12,717 research outputs found

    Using basic image features for texture classification

    Get PDF
    Representing texture images statistically as histograms over a discrete vocabulary of local features has proven widely effective for texture classification tasks. Images are described locally by vectors of, for example, responses to some filter bank; and a visual vocabulary is defined as a partition of this descriptor-response space, typically based on clustering. In this paper, we investigate the performance of an approach which represents textures as histograms over a visual vocabulary which is defined geometrically, based on the Basic Image Features of Griffin and Lillholm (Proc. SPIE 6492(09):1-11, 2007), rather than by clustering. BIFs provide a natural mathematical quantisation of a filter-response space into qualitatively distinct types of local image structure. We also extend our approach to deal with intra-class variations in scale. Our algorithm is simple: there is no need for a pre-training step to learn a visual dictionary, as in methods based on clustering, and no tuning of parameters is required to deal with different datasets. We have tested our implementation on three popular and challenging texture datasets and find that it produces consistently good classification results on each, including what we believe to be the best reported for the KTH-TIPS and equal best reported for the UIUCTex databases

    Histogram of gradients of Time-Frequency Representations for Audio scene detection

    Full text link
    This paper addresses the problem of audio scenes classification and contributes to the state of the art by proposing a novel feature. We build this feature by considering histogram of gradients (HOG) of time-frequency representation of an audio scene. Contrarily to classical audio features like MFCC, we make the hypothesis that histogram of gradients are able to encode some relevant informations in a time-frequency {representation:} namely, the local direction of variation (in time and frequency) of the signal spectral power. In addition, in order to gain more invariance and robustness, histogram of gradients are locally pooled. We have evaluated the relevance of {the novel feature} by comparing its performances with state-of-the-art competitors, on several datasets, including a novel one that we provide, as part of our contribution. This dataset, that we make publicly available, involves 1919 classes and contains about 900900 minutes of audio scene recording. We thus believe that it may be the next standard dataset for evaluating audio scene classification algorithms. Our comparison results clearly show that our HOG-based features outperform its competitor

    Gender-From-Iris or Gender-From-Mascara?

    Full text link
    Predicting a person's gender based on the iris texture has been explored by several researchers. This paper considers several dimensions of experimental work on this problem, including person-disjoint train and test, and the effect of cosmetics on eyelash occlusion and imperfect segmentation. We also consider the use of multi-layer perceptron and convolutional neural networks as classifiers, comparing the use of data-driven and hand-crafted features. Our results suggest that the gender-from-iris problem is more difficult than has so far been appreciated. Estimating accuracy using a mean of N person-disjoint train and test partitions, and considering the effect of makeup - a combination of experimental conditions not present in any previous work - we find a much weaker ability to predict gender-from-iris texture than has been suggested in previous work
    corecore