not adding any additional assumption in this 

respect. 

5.3 TCCA applied to a simulated scenario 

We tested the proposed approach on a simulated data set to verify the correctness of the 

solution, the effect of number of training samples, and the behavior of the TCCA when 

the main assumption, i.e. the conditional independence of the errors of the three system, 

does not hold. The approach is similar to what done in Foody (2010). 

We considered a binary classification problem, where two classes, 0 and 1, have to be 

distinguished. Samples of the latent variable (i.e. the true class) were generated randomly 

according to a given prevalence of classes. Then, a random generation of errors was run, 

according to given conditional probabilities of errors 𝑝𝑋𝑌𝑍(1|0) and 𝑝𝑋𝑌𝑍(0|1) to produce 

the outcome of the three independent classifiers X, Y and Z. Finally, three confusion 

matrices were obtained pairwise comparing the outcomes of the three systems. The 

number of available test samples is a critical aspect when evaluating the classification 

performance, and could be even more critical in our TCCA. Therefore, the experiment 

was repeated by considering test sets of different size. The first experiment was carried 

out considering a balanced data set of 2000 samples, with equal prior probability (or 

prevalence) of the classes, i.e. p0=p1=0.5. The errors of the classifiers X, Y, and Z were 

generated assuming false alarm rate pXYZ(1|0) and misdetection pXYZ(0|1) of (8%, 12%), 

(10%, 30%) and (20%, 40%) for X, Y and Z, respectively. Consequently, among the 2000 

samples, the number of samples of class 0 (1) correctly classified were 920 (880), 900 

(700) and 600 (800), respectively. The resulting CMs for each pair of classifiers are 

reported in Table 5-1, whereas the 3-D CM with all combinations of classification 

outcomes is shown in Table 5-2. By applying the solution described in Appendix B, the 

CMs with respect to the class each simulated sample really belongs to (i.e. the gold 



 

92 

 

standard we know in the simulated exercise) are finally retrieved and reported in Table 

5-3. The ones retrieved from the TCCA are in the first row, whilst those imposed in the 

simulation are in the second row of each cell. 

 

Table 5-1: 2×2 confusion matrices computed from the three pairs of simulated classifications X, Y 

and Z.  

 

 y=0 y=1 

 z=0 z=1 z=0 z=1 

x=0 496 358 72 114 

x=1 103 243 129 485 

Table 5-2: 3-D confusion matrix for the three classifications as reported in Table 5-1.  

 

  

Table 5-3: Retrieved confusion matrices of the three classifications X, Y and Z with respect to the 

“true” (first row in black), and actual CM according to the imposed error probabilities in the 

simulation (second row, in red). The former represents the number of correct classifications, 

misdetection and false alarms with reference to the unobserved true status of the samples.  

We can appreciate that our technique was capable to retrieve fairly well the “true” CMs 

we look forward. There is an uncertainty that can be ascribed to the limited size of the 

test set in the simulated exercise. Such an error is inherent to each classification 

assessment, so it is interesting to see at what extent our method is reliable compared to a 

theoretical and sometime infrequent event in which a gold standard is available to test the 

classification. For this purpose, we generated a huge number of samples, from which 

smaller subsets were randomly selected. In order to avoid a tedious comparison of all 

CMs, we limited our comparison to an overall parameter commonly used to measure the 

classification performances, which is the Cohen’s Kappa coefficient (Congalton and 
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Green, 1999). In Figure 5-1(a) we show the Cohen’s Kappa retrieved from a finite amount 

of samples by the proposed TCCA for the simulated classification systems (i.e., same 

error rates) presented in Table 5-3. In Figure 5-1(b) we report the Cohen’s Kappa obtained 

comparing the classification outcomes of the finite size test set with the actual class each 

sample belongs to (i.e. the gold standard). We can see that in both cases the uncertainty 

of the estimates decreases with increasing number of test samples, as expected. The 

TCCA has larger fluctuations, even though not much worse respect to the comparison 

with the truth.  

  

(a) (b) 

Figure 5-1: Cohen’s Kappa coefficient as function of number of samples of the test set. (a): 

retrieved by TCCA. (b): evaluated with respect to the “true”. Case of balanced test set (i.e., 

prevalence p1 of damage equal to 0.5) and systems X, Y, Z with “true” Cohen’s Kappa=0.8, 0.6, 0.4, 

respectively.  

To better quantify this, we extracted from our simulated database many different test sets 

with same number of samples and computed the standard deviation of the Cohen’s Kappa, 

with respect to both the gold standard and the class retrieved using TCCA. The result is 

reported in Figure 5-2 as function of the number of samples. We can see that the 

uncertainty of Cohen’s Kappa retrieval reduces with the number of samples, and is larger 

for TCCA, as expected. It is also dependent on its expected value (i.e. the “true” Cohen’s 

Kappa of the three simulated systems). The best retrievals of the Cohen’s Kappa (i.e., 

lower standard deviation) when a gold standard is available is obtained for system X, i.e., 

the one with better performances, whereas using TCCA they are found for system Z with 

lower performances (this was already apparent in Figure 5-1(b)). 

Roughly speaking, we need somehow more than double amount of test samples using 

TCCA to get the same precision in the Cohen’s Kappa estimate when compared to the 
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availability (quite unlike indeed) of a gold standard. Despite this drawback, the TCCA 

offers the chance to estimate each classification accuracy without needing the “true” 

reference. 

 

Figure 5-2: Standard deviation of Cohen’s Kappa estimates as function of number of samples of the 

test set, when considering the “true” class of simulated samples (i.e., the gold standard) (circles) 

and using TCCA (triangles). Colour refers to the simulated classification systems X (red), Y (green) 

and Z (blue) as in Figure 5-1. 

Another point worth to be investigate is the impact of an unbalanced test set. Assuming a 

prevalence of class 1 equal to 0.2, the precision of the Cohen’s Kappa estimates worsens 

using the TCCA more than when computing the CMs with respect the gold standard. The 

standard deviation of the Cohen’s Kappa estimates for the three systems X, Y and Z are 

compared in Figure 5-3 as a function of the number of test samples, as done in Figure 

5-2.  

 

Figure 5-3: As in Figure 5-2, but for unbalanced test set (i.e., prevalence of damage equal to 0.2) 

and systems X, Y, Z with “true” Cohen’s Kappa=0.74, 0.58, 0.26, respectively. 
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We can see that the TCCA uncertainty strongly increases for system X, which is the one 

with better classification performances, whereas the worsening is less for system Z, i.e. 

the one with poorer performance. This is not a problem uniquely of TCCA. Similarly, 

when the gold standard is available, the estimate of the Cohen’s Kappa are not equally as 

good for the system with higher performance as in the case of a balanced test set. This is 

because with very unbalanced test sets and accurate classifiers, there are very few samples 

of error events in the smaller class, which makes the computation of the Cohen’s Kappa 

less reliable. 

Finally, we wanted to investigate the main assumption of the approach, which is the 

conditional independence of the outcomes of one classifier with respect to the others. In 

case there is a correlation among the classification results, the assumption does not hold 

anymore and the TCCA algorithm is expected to fail. To quantify the amount of this error, 

in the simulated exercise considered in Figure 5-1 (i.e. 2000 test samples, error probability 

leading to Cohen’s Kappa=0.8, 0.6, 0.4 for X, Y and Z, respectively) we have imposed a 

percentage of the X classification outcomes in common with the Y classification. Figure 

5-4 shows the retrieved Cohen’s Kappa as function of such percentage.  

 

Figure 5-4: Cohen’s Kappa retrieved by TCCA for increasing number of X outcomes in common 

with Y. Case of errors as in Figure 5-1 5-1, i.e. balanced test set and systems X, Y, Z with “true” 

Cohen’s Kappa=0.8, 0.6, 0.4, respectively. 

We can see that, besides fluctuations due to the finite sample size, the retrievals are 

increasingly biased. TCCA trusts the more on the systems that have similar outcomes, 

thus overestimating their performances and underestimating that of the third uncorrelated 

system. We remark that the validity of the assumption of uncorrelated errors must be 
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carefully verified before applying TCCA. In any case, the effect may be limited, as for 

instance in the example of Figure 5-4 where the bias overcomes the random uncertainty 

due to the test set finite size only when the number of common outcomes is well above 

10%.  

5.4 TCCA applied to the L’Aquila damage 

classification 

We considered L’Aquila earthquake case study and applied the TCCA method to the three 

damage maps from DPC, INGV and from Quickbird images classification assuming the 

three systems provide independent classification maps. 

The damage map from Quickbird data has been generated using the object oriented 

approach present in section 4 of this thesis. We considered a set of five change features 

for each object, which were selected by an exhaustive test of the classification 

performances among 13 candidate features (see Table 4-2). Buildings were classified 

according the Bayesian MAP criterion, using the Parzen window methods for estimating 

class conditional pdfs. For training the classifier we relied on a data set extracted by visual 

inspection of pre- and post- event Quickbird images. The fact that the two surveys were 

carried out by different teams and the use of an independent supervised image processing 

approach guarantee that the hypothesis of independent errors of the systems holds.  

Since the two ground surveys do not refer exactly to the same building GIS layer, in order 

to apply the TCCA approach, it was first necessary to intersect the two layers, as detailed 

in Section 3.3.3. This leaded to a common set of 1445 buildings with associated labels, 

i.e. collapsed (D = 5) or non-collapsed (D < 5), according to the two surveys. The MAP 

classification was then applied to the same set of image objects.  

The CMs resulting from the comparison of the MAP algorithm result and the 

classification provided by the ground surveys are reported Table 5-4 (2-D standard CMs), 

and Table 5-5 (3-D CM providing all combinations of classification outcomes). Table 5-4 

shows the standard CM considering all combinations of two classifications. Table 5-5 

refers to the triple collocation approach, as it counts the occurrences of all possible 

combinations of the outcomes of the three classifiers. Specifically, it reports the number 

of samples labeled as D = 5 by the three classifiers, or commonly labeled as D < 5, or 

labeled as D = 5 by two classifiers and D < 5 by the third one, and so on so forth. 
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Table 5-4: 2×2 confusion matrices for the three pairs of systems, assuming X as the DPC survey, Y 

the INGV survey and Z the Earth Observation (EO) image classification. 

 INGV D<5 INGV D=5 

 EO 

D<5 

EO 

 D=5 

EO 

D<5 

EO 

D=5 

DPC D<5 1276 33 21 9 

DPC D=5 65 10 16 15 

Table 5-5: 3-D confusion matrix for the three systems as defined in Table 5-4.  

We can notice that the performances of the image classification (denoted as EO in the 

tables) compared to the two ground surveys, supposing they could be considered as the 

ground truth, are not very good. Only 24 collapses were detected out of 61 according to 

INGV, or 25 out of 106 according to DPC, with overall accuracy of 94.5% (Cohen’s 

Kappa, K=0.35) and 91.5% (K=0.25), respectively. However, the matching between the 

two ground surveys, which we remind were carried out according to different purposes, 

was not good as well, being 92.7% the percentage of buildings for which the two ground 

surveys agree (K=0.34). Then the question we want to answer by using the TCCA is: 

which is the actual accuracy of the three systems with respect to the truth? 

Using the TCCA solution for the 2-class problem, after normalization of the CMs in Table 

5-4, we derived the three NCMs X, Y, Z as function of the probability of collapsed 

building p2 using equation (B.4). Then from the NCMs we computed the Overall 

Accuracy and Cohen’s Kappa coefficients. In Figure 5-5 it is shown that the INGV 

classification has a Cohen’s Kappa always greater than the others, despite of the true 

prevalence of damaged class. Concerning the other two classification results, EO is 

slightly better than the DPC classification when the probability of damage is low, whilst 

DPC becomes a bit better respect the EO classification if the probability of damage is 

higher (see Figure 5-5). This result can be justified if one considers that according to the 

CMs in Table 5-4 the INGV classification has a fair matching with both DPC and EO 

 INGV 

D
P

C
  D<5 D=5 

D<5 1309 30 

D=5 75 31 

 EO 

IN
G

V
  D<5 D=5 

D<5 1341 43 

D=5 37 24 

 EO 

D
P

C
  D<5 D=5 

D<5 1297 42 

D=5 81 25 
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(92.7% and 94.5%, respectively), whereas this is not true for the others that exhibit a 

pronounced disagreement (91.5% between EO and DPC). This experimental evidence 

makes the TCCA solution trust more on the INGV classification, as it can be intuitively 

understood. If the prevalence of damaged class were high, the TCCA would have trusted 

more on the DPC survey that has a higher occurrence of D = 5 class respect to EO.  

Figure 5-6 compares the Overall Accuracy of the systems. It is noticeable that according 

to this quality score the satellite classification has a quality intermediate when compared 

to the ground surveys.  

 

Figure 5-5: Cohen’s Kappa coefficient of systems DPC, INGV and image classification results (EO) 

as function of prior probability of collapsed building.  

 

Figure 5-6: Overall Accuracy of systems DPC, INGV and image classification results (EO) as 

function of prior probability of collapsed building.  

To retrieve the final solution, the probability of collapse p2 has to be derived by solving 

equation (B.5). From the CM in Table 5-5 it comes out that the number of samples 
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classified as undamaged by the three systems is 1276, whereas the number of samples 

accordantly considered as damaged is 15. Then, dividing by 1445, it comes out that p111= 

0.8830 and p222=0.0104. A numerical solution of equation (B.5) was found by using the 

Matlab® Symbolic Tool. Here for sake of better clarity we depicts a graphical solution in 

Figure 5-7, where 𝑝21
𝑋 𝑝21

𝑌 𝑝21
𝑍 𝑝1

2⁄ + 𝑝22
𝑋 𝑝22

𝑌 𝑝22
𝑍 (1 − 𝑝1)

2⁄  derived by using (B.4) is plotted 

as function of 𝑝2, so that according to (B.5) the solution is found when the value 𝑝222 =

0.0104 is reached. Both methods provided p2 = 0.0529, from which X, Y and Z and 

associated classification accuracy scores were finally retrieved using equation (B.4). 

 

Figure 5-7: 𝒑𝟐𝟐𝟐 = 𝒑𝟐𝟏
𝑿 𝒑𝟐𝟏

𝒀 𝒑𝟐𝟏
𝒁 𝒑𝟏

𝟐⁄ + 𝒑𝟐𝟐
𝑿 𝒑𝟐𝟐

𝒀 𝒑𝟐𝟐
𝒁 (𝟏 − 𝒑𝟏)

𝟐⁄   as function of p2. Red dot corresponds 

to the solution of eq. (B.5) with p222=15/1445=0.0104.  

 

Multiplying X, Y and Z by the number of samples, we computed the CMs with 

respect to the truth, which are reported in Table 5-6. They provide the number of correct 

classifications, misdetections ad false alarms with respect to the unobserved true status of 

the samples. Note that column totals are the estimated number of damaged (D = 5) and 

non-damaged (D < 5) buildings.  

  

Table 5-6: Confusion matrices of the three damage classifications with respect to the “true”. X 

refers to the DPC survey, Y to the INGV survey and Z to the image classification (EO). They 

represent the number of correct classifications, misdetection and false alarms with reference to the 

unobserved true status of the samples. Column totals is the estimated number of really damaged (D 

= 5) and non-damaged (D < 5) buildings.  
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From these CMs, we can derive the Overall Accuracy scores and the Cohen’s Kappa 

coefficients of the system. We observe again that the INGV survey is the most accurate 

(97.2 % accuracy, 0.687 Cohen’s Kappa) with few false positives but a bit more 

misdetections of collapse. The image classification has worse performances (accuracy of 

95.3 %, Cohen’s Kappa of 0.500), with a much larger number of false alarms. However, 

its real accuracy is better than that found by comparing directly with the two ground 

surveys. The DPC survey, with an accuracy of 94.1 % and a Cohen’s Kappa of 0.499, is 

a bit worse. This result can be justified by the different purposes of the surveys. In 

particular, the DPC survey provides a great amount of information which aims at 

assessing the structural condition of the buildings and their fitness for use, despite of their 

exterior appearance. For instance, a heavy damage of the vertical structures (e.g., pillars) 

may have been considered as a predominant damage of grade 5, even if not consistent 

with the general definition of EMS-98 when looking at the building from the exterior. 

Conversely, the image-based classification suffers from situations we were able to 

identify in some cases by a careful analysis of the satellite images but also from an aerial 

survey and ground based photographs. Heavy damage may be not visible looking down 

upon, for instance in case of the so-called pancake effect, which we recognized occurred 

in some buildings, and is characterized by the downfall of the ground floor only. A picture 

of a building taken from ground and the same building imaged by Quickbird after the 

earthquake are shown in Figure 5-8 to give an example of this effect. 

  

(a) (b) 

Figure 5-8: (a) Photograph of a building in L’Aquila affected by the pancake type of damage and 

(b) the same building in the post-event Quickbird image. With respect to the pre-event image (not 

shown here) the only change is the presence of dust on the street due to the damage that was 

classified as EMS-98 grade D=5 from both ground surveys.  
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Additionally, false positives occurred when the building underwent a restoration just after 

the acquisition of the pre-event image, which was wrongly classified as a change due to 

the earthquake. Despite of these problems and the difficulty of change detection in a very 

dense historical town, the satellite classification exhibited a damage detection 

performance comparable or even better of at least one ground survey. 
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6. Conclusions and future work 

In this work, change detection methodologies exploiting VHR SAR and optical data were 

developed to assess earthquake damage in urban area. The investigation was focused on 

the estimation of damage of individual buildings, and in particular the detection of fully 

collapsed buildings. Different approaches to combine heterogeneous data for a final 

assessment of the damage have been attempted.  

Procedures were developed and tested considering the 2009 L’Aquila earthquake where 

a significant set of data from different sources was available. For such case study it was 

possible to exploit features from optical and SAR change detection analysis for each 

building of the central part of the town, together with data related to structural 

vulnerability and the soil frequency.  

Considering the possible situation of missed data, likely occurring in other cases, an 

approach to data fusion based on the Bayesian theory, exploiting the hypothesis of 

conditional independence between remote sensing observations and other data sources, 

has been designed. The approach allows one to accumulate the evidences of damage as 

soon as new data become available by combining posterior probabilities.  

Another way to solve the problem was assessed using SVMs, and the idea to apply 

different SVMs in cascade, taking the output of the first SVM stage in the sequence as 

input of the others and eventually keeping the decision of the first if a sample (i.e. a 

building) do not have associated information. This combination is done in the space of 

the distances of each sample from the hyperplane separating the two classes (i.e., 

“collapsed” and “not collapsed”) in the higher dimension feature space.  

It has been found that, with respect to the damage assessment generated by processing 

the remotely sensed data, the structural data in particular, notwithstanding their poor 

capability to predict the damage of buildings when used alone, can be able to improve the 

final damage assessment product, especially reducing the false alarms of the image 

change detection algorithm. This is surely true when the remotely sensed data processing 
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cannot take advantage from a suitable training set for optimizing the classification 

algorithm. Conversely, if a calibration is possible using the training set (e.g., optimization 

of the non-parametric likelihood estimator), the satellite false alarms are very much 

reduced and the vulnerability does not provide a positive contribution. As far as soil 

instability is concerned, the soil oscillation period was found slightly correlated to the 

damage, but very much scattered when observed at the scale of a single building, so that 

its contribution to the damage classification was very small (although perceptible).  

The performances of damage classification from EO only, or after integration of 

additional information, have been quantitatively assessed by comparison mainly with 

INGV ground survey.  

A cross-comparison of the EO-based classification and the two different surveys (INGV 

and DPC) has been performed by means of the TC approach, which, in this work, was 

extended to deal with classification problem. The TCCA was successfully verified on a 

simulated dataset and its robustness with respect to the scarcity of test samples and to the 

unsuitability of the main assumption (i.e. the independence among classifications errors) 

was evaluated. Then the TCCA was applied to the damage classification after L’Aquila 

earthquake. Although one can expect a ground survey would represent a reference for 

validating satellite image classifications, the TCCA investigation showed that assuming 

a ground survey as the reference for testing the satellite damage classification can be 

questionable. The concept of damaged or non-damaged can be controversial on its own, 

as it may be related to the purpose of the survey and to the conditions in which the teams 

were operating. The TCCA results demonstrated that EO is able to provide damage maps 

with accuracy comparable to at least one of the ground survey. This is an encouraging 

result for what concerns the applicability of space technology in this field, as the EO 

based classification is surely less expensive and rapidly available once a suitable 

constellation of satellites is in orbit, as it becomes true with the full deployment of the 

European Copernicus program.   
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Appendix 

A. TCCA Analytical Formulation 

The hypothesis of independent errors requires that the probability of outcome x, y, z of 

each system is not dependent on the result of the others, e.g. 𝑃𝑋(𝑥|𝑦, 𝜃) = 𝑃𝑋(𝑥|𝜃). Then 

by using the Bayesian theorem we can write for the pair of systems X and Y (in the sequel 

we omit the subscript in the pdf symbol P( ) for sake of brevity): 

 
𝑃(𝑥, 𝑦, 𝜃) = 𝑃(𝑥|𝑦, 𝜃)𝑃(𝑦, 𝜃) = 𝑃(𝑥|𝜃)𝑃(𝑦, 𝜃) =

𝑃(𝑥, 𝜃)𝑃(𝑦, 𝜃)

𝑃(𝜃)
 (A.1) 

 

By marginalizing with respect to   we get the joint probability P(x,y), i.e. the observed 

confusion matrix XY whose elements can therefore be expressed as:   

 
𝑝𝑖,𝑗

𝑋𝑌 = ∑
𝑝𝑖𝑘

𝑋 𝑝𝑗𝑘
𝑌

𝑝𝑘

𝑁

𝑘=1
 (A.2) 

Similarly for the other pairs. It is straightforward to verify that this corresponds to write 

the following three matricial relations relating the target normalized confusion matrices 

X, Y and Z we want to retrieve to the observed ones, i.e., XY, XZ, YZ:  

 XΘ ∙ P ∙ YΘT = XY
XΘ ∙ P ∙ ZΘT = XZ
YΘ ∙ P ∙ ZΘT = YZ

 (A.3) 

P is a N×N diagonal matrix given by: 

 

P = [

1/𝑝1 0 … 0
0 1/𝑝2 … …
… … … …
0 0 … 1/𝑝𝑁

] (A.4) 

Where pj (j=1, …, N) are the N unknown probabilities of the classes. By deriving X 

from the second equation in (A.3) and Y from the third equation, substituting into the 

first equation and using well-known matrix operation rules, one obtains: 
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 XΘ ∙ P ∙ YΘT = XZ ∙ [P ∙ ZΘT] −1 ∙ P ∙ [YZ ∙ [P ∙ ZΘT]−1]𝑇 = XY

XZ ∙ [ZΘT] −1 ∙ P−1 ∙ P ∙ [YZ ∙ [ZΘT]−1P−1]𝑇 = XY

XZ ∙ [ZΘT] −1 ∙ I ∙ P−1 ∙ ZΘ−1 ∙ YZT = XY

  

Where I is the identity matrix and we considered that P is diagonal so that P-1 ∙P = I. Then 

multiplying by XZ−1 on the left and by [YZT]−1 on the right: 

 [ZΘT] −1 ∙ P−1 ∙ ZΘ−1 = XZ−1 ∙ XY ∙ [YZT]−1

ZΘ ∙ P ∙ ZΘT = YZT ∙ XY−1 ∙ XZ
 (A.5) 

Which is the third of equation (5.3) in the main text we wanted to demonstrate.  

Similarly for the joint probability P(x,y,z,θ), and using (A.1) one can write: 

 
𝑃(𝑥, 𝑦, 𝑧, 𝜃) = 𝑃(𝑥, 𝑦|𝑧, 𝜃)𝑃(𝑧, 𝜃) = 𝑃(𝑥, 𝑦|𝜃)𝑃(𝑧, 𝜃) =

𝑃(𝑥, 𝑦, 𝜃)𝑃(𝑧, 𝜃)

𝑃(𝜃)

=
𝑃(𝑥, 𝜃)𝑃(𝑦, 𝜃)𝑃(𝑧, 𝜃)

𝑃2(𝜃)
 

(A.6) 

Which leads to equation (5.5) in the main text once we marginalize with respect to θ.  

 

B. TCCA solution for N=2 classes 

Equations (5.3), (5.4) and (5.5) in the main text can be easily solved in case of N = 2 

classes. We show the solution for X onlyconsidering it is identical for the other CMs.  

Each right term in equation (5.3) is a symmetric 2×2 known matrix (it is a function of the 

three CMs derived from the test set), whose elements are hereafter denoted as a, b, c. 

Then, equation (5.3) becomes (we omits superscript “X” for sake of simplicity):  

 

[
𝑝11 𝑝12

𝑝21 𝑝22
]

[
 
 
 
1

𝑝1
0

0
1

𝑝2]
 
 
 

[
𝑝11 𝑝21

𝑝12 𝑝22
] = [

𝑎 𝑏
𝑏 𝑐

] (B.1) 

Then, using equation (5.4) the probabilities of each class are p1=p11+p21, p2=1-

p1=p12+p22. Equation (B.1) corresponds to three scalar equations, which are dependent 

since from (B.1) it follows: 

 

[
 
 
 
 

𝑝11
2

𝑝1
+

𝑝12
2

1 − 𝑝1

𝑝11𝑝21

𝑝1
+

𝑝12𝑝22

1 − 𝑝1

𝑝11𝑝21

𝑝1
+

𝑝12𝑝22

1 − 𝑝1

𝑝21
2

𝑝1
+

𝑝22
2

1 − 𝑝1 ]
 
 
 
 

= [
𝑎 𝑏
𝑏 𝑐

]  
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Indeed, it can be easily found that a+b=p11+p12, b+c=p21+p22, and then a+2b+c = 1. 

Therefore, we solve the equation with respect to an unknown quantity, that we assume 

being p1. As for the upper-left element of (B.1), one can write: 

 𝑝11
2

𝑝1
+

𝑝12
2

1 − 𝑝1
= 𝑎  

Then: 

 𝑎𝑝1(1 − 𝑝1) = (1 − 𝑝1)𝑝11
2 + 𝑝1𝑝12

2  (B.2) 

Using p12 = a+b-p11 and c = 1-a-2b, we found a second-degree algebraic equation in p11, 

whose coefficients are functions of p1:  

 𝑝11
2 − 2𝑝1(𝑎 + 𝑏)𝑝11 + 𝑝1(𝑎𝑝1 + 𝑏2 − 𝑎𝑐) = 0 (B.3) 

That we can easily solve, and then we can derive all the elements of X: 

 
𝑝11 = 𝑝1(𝑎 + 𝑏) ± √𝑝1

2(𝑎 + 𝑏)2 − 𝑝1(𝑎𝑝1 + 𝑏2 − 𝑎𝑐) 

𝑝12 = 𝑎 + 𝑏 − 𝑝11
𝑝21 = 𝑝1 − 𝑝11 

𝑝22 = 𝑏 + 𝑐 − 𝑝21

 (B.4) 

The sign shall be chosen considering the constraint of pij being real and between zero and 

one.  

To found p1 to be substituted into equation (B.4) we have to rely on the 2-D CM and to 

equation (5.5). It is enough to impose only one of the eight constraints of equation (5.5) 

since they are all dependent, so for instance we can consider: 

 
𝑝222 =

𝑝21
𝑋 𝑝21

𝑌 𝑝21
𝑍

𝑝1
2 +

𝑝22
𝑋 𝑝22

𝑌 𝑝22
𝑍

(1 − 𝑝1)2
 (B.5) 

which can be easily solved numerically, as done in the main text.  
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