1,688 research outputs found

    Texture classification based on DCT and soft computing

    Get PDF
    We present a classification method based on the discrete cosine transform (DCT) coefficients of texture image. Since the DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying the images with DCT, we used two popular soft computing techniques, namely neurocomputing and neuro-fuzzy computing. We used a feedforward neural network trained by backpropagation algorithm and an evolving fuzzy neural network to classify the textures. The soft computing models were trained using 80% of the texture data and remaining was used for testing and validation purposes. A performance comparison was made among the soft computing models for the texture classification problem. We also analyzed the effects of prolonged training of neural networks. It was observed that the proposed neuro-fuzzy model performed better than neural network

    Passively mode-locked laser using an entirely centred erbium-doped fiber

    Get PDF
    This paper describes the setup and experimental results for an entirely centred erbium-doped fiber laser with passively mode-locked output. The gain medium of the ring laser cavity configuration comprises a 3 m length of two-core optical fiber, wherein an undoped outer core region of 9.38 μm diameter surrounds a 4.00 μm diameter central core region doped with erbium ions at 400 ppm concentration. The generated stable soliton mode-locking output has a central wavelength of 1533 nm and pulses that yield an average output power of 0.33 mW with a pulse energy of 31.8 pJ. The pulse duration is 0.7 ps and the measured output repetition rate of 10.37 MHz corresponds to a 96.4 ns pulse spacing in the pulse train

    Soft Computing Tool Approach for Texture Classification Using Discrete Cosine Transform

    Get PDF
    Texture can be considered as a repeating pattern of local variation of pixel intensities. Cosine Transform (DCT) coefficients of texture images. As DCT works on gray level images, the color scheme of each image is transformed into gray levels. For classifying the images using DCT, two popular soft computing techniques namely neurocomputing and neuro-fuzzy computing are used. A feedforward neural network is used to train the backpropagation learning algorithm and an evolving fuzzy neural network to classify the textures. The soft computing models were trained using 80% of the texture data and the remaining was used for testing and validation purposes. A performance comparison was made among the soft computing models for the texture classification problem. In texture classification the goal is to assign an unknown sample image to a set of known texture classes. It is observed that the proposed neuro-fuzzy model performed better than the neural network

    Automatic Classification of Human Epithelial Type 2 Cell Indirect Immunofluorescence Images using Cell Pyramid Matching

    Get PDF
    This paper describes a novel system for automatic classification of images obtained from Anti-Nuclear Antibody (ANA) pathology tests on Human Epithelial type 2 (HEp-2) cells using the Indirect Immunofluorescence (IIF) protocol. The IIF protocol on HEp-2 cells has been the hallmark method to identify the presence of ANAs, due to its high sensitivity and the large range of antigens that can be detected. However, it suffers from numerous shortcomings, such as being subjective as well as time and labour intensive. Computer Aided Diagnostic (CAD) systems have been developed to address these problems, which automatically classify a HEp-2 cell image into one of its known patterns (eg. speckled, homogeneous). Most of the existing CAD systems use handpicked features to represent a HEp-2 cell image, which may only work in limited scenarios. We propose a novel automatic cell image classification method termed Cell Pyramid Matching (CPM), which is comprised of regional histograms of visual words coupled with the Multiple Kernel Learning framework. We present a study of several variations of generating histograms and show the efficacy of the system on two publicly available datasets: the ICPR HEp-2 cell classification contest dataset and the SNPHEp-2 dataset.Comment: arXiv admin note: substantial text overlap with arXiv:1304.126

    Convexity in source separation: Models, geometry, and algorithms

    Get PDF
    Source separation or demixing is the process of extracting multiple components entangled within a signal. Contemporary signal processing presents a host of difficult source separation problems, from interference cancellation to background subtraction, blind deconvolution, and even dictionary learning. Despite the recent progress in each of these applications, advances in high-throughput sensor technology place demixing algorithms under pressure to accommodate extremely high-dimensional signals, separate an ever larger number of sources, and cope with more sophisticated signal and mixing models. These difficulties are exacerbated by the need for real-time action in automated decision-making systems. Recent advances in convex optimization provide a simple framework for efficiently solving numerous difficult demixing problems. This article provides an overview of the emerging field, explains the theory that governs the underlying procedures, and surveys algorithms that solve them efficiently. We aim to equip practitioners with a toolkit for constructing their own demixing algorithms that work, as well as concrete intuition for why they work
    corecore