1,284 research outputs found

    Multiple Spectral-Spatial Classification Approach for Hyperspectral Data

    Get PDF
    A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques

    Segmentation of complex outdoor scenes

    Get PDF
    Journal ArticleA new simpler approach to image segmentation via recursive region splitting and merging is presented. Unlike other techniques the kernel of splitting is based on a generalization of a two class gradient relaxation method and merging uses a statistical analysis of variance

    Evaluation of hierarchical segmentation for natural vegetation: a case study of the Tehachapi Mountains, California

    Get PDF
    abstract: Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.Dissertation/ThesisM.A. Geography 201

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    AN AUTOMATED DENTAL CARIES DETECTION AND SCORING SYSTEM FOR OPTIC IMAGES OF TOOTH OCCLUSAL SURFACE

    Get PDF
    Dental caries are one of the most prevalent chronic diseases. Worldwide 60 to 90 percent of school children and nearly 100 percent of adults experienced dental caries. The management of dental caries demands detection of carious lesions at early stages. The research of designing diagnostic tools in caries has been at peak for the last decade. This research aims to design an automated system to detect and score dental caries according to the International Caries Detection and Assessment System (ICDAS) guidelines using the optical images of the occlusal tooth surface. There have been numerous works that address the problem of caries detection by using new imaging technologies or advanced measurements. However, no such study has been done to detect and score caries with the use of optical images of the tooth surface. The aim of this dissertation is to develop image processing and machine learning algorithms to address the problem of detection and scoring the caries by the use of optical image of the tooth surface

    Disaster Management

    Get PDF
    The study deals with semi automatic extraction of urban risk related base data and their different generic aspects. Emphasis is given to the building footprint map which is a major base data. The main objective of the study is to extract Building Footprints from High Resolution Imagery using a semi automated approach. In this context the research mainly focuses on developing an integrated extraction to generate the risk related base data in an urban area from high resolution remote sensing images. A multi scale object oriented fuzzy classification of various urban settings was carried out. The method was applied in Dehradun, Uttaranchal, India. The city lies in the high seismic risk zone, also experiencing rapid urbanization due to its newly attained status of a state capital. The extracted base data maps were empirically evaluated by comparing them with visually interpreted reference maps. The evaluation of the extracted base data was carried out by both the quantitative and quality assessment techniques. It was observed that the building footprints extracted from fused Ikonos (PAN+XS) image gave acceptable accuracy for providing better management and better preparedness for any future disasters. Though there are compound problems associated with extraction of information from high resolution images, it is demonstrated from the study that such extraction techniques can be used and improved upo

    Mapping debris-covered glaciers in the Cordillera Blanca, Peru : an object-based image analysis approach.

    Get PDF
    Accurate remote-sensing based inventories of glacial ice are often hindered by the presence of supraglacial debris cover. Attempts at automated mapping of debris-covered glacier areas from remotely-sensed multispectral data have met with limited success due to the spectral similarity of supraglacial debris to nearby bedrock, moraines, and fluvial deposition features. Data-fusion approaches leveraging terrain and/or thermal data with multispectral data have yielded improved results in certain geographic regions, but remain unproven in others. This research builds on the data-fusion approaches from the literature and explores the efficacy of object-based image analysis (OBIA) and tree-based machine learning classifiers using Landsat OLI imagery and SRTM elevation data, in effort to map debris-covered glaciers in the Cordillera Blanca range of Peru. Results suggest that the OBIA and machine learning methods render advantages over traditional methods given the unique morphological settings associated with debris-covered glaciers. Accurate inventories of glacial mass and debris-covered glaciers in the Cordillera Blanca are important for understanding the unique water resource, natural hazards, and climate change implications associated with these tropical mountain glaciers
    • …
    corecore