1,971 research outputs found

    Orbital evolution of P\v{r}\'{i}bram and Neuschwanstein

    Full text link
    The orbital evolution of the two meteorites P\v{r}\'{i}bram and Neuschwanstein on almost identical orbits and also several thousand clones were studied in the framework of the N-body problem for 5000 years into the past. The meteorites moved on very similar orbits during the whole investigated interval. We have also searched for photographic meteors and asteroids moving on similar orbits. There were 5 meteors found in the IAU MDC database and 6 NEAs with currently similar orbits to P\v{r}\'{i}bram and Neuschwanstein. However, only one meteor 161E1 and one asteroid 2002 QG46 had a similar orbital evolution over the last 2000 years.Comment: 7 pages, 2 figures, 3 table

    Workshop on Antarctic Glaciology and Meteorites

    Get PDF
    The state of knowledge of meteorites and glaciology is summarized, and directions for research are suggested

    The collisional evolution of undifferentiated asteroids and the formation of chondritic meteoroids

    Full text link
    Most meteorites are fragments from recent collisions experienced in the asteroid belt. In such a hyper-velocity collision, the smaller collision partner is destroyed, whereas a crater on the asteroid is formed or it is entirely disrupted, too. The present size distribution of the asteroid belt suggests that an asteroid with 100 km radius is encountered 101410^{14} times during the lifetime of the Solar System by objects larger than 10 cm in radius; the formed craters cover the surface of the asteroid about 100 times. We present a Monte Carlo code that takes into account the statistical bombardment of individual infinitesimally small surface elements, the subsequent compaction of the underlying material, the formation of a crater and a regolith layer. For the entire asteroid, 10,000 individual surface elements are calculated. We compare the ejected material from the calculated craters with the shock stage of meteorites with low petrologic type and find that these most likely stem from smaller parent bodies that do not possess a significant regolith layer. For larger objects, which accrete a regolith layer, a prediction of the thickness depending on the largest visible crater can be made. Additionally, we compare the crater distribution of an object initially 100 km in radius with the shape model of the asteroid (21) Lutetia, assuming it to be initially formed spherical with a radius that is equal to its longest present ellipsoid length. Here, we find the shapes of both objects to show resemblance to each other.Comment: Accepted by Ap

    Low delta-V near-Earth asteroids: A survey of suitable targets for space missions

    Full text link
    In the last decades Near-Earth Objects (NEOs) have become very important targets to study, since they can give us clues to the formation, evolution and composition of the Solar System. In addition, they may represent either a threat to humankind, or a repository of extraterrestrial resources for suitable space-borne missions. Within this framework, the choice of next-generation mission targets and the characterisation of a potential threat to our planet deserve special attention. To date, only a small part of the 11,000 discovered NEOs have been physically characterised. From ground and space-based observations one can determine some basic physical properties of these objects using visible and infrared spectroscopy. We present data for 13 objects observed with different telescopes around the world (NASA-IRTF, ESO-NTT, TNG) in the 0.4 - 2.5 um spectral range, within the NEOSURFACE survey (http://www.oa-roma.inaf.it/planet/NEOSurface.html). Objects are chosen from among the more accessible for a rendez-vous mission. All of them are characterised by a delta-V (the change in velocity needed for transferring a spacecraft from low-Earth orbit to rendez-vous with NEOs) lower than 10.5 km/s, well below the Solar System escape velocity (12.3 km/s). We taxonomically classify 9 of these objects for the first time. 11 objects belong to the S-complex taxonomy; the other 2 belong to the C-complex. We constrain the surface composition of these objects by comparing their spectra with meteorites from the RELAB database. We also compute olivine and pyroxene mineralogy for asteroids with a clear evidence of pyroxene bands. Mineralogy confirms the similarity with the already found H, L or LL ordinary chondrite analogues.Comment: 9 pages, 7 figures, to be published in A&A Minor changes by language edito

    Exobiology in Earth orbit: The results of science workshops held at NASA, Ames Research Center

    Get PDF
    The Workshops on Exobiology in Earth Orbit were held to explore concepts for orbital experiments of exobiological interest and make recommendations on which classes of experiments should be carried out. Various observational and experimental opportunities in Earth orbit are described including those associated with the Space Shuttle laboratories, spacecraft deployed from the Space Shuttle and expendable launch vehicles, the Space Station, and lunar bases. Specific science issues and technology needs are summarized. Finally, a list of recommended experiments in the areas of observational exobiology, cosmic dust collection, and in situ experiments is presented

    Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces

    Get PDF
    The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material

    Conference on Planetary Volatiles

    Get PDF
    Initial and present volatile inventories and distributions in the Earth, other planets, meteorites, and comets; observational evidence on the time history of volatile transfer among reservoirs; and volatiles in planetary bodies, their mechanisms of transport, and their relation to thermal, chemical, geological and biological evolution were addressed

    Environmental Problems of Space Flight Structures. 2. Meteoroid Hazard

    Get PDF
    Environmental problems of space flight structures - part 2, meteoroid hazard

    NASA Space Engineering Research Center for Utilization of Local Planetary Resources

    Get PDF
    Progress toward the goal of exploiting extraterrestrial resources for space missions is documented. Some areas of research included are as follows: Propellant and propulsion optimization; Automation of propellant processing with quantitative simulation; Ore reduction through chlorination and free radical production; Characterization of lunar ilmenite and its simulants; Carbothermal reduction of ilmenite with special reference to microgravity chemical reactor design; Gaseous carbonyl extraction and purification of ferrous metals; Overall energy management; and Information management for space processing
    corecore