8 research outputs found

    Textural–Spectral Feature-Based Species Classification of Mangroves in Mai Po Nature Reserve from Worldview-3 Imagery

    No full text
    The identification of species within an ecosystem plays a key role in formulating an inventory for use in the development of conservation management plans. The classification of mangrove species typically involves intensive field surveys, whereas remote sensing techniques represent a cost-efficient means of mapping and monitoring mangrove forests at large scales. However, the coarse spectral resolution of remote sensing technology has up until recently restricted the ability to identify individual species. The more recent development of very high-resolution spatial optical remote sensing sensors and techniques has thus provided new opportunities for the accurate mapping of species within mangrove forests over large areas. When dealing with the complex problems associated with discriminating among species, classifier performance could be enhanced through the adoption of more intrinsic features; such as textural and differential spectral features. This study explored the effectiveness of textural and differential spectral features in mapping mangrove inter-species obtained from WorldView-3 high-spatial-resolution imagery for mangrove species in Hong Kong. Due to the different arrangement of leaves, the branch density, and the average height and size of plants, we found that the differential spectral features could aid in reducing inner-species variability and increasing intra-species separation. Using a combination of textural and differential spectral features thus represents a promising tool for discriminating among mangrove species. Experimental results suggest that combining these features can greatly improve mapping accuracy, thereby providing more reliable mapping results

    Crown-level mapping of tree species and health from remote sensing of rural and urban forests

    Get PDF
    Tree species composition and health are key attributes for rural and urban forest biodiversity, and ecosystem services preservation. Remote sensing has facilitated extraordinary advances in estimating and mapping tree species composition and health. Yet previous sensors and algorithms were largely unable to resolve individual tree crowns and discriminate tree species or health classes at this essential spatial scale due to the low image spectral and spatial resolution. However, current available very high spatial resolution (VHR) remote sensing data can begin to resolve individual tree crowns and measure their spectral and structural qualities with unprecedented precision. Moreover, various machine learning algorithms are now available to apply these new data sources toward the discrimination and the mapping of tree species and health classes. The dissertation includes an introductory chapter, three stand-alone manuscripts, and a concluding chapter, each of which support the overarching theme of mapping tree species composition and health using remote sensing images. The first manuscript, now published in the International Journal of Remote Sensing, confirms the utility of combining VHR multi-temporal satellite data with LiDAR datasets for tree species classification using machine learning classifiers at the crown level in a rural forest the Fernow Experimental Forest, West Virginia. This research also evaluates the contribution of each type of spectral, phenological and structural feature for discriminating four tree species: red oak (Quercus rubra), sugar maple (Acer saccharum), tulip poplar (Liriodendron tulipifera), and black cherry (Prunus serotina). The second manuscript investigates the performance of tree species classification in urban settings with three contributions: 1) 12 very high resolution WorldView-3 images (WV-3), whose image acquisition date covering the growing season from April to November; 2) a large forest inventory providing sufficient calibration/validation datasets in Washington D.C.; 3) object-based tree species classification using the RandomForest machine learning algorithm. This manuscript identifies the incremental losses in classification accuracy caused by iteratively expanding the classification to 19 species and 10 genera. It also identifies the optimum pheno-phases and spectral bands for discriminating trees species in urban settings. Building on these promising results from the second manuscript, the third manuscript detect a signal of statistical difference among individual tree health conditions using WorldView-3 images from June 11th, July 30th and August 30th , 2017 in Washington D.C.. It examines six vegetation indices calculated from WorldView-3 images to describe three health condition levels in good, fair and poor, and discusses the effects of green-down phenology for tree health analysis. Overall, this dissertation research contributes to remote sensing research by combining data from both active and passive sensors to discriminate tree species in rural forest. For the species-rich urban settings, this dissertation illustrates the importance of phenology for tree species classification at crown level using VHR remote sensing images. Finally, this dissertation provides important insights on detecting statistical differences among tree health conditions at individual crown-level in the urban environment using VHR remote sensing images

    The application of deep learning for remote sensing of soil organic carbon stocks distribution in South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.Soil organic carbon (SOC) is a vital measure for ecosystem health and offers opportunities to understand carbon fluxes and associated implications. However, unprecedented anthropogenic disturbances have significantly altered SOC distribution across the globe, leading to considerable carbon losses. In addition, reliable SOC estimates, particularly over large spatial extents remain a major challenge due to among others limited sample points, quality of simulation data and suitable algorithms. Remote sensing (RS) approaches have emerged as a suitable alternative to field and laboratory SOC determination, especially at large spatial extent. Nevertheless, reliable determination of SOC distribution using RS data requires robust analytical approaches. Compared to linear and classical machine learning (ML) models, deep learning (DL) models offer a considerable improvement in data analysis due to their ability to extract more representative features and identify complex spatial patterns associated with big data. Hence, advancements in remote sensing, proliferation of big data, and deep learning architecture offer great potential for large-scale SOC mapping. However, there is paucity in literature on the application of DL-based remote sensing approaches for SOC prediction. To this end, this study is aimed at exploring DL-based approaches for the remote sensing of SOC stocks distribution across South Africa. The first objective sought to provide a synopsis of the use of traditional neural network (TNN) and DL-based remote sensing of SOC with emphasis on basic concepts, differences, similarities and limitations, while the second objective provided an in-depth review of the history, utility, challenges, and prospects of DL-based remote sensing approaches for mapping SOC. A quantitative evaluation between the use of TNN and DL frameworks was also conducted. Findings show that majority of published literature were conducted in the Northern Hemisphere while Africa have only four publications. Results also reveal that most studies adopted hyperspectral data, particularly spectrometers as compared to multispectral data. In comparison to DL (10%), TNN (90%) models were more commonly utilized in the literature; yet, DL models produced higher median accuracy (93%) than TNN (85%) models. The review concludes by highlighting future opportunities for retrieving SOC from remotely sensed data using DL frameworks. The third objective compared the accuracy of DL—deep neural network (DNN) model and a TNN—artificial neural network (ANN), as well as other popular classical ML models that include random forest (RF) and support vector machine (SVM), for national scale SOC mapping using Sentinel-3 data. With a root mean square error (RMSE) of 10.35 t/ha, the DNN model produced the best results, followed by RF (11.2 t/ha), ANN (11.6 t/ha), and SVM (13.6 t/ha). The DNN's analytical abilities, combined with its capacity to handle large amounts of data is a key advantage over other classical ML models. Having established the superiority of DL models over TNN and other classical models, the fourth objective focused on investigating SOC stocks distribution across South Africa’s major land uses, using Deep Neural Networks (DNN) and Sentinel-3 satellite data. Findings show that grasslands contributed the most to overall SOC stocks (31.36 %), while urban vegetation contributed the least (0.04%). Results also show that commercial (46.06 t/h) and natural (44.34 t/h) forests had better carbon sequestration capacity than other classes. These findings provide an important guideline for managing SOC stocks in South Africa, useful in climate change mitigation by promoting sustainable land-use practices. The fifth objective sought to determine the distribution of SOC within South Africa’s major biomes using remotely sensed-topo-climatic data and Concrete Autoencoder-Deep Neural Networks (CAE-DNN). Findings show that the CAE-DNN model (built from 26 selected variables) had the best accuracy of the DNNs examined, with an RMSE of 7.91 t/h. Soil organic carbon stock was also shown to be related to biome coverage, with the grassland (32.38%) and savanna (31.28%) biomes contributing the most to the overall SOC pool in South Africa. forests (44.12 t/h) and the Indian ocean coastal belt (43.05 t/h) biomes, despite having smaller footprints, have the highest SOC sequestration capacity. To increase SOC storage, it is recommended that degraded biomes be restored; however, a balance must be maintained between carbon sequestration capability, biodiversity health, and adequate provision of ecosystem services. The sixth objective sought to project the present SOC stocks in South Africa into the future (i.e. 2050). Soil organic carbon variations generated by projected climate change and land cover were mapped and analysed using a digital soil mapping (DSM) technique combined with space-for-time substitution (SFTS) procedures over South Africa through 2050. The potential SOC stocks variations across South Africa's major land uses were also assessed from current (2021) to future (2050). The first part of the study uses a Deep Neural Network (DNN) to estimate current SOC content (2021), while the second phase uses an average of five WorldClim General Circulation Models to project SOC to the future (2050) under four Shared Socio-economic Pathways (SSPs). Results show a general decline in projected future SOC stocks by 2050, ranging from 4.97 to 5.38 Pg, compared to estimated current stocks of 5.64 Pg. The findings are critical for government and policymakers in assessing the efficacy of current management systems in South Africa. Overall, this study provides a cost-effective framework for national scale mapping of SOC stocks, which is the largest terrestrial carbon pool using advanced DL-based remote sensing approach. These findings are valuable for designing appropriate management strategies to promote carbon uptake, soil quality, and measuring terrestrial ecosystem responses and feedbacks to climate change. This study is also the first DL-based remote sensing of SOC stocks distribution in South Africa

    Full Issue

    Get PDF
    corecore