1,128 research outputs found

    BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.

    Get PDF
    BindingDB, www.bindingdb.org, is a publicly accessible database of experimental protein-small molecule interaction data. Its collection of over a million data entries derives primarily from scientific articles and, increasingly, US patents. BindingDB provides many ways to browse and search for data of interest, including an advanced search tool, which can cross searches of multiple query types, including text, chemical structure, protein sequence and numerical affinities. The PDB and PubMed provide links to data in BindingDB, and vice versa; and BindingDB provides links to pathway information, the ZINC catalog of available compounds, and other resources. The BindingDB website offers specialized tools that take advantage of its large data collection, including ones to generate hypotheses for the protein targets bound by a bioactive compound, and for the compounds bound by a new protein of known sequence; and virtual compound screening by maximal chemical similarity, binary kernel discrimination, and support vector machine methods. Specialized data sets are also available, such as binding data for hundreds of congeneric series of ligands, drawn from BindingDB and organized for use in validating drug design methods. BindingDB offers several forms of programmatic access, and comes with extensive background material and documentation. Here, we provide the first update of BindingDB since 2007, focusing on new and unique features and highlighting directions of importance to the field as a whole

    Exposing WikiPathways as Linked Open Data

    Get PDF
    Biology has become a data intensive science. Discovery of new biological facts increasingly relies on the ability to find and match appropriate biological data. For instance for functional annotation of genes of interest or for identification of pathways affected by over-expressed genes. Functional and pathway information about genes and proteins is typically distributed over a variety of databases and the literature.

Pathways are a convenient, easy to interpret way to describe known biological interactions. WikiPathways provides community curated pathways. WikiPathways users integrate their knowledge with facts from the literature and biological databases. The curated pathway is then reviewed and possibly corrected or enriched. Different tools (e.g. Pathvisio and Cytoscape) support the integration of WikiPathways-knowledge for additional tasks, such as the integration with personal data sets. 

Data from WikiPathways is increasingly also used for advanced analysis where it is integrated or compared with other data, Currently, integration with data from different biological sources is mostly done manually. This can be a very time consuming task because the curator often first needs to find the available resources, needs to learn about their specific content and qualities and often spends a lot of time to technically combine the two. 

Semantic web and Linked Data technologies eliminate the barriers between database silos by relying on a set of standards and best practices for representing and describing data. The architecture of the semantic web relies on the architecture of the web itself for integrating and mapping universal resource identifiers (URI), coupled with basic inference mechanisms to enable matching concepts and properties across data sources. Semantic Web and Linked Data technologies are increasingly being successfully applied as integration engines for linking biological elements. 

Exposing WikiPathways content as Linked Open Data to the Semantic Web, enables rapid, semi-automated integration with a the growing amount of biological resources available from the linked open data cloud, it also allows really fast queries of WikiPathways itself. 

We have harmonised WikiPathways content according to a selected set of vocabularies (Biopax, CHEMBL, etc), common to resources already available as Linked Open Data. 
WikiPathways content is now available as Linked Open Data for dynamic querying through a SPARQL endpoint: http://semantics.bigcat.unimaas.nl:8000/sparql

    Exposing Provenance Metadata Using Different RDF Models

    Full text link
    A standard model for exposing structured provenance metadata of scientific assertions on the Semantic Web would increase interoperability, discoverability, reliability, as well as reproducibility for scientific discourse and evidence-based knowledge discovery. Several Resource Description Framework (RDF) models have been proposed to track provenance. However, provenance metadata may not only be verbose, but also significantly redundant. Therefore, an appropriate RDF provenance model should be efficient for publishing, querying, and reasoning over Linked Data. In the present work, we have collected millions of pairwise relations between chemicals, genes, and diseases from multiple data sources, and demonstrated the extent of redundancy of provenance information in the life science domain. We also evaluated the suitability of several RDF provenance models for this crowdsourced data set, including the N-ary model, the Singleton Property model, and the Nanopublication model. We examined query performance against three commonly used large RDF stores, including Virtuoso, Stardog, and Blazegraph. Our experiments demonstrate that query performance depends on both RDF store as well as the RDF provenance model

    A multilayer network approach for guiding drug repositioning in neglected diseases

    Get PDF
    Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.Fil: Berenstein, Ariel José. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Magariños, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Chernomoretz, Ariel. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Física; ArgentinaFil: Fernandez Aguero, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    Nutritional Systems Biology

    Get PDF

    Linking the Resource Description Framework to cheminformatics and proteochemometrics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semantic web technologies are finding their way into the life sciences. Ontologies and semantic markup have already been used for more than a decade in molecular sciences, but have not found widespread use yet. The semantic web technology Resource Description Framework (RDF) and related methods show to be sufficiently versatile to change that situation.</p> <p>Results</p> <p>The work presented here focuses on linking RDF approaches to existing molecular chemometrics fields, including cheminformatics, QSAR modeling and proteochemometrics. Applications are presented that link RDF technologies to methods from statistics and cheminformatics, including data aggregation, visualization, chemical identification, and property prediction. They demonstrate how this can be done using various existing RDF standards and cheminformatics libraries. For example, we show how IC<sub>50</sub> and K<it><sub>i</sub></it> values are modeled for a number of biological targets using data from the ChEMBL database.</p> <p>Conclusions</p> <p>We have shown that existing RDF standards can suitably be integrated into existing molecular chemometrics methods. Platforms that unite these technologies, like Bioclipse, makes this even simpler and more transparent. Being able to create and share workflows that integrate data aggregation and analysis (visual and statistical) is beneficial to interoperability and reproducibility. The current work shows that RDF approaches are sufficiently powerful to support molecular chemometrics workflows.</p

    Leveraging 3D chemical similarity, target and phenotypic data in the identification of drug-protein and drug-adverse effect associations

    Get PDF
    Additional file 5: Figure S4. Number of side effects and targets for each drug in the target-phenotype model
    • …
    corecore