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ABSTRACT 

Crown-level mapping of tree species and health from remote sensing of rural 
and urban forests 

Fang Fang 

Tree species composition and health are key attributes for rural and urban forest biodiversity, and 

ecosystem services preservation. Remote sensing has facilitated extraordinary advances in estimating and 

mapping tree species composition and health. Yet previous sensors and algorithms were largely unable to 

resolve individual tree crowns and discriminate tree species or health classes at this essential spatial scale 

due to the low image spectral and spatial resolution.  However, current available very high spatial 

resolution (VHR) remote sensing data can begin to resolve individual tree crowns and measure their 

spectral and structural qualities with unprecedented precision. Moreover, various machine learning 

algorithms are now available to apply these new data sources toward the discrimination and the mapping 

of tree species and health classes. The dissertation includes an introductory chapter, three stand-alone 

manuscripts, and a concluding chapter, each of which support the overarching theme of mapping tree 

species composition and health using remote sensing images.  

The first manuscript, now published in the International Journal of Remote Sensing, confirms the 

utility of combining VHR multi-temporal satellite data with LiDAR datasets for tree species classification 

using machine learning classifiers at the crown level in a rural forest the Fernow Experimental Forest, 

West Virginia. This research also evaluates the contribution of each type of spectral, phenological and 

structural feature for discriminating four tree species: red oak (Quercus rubra), sugar maple (Acer 

saccharum), tulip poplar (Liriodendron tulipifera), and black cherry (Prunus serotina).  The second 

manuscript investigates the performance of tree species classification in urban settings with three 

contributions: 1) 12 very high resolution WorldView-3 images (WV-3), whose image acquisition date 

covering the growing season from April to November; 2) a large forest inventory providing sufficient 

calibration/validation datasets in Washington D.C.; 3) object-based tree species classification using the 

RandomForest machine learning algorithm. This manuscript identifies the incremental losses in 

classification accuracy caused by iteratively expanding the classification to 19 species and 10 genera.  It 

also identifies the optimum pheno-phases and spectral bands for discriminating trees species in urban 

settings. Building on these promising results from the second manuscript, the third manuscript detect a 

signal of statistical difference among individual tree health conditions using WorldView-3 images from 

June 11th, July 30th and August 30th , 2017 in Washington D.C.. It examines six vegetation indices 

calculated from WorldView-3 images to describe three health condition levels in good, fair and poor, and 

discusses the effects of green-down phenology for tree health analysis.  

Overall, this dissertation research contributes to remote sensing research by combining data from 

both active and passive sensors to discriminate tree species in rural forest.  For the species-rich urban 

settings, this dissertation illustrates the importance of phenology for tree species classification at crown 

level using VHR remote sensing images. Finally, this dissertation provides important insights on 

detecting statistical differences among tree health conditions at individual crown-level in the urban 

environment using VHR remote sensing images. 
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1. Introduction 
Spatially explicit tree species and health information are valuable for answering research 

questions in forest inventory management, biodiversity, invasive species monitoring and habitat mapping 

(Fassnacht et al. 2016). With the rapid development of VHR remote sensing images during recent 

decades, it is increasingly possible to obtain tree species and health information from remote sensing 

imagery instead of traditional time-consuming field surveys especially over large areas. VHR imagery 

provide the opportunity to visualize individual tree crowns and motivate mapping forest types and tree 

species at individual crown-level in both urban and rural forests (Pu and Landry 2012, Fassnacht et al. 

2016, Ferreira et al. 2019). Moreover, VHR imagery also help to establish linkages among spectral 

reflectance at certain band and tree health conditions (Huang et al. 2007, Eitel et al. 2011).  

Both active and passive sensors provide useful information to measure species- and health-related 

traits (Key et al. 2001, Pu and Landry 2012, Vaughn et al. 2012, Ghosh et al. 2014, Fang et al. 2016, 

Fassnacht et al. 2016, Karlson et al. 2016, Madonsela et al. 2017). In general, these traits consist of three 

types of patterns: leaf-level structure and chemistry, crown level architecture/texture patterns, and 

phenological patterns expressed at the leaf and crown levels. First, images from passive optical sensors 

(i.e. multispectral and hyperspectral) can provide important wavelength regions to describe species-

related spectral responses dominated by factors such as photosynthetic pigments, chlorophylls, and leaf 

water content. Researchers observed these species-related spectral responses via various vegetation 

indices (i.e. NDVI, RENDVI, Green ratio, etc.) calculated from important wavelength regions (Key et al. 

2001, Pu and Landry 2012, Karlson et al. 2016, Madonsela et al. 2017). Second, past studies also 

articulated the utility of images from active sensor (LiDAR) to describe the crown level 

architecture/texture patterns of individual tree species (Heinzel and Koch 2011, Vaughn et al. 2012, 

Ghosh et al. 2014, Liu et al. 2015, Fang et al. 2016), especially the utility for discriminating conifers from 

broadleaf trees (Knyazikhin et al. 2013, Vauhkonen et al. 2014). Third, there is utility in sensing the 

phenological patterns, or temporal resolution of remote sensing images such as multispectral Geoeye, 



 

2 
 

WorldView-2, hyperspectral AVIRIS for tree species identification (Reed et al. 1994, Wolter et al. 1995, 

Key et al. 2001, Pu and Landry 2012, Li et al. 2015, Madonsela et al. 2017).  However, for the 

explorations of species phenology, the image acquisition date of previous studies only covered part of the 

entire leaf-on period. For example, they only compared bi-temporal images from two seasons for tree 

species classification (Pu and Landry 2012, Li et al. 2015, Karlson et al. 2016, Madonsela et al. 2017).  

Exploring images covering pheno-phases from the entire growing season is of great necessity to 

extensively assess the importance of phenology for tree species mapping projects. In summary, there are 

two major challenges for tree species mapping: 1) the determination of optimum vegetation index to 

describe species-related spectral patterns; 2) the determination of optimum phenological period or image 

acquisition dates to classify tree species.  

Rural and urban settings are two different types of environments for trees. Typically, rural forests 

consist of naturally grown trees with little interruption and maintenance from forest managers. Urban 

forests are more species-diverse with higher species variability, which are usually well organized and 

often maintained regularly by urban foresters. This dissertation systematically implemented tree species 

classification in both rural and urban environments. In urban settings, tree health condition is another 

significant factor for urban forest management. Previous researchers also adopted remote sensing images 

for tree health condition detection (Knipling 1970, Chaves et al. 2002, Xiao and McPherson 2005, Huang 

et al. 2007, Sankaran et al. 2010, Eitel et al. 2011, Asmaryan et al. 2013). Despite theses successes using 

remote sensing imagery to describe health condition, substantial challenges remain for using satellite data 

to assess different levels of tree health at crown-level in urban environments. 

The overall objective of this dissertation is to discriminate tree species in both rural and urban 

forests using remote sensing imagery with machine learning algorithms, as well as tree health condition 

analysis in urban settings. To address the overall objective, this dissertation answers the following 

questions: 
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1) For trees in rural forest, which are the optimum vegetation index and phenological periods to 

describe tree species-related spectral, structural and phenological traits?  

2) For trees in species-rich urban settings, which are the optimum vegetation index and phenological 

periods to discriminate different tree species? What are the influences of the number of tree 

species and taxonomic levels on the performance of tree species mapping?  

3) For trees in urban environments, is it possible to capture the statistical differences between tree 

health conditions at crown-level using multi-temporal VHR images? 
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2. Combining high spatial resolution multi-temporal satellite data 

with leaf-on LiDAR to enhance tree species discrimination at the 

crown-level*  
*Published as Fang, F., McNeil, B. E., Warner, T. A., & Maxwell, A. E. (2018). Combining high spatial 

resolution multi-temporal satellite data with leaf-on LiDAR to enhance tree species discrimination at the 

crown level. International Journal of Remote Sensing, 39(23), 9054-9072. 

Abstract 

The long-standing goal of discriminating tree species at the crown-level from high spatial 

resolution imagery remains challenging. The aim of this study is to evaluate whether combining 

(a) high spatial resolution multi-temporal images from different phenological periods (spring, 

summer and autumn), and (b) leaf-on LiDAR height and intensity data can enhance the ability to 

discriminate the species of individual tree crowns of red oak (Quercus rubra), sugar maple (Acer 

saccharum), tulip poplar (Liriodendron tulipifera), and black cherry (Prunus serotina) in the 

Fernow Experimental Forest, West Virginia, USA.  We used RandomForest models to measure a 

loss of classification accuracy caused by iteratively removing from the classification one or more 

groups from six groups of variables: spectral reflectance from all multispectral bands in the (1) 

spring, (2) summer, and (3) autumn images, (4) vegetation indices derived from the three 

multispectral datasets, (5) canopy height and intensity from the LiDAR imagery, and (6) texture 

related variables from the panchromatic and LiDAR datasets. We also used ANOVA and decision 

tree analyses to elucidate how the multispectral and LiDAR datasets combine to help discriminate 

tree species based on their unique phenological, spectral, textural, and crown architectural traits.  

From these results, we conclude that combing high spatial resolution multi-temporal satellite data 

with LiDAR datasets can enhance the ability to discriminate tree species at the crown-level. 

Key words: phenology, LiDAR, classification, multi-spectral, tree species, crown 

 architecture, texture 
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2.1 Introduction 
 

 Obtaining spatially explicit data on tree species composition can lead to improved management of 

biodiversity and the provision of ecosystem services related to air and water quality (Dwyer, Nowak and 

Noble 2003, Karlson et al. 2016). Tree species information is traditionally derived via field survey or 

aerial interpretation (Pu and Landry 2012), which is time-consuming and quite limited for broad-scale 

tree species mapping. To date, with the growing availability of high-spatial resolution and high-spectral 

resolution images from various sensors, researchers are increasingly using imagery to classify individual 

trees in both rural and urban settings (Cochrane 2000, Key et al. 2001, Melgani and Bruzzone 2004, 

Colgan et al. 2012, Immitzer et al. 2012, Pu and Landry 2012, Zhang and Hu 2012, Dalponte et al. 2013, 

Alonzo et al. 2014, Van et al. 2014, Verlič et al. 2014, Waser et al. 2014, Cho et al. 2015, Omer et al. 

2016). These studies not only illustrate the potential to discriminate species using phenological variation 

in their reflectance spectra, but also that tree species can be better differentiated by also using LiDAR-

derived structural and intensity properties (for a detailed review, see Fassnacht et al. 2016). Here, we take 

advantage of both spectral and structural properties to help quantify and better understand how passive 

and active remote sensing data can improve discrimination of tree species at the individual crown-level.  

Using multi-temporal data to capture different phenological patterns is a widely used approach 

for tree species discrimination (Reed et al. 1994, Wolter et al. 1995, Key et al. 2001, Madonsela. et al. 

2017). By incorporating seasonal variation in the biochemical, physiological and structural properties of 

tree crowns, spectral variation linked to phenology has been adopted for many different remote sensing 

applications, including climate interactions (e.g. He et al. 2015), land cover assessment (Ganguly et al. 

2010), crop observation (Sakamoto et al. 2005) and tree species mapping (Reed et al. 1994). However, at 

high spatial resolutions, it is challenging to obtain satisfactory images that capture phenological patterns 

for differentiating individual trees for an entire growing season (Reed et al. 2009).  A number of studies 

have therefore used a variety of sensors to capture the most striking seasonal characteristics (Wolter et al. 

1995, Voss and Sugumaran 2008). Studies involving multi-temporal datasets generally conclude that the 
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most informative image acquisition times are often in short windows surrounding the spring green-up 

period, peak summer, and autumn senescence phenology periods (Key et al. 2001, Voss and Sugumaran 

2008, Hill et al. 2010, Wolter and Townsend 2011, Klosterman et al. 2014).  

A key advantage of LiDAR for tree species discrimination is its ability to measure three-

dimensional features useful for delineating tree crowns and describing species differences in crown 

architecture and structure (Brandtberg 2007, Dalponte et al. 2008, Heinzel and Koch 2011, Vaughn et al. 

2012, Dalponte et al. 2013, Alonzo et al. 2014, Ghosh et al. 2014, Liu et al. 2015, Fang et al. 2016). For 

tree species classification, some studies have also recognized the value of combining LiDAR and 

multispectral data. Especially due to the complexity of tree crowns and similarity of spectral features 

between species, height information from LiDAR is often the most important factor to improve 

discrimination performance (Dalponte et al. 2008, Jones et al. 2010, Alonzo et al. 2014). LiDAR is also 

increasingly being used to link structural and spectral information in the form of intensity of returns, 

which is related to the reflecting object’s spectral reflectance and the proportion of the laser beam cross-

section that intersects with that object (Brandtberg 2007, Eitel et al. 2016, Fassnacht et al. 2016). LiDAR 

intensity provides invaluable information on species differences in crown architecture, thereby increasing 

differentiation of tree species (Brandtberg et al. 2003). For instance, broadleaf trees and conifers can be 

distinguished by LiDAR intensity values because coniferous tree architectures scatter more infrared light 

downward into their crowns, and thus provide a lower intensity value compared with broadleaved trees 

(Kim 2007, Knyazikhin et al. 2013, Vauhkonen et al. 2014).  Intensity also differs within functional 

groups; for needleleaf evergreen trees, Holmgren and Persson (2004) found that the mean intensity is 

higher for Norway spruce (Picea abies L. Karst) trees, with higher standard deviation of intensity due to 

denser needle leaves, compared with Scots pines.  Nevertheless, a full understanding of LiDAR intensity 

for species discrimination (Korpela et al. 2010, Fassnacht et al. 2016), and its potential, especially relative 

to other spectral and structural information, warrants further evaluation.  
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The primary goal for this study is to evaluate the utility of combining (a) high spatial resolution 

multispectral images from three different phenological stages, and (b) height and intensity data from leaf-

on LiDAR data, to classify tree species at the individual crown level with a machine learning classifier at 

the Fernow Experimental Forest (FEF), West Virginia. We hypothesize that each of these image datasets 

will improve the separability of tree species, and add meaningful biophysical information, thereby 

enhancing the ability to discriminate tree species remotely.  

Our approach assumes a geographic object-oriented (GEOBIA) framework for tree-species 

classification (Warner, Lee and McGraw, 1999).  From each tree crown polygon, we extract six groups of 

variables, including spectral reflectance information from optical imagery that captures (1) spring, (2) 

summer, and (3) autumn phenology, (4) height and intensity data from leaf-on (peak summer) LiDAR, as 

well as (5) spectral indices and (6) texture information derived from the first four groups of variables.  

Then, we evaluate the relative performance of these groups of variables in Random Forest (RF) 

classification models.  We also use analysis of variance (ANOVA) and decision trees to help understand 

how the LiDAR and phenological variables work individually, as well as work together to identify the 

distinct spectral and structural properties of each tree species.  Together, these approaches are designed to 

help test how combinations of variables can provide a more robust method for measuring a fuller suite of 

spectral, phenological, and crown architectural differences useful for discriminating tree species with 

remotely sensed data.   
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 2.2 Methods  

2.2.1 Study area 

 

 Our study site includes two unmanaged reference compartments within the United States 

Department of Agriculture (USDA) Forest Service’s Fernow Experimental Forest (FEF), located in 

Tucker County, West Virginia (Figure 2.1 : 39°3’15’’N, 79°41’15’’W). The topography within each of 

these roughly 40 ha compartments is steeply sloped with elevations ranging between 762 m and 854 m 

(Burnham et al. 2017). The forests have been unmanaged following an almost complete harvest in the 

1920’s. Mean annual precipitation is approximately 1450 mm and mean annual temperature is 9.2 C. 

The dominant tree species are red oak (Quercus rubra), sugar maple (Acer saccharum), tulip poplar 

(Liriodendron tulipifera), and black cherry (Prunus serotina).  Other species include American basswood 

(Tilia Americana), black birch (Betula lenta), chestnut oak (Quercus prinus), cucumber magnolia 

(Magnolia acuminata), frasier magnolia (Magnolia fraseri), red maple (Acer rubrum), shagbark hickory 

(Carya ovata), white ash (Fraxinus americana) and white oak (Quercus alba).   

 

Figure 2.1 Study site at the Fernow Experimental Forest (a), WV, USA, showing a portion of the 
delineated tree crowns (White polygons) in the Watershed #4 (WS4) reference compartment (b).  The 

https://en.wikipedia.org/wiki/Betula_lenta
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background image illustrates tree crown differences in the autumn phenology by displaying Worldview-
2 bands Red edge, Yellow, Blue in the red, green, and blue (RGB) colour channels. We use the yellow and 
red edge bands here because they are effective in capturing autumn phenology. 

 2.2.2 Methods overview  

 

 Our general workflow included a field survey, manual delineation of individual crown polygons, 

data preprocessing, feature extraction, feature selection and grouping using Random Forests to evaluate 

the relative performance of feature groups, and finally, using decision trees and ANOVA to evaluate data 

combinations (Figure 2.2).   

 

Figure 2.2  Flowchart of identifying tree species in FEF 
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2.2.3 Field measurements 

 

 We completed all the field mapping of tree crowns during May 2015 using 0.2 hectare (0.5 acre) 

permanent forest plots within the two selected reference compartments at the Fernow: watershed 4 (WS 

4) and the biological control area (BCA) (Figure 2.1). For each tree reaching the canopy in these plots, 

we recorded the species name, diameter at breast height (DBH), and tree height as measured with a Nikon 

Forestry Pro Laser Rangefinder.  We also used the laser range finder to precisely map the distance and 

bearing of each stem from the plot centroids. We recorded the location of all centre points with a survey 

grade post-processed GPS unit (<0.5 m error).  Following these measurements, we hand-sketched the 

crown extents of each mapped tree to aid our manual crown delineation process conducted with the 

imagery datasets. 

 2.2.4 Imagery datasets 

 

 The LiDAR data were collected on 20 July 2014 using an aircraft flying at 915 m with an average 

speed of 250 km hour-1
, and an Optech ALTM 3100 LiDAR sensor with a pulse rate frequency of 100 

kHz. Intensity data from this sensor’s near-infrared laser beam has been found to correlate strongly with 

measured spectral reflectance at the laser’s 1064 nm wavelength (Ahokas et al. 2006, Vain et al. 2009). 

The LiDAR data, collected with >50% overlap between flight-lines, provided an average of 6.6 returns m-

2. We focused on LiDAR variables that are routinely calculated using standard GIS and remote sensing 

software in a raster environment. First-return data were rasterized to produce a Digital Surface Model 

(DSM), and last returns to produce a Digital Elevation Model (DEM).  Rasterization was done in ArcMap 

10.5 with a common 0.5 m cell size by assigning the average of all points within a cell as the elevation 

and linear interpolation as void fill method. We created a Canopy Height Model (CHM) from the 

difference between the DSM and the DEM. We rasterized the LiDAR intensity data using all the returns 

in each 0.5 m pixel. 
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 We selected three high-resolution satellite images to best characterize phenological differences 

among species (Figure 2.1 and 2.3 and Table 2.1).  Visual inspection of the images indicates that the 

image dates correspond to three key phenology phases within broadleaf deciduous forests: the leaf 

emergence and flowering phase of spring (Figure 2.3a), the full-canopy development of summer (Figure 

2.3b), and the leaf senescence and abscission of autumn (Figure 2.3c). All three sensors, GeoEye, 

Pleiades and WorldView2 provide approximately 2 m multispectral (MS) bands, as well as an 

approximately 0.5 m panchromatic band. Our spring and summer images have four MS bands, and the 

autumn image has eight bands (Table 2.2).  

 

 

Figure 2.3 The Fernow Watershed #4 portion of the study area. (a) Spring image. (b) Summer image. (c) 
LiDAR canopy height model. (d) LiDAR intensity.  (a) and (b) are standard false color infrared composites 
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(bands NIR, Red, Green displayed as RGB). In each image, pixels with a canopy height less than 5 m are 
masked (and displayed in white) in order to highlight the variability among intact canopies.  Compare to 
Figure 1, which shows the autumn phenology image.  

 Table 2.1 Metadata of the imagery used in the study 

 

Table 2.2 Image band wavelengths 

 

 

2.2.5 Image pre-processing 

 

 We separately registered the multispectral and panchromatic images to the base layer of the 

LiDAR Canopy Height Model using Erdas Imagine 2016 and ArcMap 10.5. We applied a rational 

polynomial coefficient (RPC) sensor model (Toutin 2004) with elevation information and with ground 

control points (GCPs) to achieve a low RMSE (<1 pixel) for image registration (Appendix A, Table S1). 

Next, for each GeoEye, Pleiades and WorldView 2 multispectral and panchromatic band, we used the 

image metadata (IMD file) to convert digital numbers to ground reflectance using the CosT approach 

(Chávez 1996).  

2.2.6 Crown delineation using field and imagery data 

 

 The focus of this work is on object-based classification.  In this paper we only explore the issue 

of classification, and not errors due to segmentation issues (Liu and Xia 2010). Therefore, we used 

manually delineated crown polygons to ensure the highest accuracy in the segmentation.  We visually 

compared tree crown field maps with high-resolution LiDAR height data, as well as panchromatic data 

Sensor Acquisition date Phenological period Off-nadir view angle (°) Pan band resolution (m) Multispectral band resolution (m)

LiDAR 20-Jul-14 Summer 0-25

GeoEye 6-Jun-14 Summer 8 0.42 1.67

Pleiades 15-May-15 Spring 20.6 0.7 2.8

WorldView2 26-Oct-14 Autumn 26.7 0.57 2.28

Sensor

Pan Coastal Blue Green Yellow Red Red Edge NIR1 NIR2 LiDAR laser

LiDAR 1064

GeoEye 450-800 450-510 510-580 655-690 780-920

Pleiades 470-830 430-550 500-620 590-710 740-940

WorldView2 450 - 800 400 - 450 450-510 510 - 580 585 - 625 630-690 705-745 770-895 860-1040

Wavelength (nm)
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layers from the spring, summer, and autumn images.  From these data sources, we manually delineated 

the non-overlapping polygons as 267 mapped tree crowns. In our analysis, we only attempt to 

discriminate crowns from the four most abundant tree species.  Thus, our analysis dataset includes 57 red 

oak, 32 sugar maple, 26 tulip poplar, and 20 black cherry crowns for a total of 135 total tree crowns.     

2.2.7 Variable extraction 

 

 By computing the zonal average within each delineated tree crown, we extracted six groups of 

variables (Table 2.3): spectral reflectance from all multispectral bands in the (1) spring, (2) summer, and 

(3) autumn images, (4) vegetation indices derived from the three multispectral datasets, (5) canopy height 

and intensity from the LiDAR imagery, and (6) texture related variables from the panchromatic and 

LiDAR datasets.  For vegetation indices, we computed the normalized difference vegetation index 

(NDVI) using the red and NIR multispectral bands from the spring, summer and autumn images.  Using 

the eight spectral bands of WorldView 2 imagery, we also calculated additional vegetation indices on the 

autumn image: red edge and yellow band ratio (Waser et al. 2014), plant senescence index (Omer et al., 

2016), NIR and yellow band ratio (Waser et al. 2014) and enhanced vegetation Index (EVI) (Omer et al. 

2016) (Table 2.3).  

Textural characteristics may vary based on several aspects of crown architecture that may differ 

among species, including internal shading, leaf orientation, as well as leaf density and size (L.Sayn-

Wittgenstein 1978).  We used the panchromatic reflectance of the spring, summer, and autumn images, as 

well as LiDAR height and intensity data layers to compute four types of texture variables (Haralick and 

Shanmugam 1973) based on the grey-level co-occurrence matrices (GLCM). The texture was calculated 

within eCognition. The eCognition GLCM texture averages the four directions 0°, 45°, 90°, 135° at an 

offset of 1 pixel (Trimble 2011). The four texture features are as follows: (1) Homogeneity, which 

describes the similarity of pixel values within the local region; a high value indicates a more 

homogeneous region. (2) Contrast, which summarizes the variation of pixel values (exponentially) and a 
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high value indicates a locally more heterogeneous region. (3) Entropy, which is a measure of the disorder 

or randomness in the image values.  (4) Dissimilarity, which is a measure of the heterogeneity of pixel 

values within the local region linearly (Warner 2011).  
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Table 2.3 Variables used in the analysis 

  

Group Feature name Description* Sensor/source Reference

Reflectance 1-4 Average reflectance band 1-4 GeoEye

Reflectance 1-4 Average reflectance band 1-4 Pleiades

Reflectance 1-8 Average reflectance band 1-8 WorldView2

Brightness 1-3 Mean value of the means of all bands GeoEye, Pleiades and WorldView 2 Pu and Landry 2012

Reflectance panchromatic band 1-3 Average panchromatic reflectance GeoEye, Pleiades and WorldView 2

Height Average height LiDAR CHM

Intensity Average intensity LiDAR intensity image

RedEdge yellow ratio (R RedEdge - R Yellow) / ( R RedEdge + R Yellow) WorldView 2 Waser et al. 2014

Plant Senescence 1 (R Red-R Blue) / R NIR1 WorldView 2 Omer et al. 2016

Plant Senescence 2 (R Red-R Blue) / R RedEdge   WorldView 2 Waser et al. 2014

NIR yellow ratio (R NIR2-R Yellow)/( R NIR2+R Yellow)  WorldView 2 Waser et al. 2014

NDVI WV2 (R NIR – R Red) / ( R NIR + R RED) WorldView2 Karlson 2016

NDVI P (R NIR – R Red) / ( R NIR + R RED) Pleiades

NDVI G (R NIR – R Red) / ( R NIR + R RED) GeoEye

EVI
2.5 x ((R NIR1 - R Red)/( R NIR1 + 6 x R Red - 7.5 x R Blue 

+ 1))     
WorldView 2 Omer et al. 2016

GLCM homogeneity GLCM homogeneity 
Panchromatic band of WorldView 2, Pleiades, 

GeoEye; and LiDAR CHM and intensity

GLCM contrast GLCM contrast 
Panchromatic band of WorldView 2, Pleiades, 

GeoEye; and LiDAR CHM and intensity

GLCM entropy GLCM entropy 
Panchromatic band of WorldView 2, Pleiades, 

GeoEye; and LiDAR CHM and intensity

GLCM dissimilarity GLCM dissimilarity 
Panchromatic band of WorldView 2, Pleiades, 

GeoEye; and LiDAR CHM and intensity

Spectral reflectance

LiDAR

Vegetation indices

Texture Pu and Landry 2012
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In total, we extracted 52 variables for each individual crown. These include 11 variables 

from the spring Pleiades image, 11 variables from the summer GeoEye image, 20 variables from 

the autumn WorldView2 image, (Extra variables from WorldView2 were calculated from four 

additional bands compared with GeoEye) and 10 variables from LiDAR (Table 2.3).  

2.2.8 Data Analysis 

 

 To avoid problems due to the “curse of dimensionality” (Hughes 1968) associated with 

discriminating 4 species from 52 variables, we selected the best subset of variables before 

classification in R (R Core Development Team 2016).  We used rfUtilities package (Evans and 

Murphy 2014) to select variables based on variable importance. We used caret package (Kuhn et 

al. 2016) to run a step-wise RF with the best 10%, 15%, 25%, 50%, 75%, and 90% of the 

variables retained.  We generated 500 trees for each RF model. Based on prior experience which 

suggested any number greater than 100 was sufficient; we used 500 to be sure the number was 

large enough. The optimal number of variables available for splitting at each node (mtry) was 

selected using 10-fold cross-validation and ten different values were assessed. This 10-fold cross 

validation randomly split data into 10 subsets; 9 of them are used for training and 1 retained for 

testing each time. The average was calculated in the model as final accuracy (Maxwell, Warner 

and Fang 2018). From this, we selected the top 50% of the variables as the greatest per cent that 

retained the most signal while minimizing redundancy and noise. The cross-fold validation 

approach was used so that classification trains a classifier with a number of samples that is similar 

to the number of variables. Accuracy should be evaluated based on data entirely separate from 

that used in developing the model.  RF does offer estimates of accuracy based on data withheld 

from subsets of the model used in developing the trees (so-called out of bag estimates), but we 

prefer to use entirely separate data for both overall accuracy assessment and the confusion 

matrices (Maxwell, Warner and Fang 2018).  Using the six groups of variables described in 

section 2.6, we conducted a preliminary test to evaluate the accuracy of RF models that only drew 
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from an individual group of variables (see Figure S1 and Table S2 in the Appendix A). As we 

expected, the Kappa values obtainable from a single group were markedly lower than combining 

groups, so we focused the remainder of our analysis on testing our hypotheses concerning the 

combination of spectral features with structural features to enhance tree species discrimination.  

 To test how each group of variables enhanced model accuracy, we iteratively removed 

each of the six groups of variables and recorded the effect on the Kappa value derived from the 

10-fold cross-validation of the RF model. These RF models used 31 features with spring image 

variables excluded, 31 features with summer image variables excluded, 21 features with autumn 

image variables excluded, 32 features with LiDAR variables excluded, 30 features with texture 

features excluded, and 32 features with vegetation indices excluded.  Finally, in order to 

understand the patterns and mechanisms of how the variables used in the RF modelling are useful 

individually and in combination for discriminating tree species, we used ANOVA (assumptions 

tested in Appendix A, Table S3), paired t-tests, and unpruned decision trees generated in R with 

the rpart package (Therneau, Atkinson and Ripley 2017).  An ANOVA test can help to test the 

difference among group means with the hypothesis that the group means are equal. F-ratio is the 

ratio of between groups to within-group variance. Group means are significantly different when 

the p-value (significance) is less than 0.05 and F-ratio is larger than 1. 

 A single decision tree classification tends to be less accurate than RF, which employs an 

ensemble of trees (Maxwell, Warner and Fang 2018).  Nevertheless, single decision tree has the 

advantage of being simple and intuitive to interpret.  Because our main aim in this study was to 

explore the importance of different data layers, a decision tree classification is therefore used as a 

supplement to the RF classification. The decision tree classification was carried out with the rpart 

package (Therneau, Atkinson and Ripley 2017). The tree was automatically pruned based on 

cp=0.01, minsplit=20, maxcompete=4.  
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 2.3 Results 
 

2.3.1 Data combinations and random forest model accuracy 

 

 The Random Forest model achieved a Kappa value of 42.4% (with an overall accuracy 

(OA) of 62%) when we ran it with the top 50th percentile of all the variables from all groups.  

Notably, the variables in this top 50th percentile were drawn from each of the six groups of 

variables (Table 2.4).  When we iteratively excluded groups of variables, we found that removing 

each group caused a notable decrease in Kappa value compared with results from a full model 

(Figure 2.4). Removing variables from the summer GeoEye image caused the largest percentage 

(6.1%) drop in Kappa value, from 42.4% with the full model to 36.3%.  The LiDAR variables 

were the next most useful group of variables, reducing Kappa by 5.1% when they were excluded. 

The four other groups of variables all caused smaller decreases in Kappa value, but still reduced 

model performance considerably. The overall magnitude of reduced performance in these four 

other groups was between 2.3%-3.9% in terms of Kappa value, corresponding to a 5-10% relative 

reduction in the model performance in comparison to the full model.     

The confusion matrix from RF using the top 50th percentile of variables indicates that the 

sample size of each species likely influenced the results.  Red oak (N = 57 crowns) had the largest 

producers (PA) and users accuracy (UA), while black cherry (N = 20 crowns) had the lowest 

accuracy (Table 2.5). Confusion matrices from other RF models highlight substantial drops in 

accuracy for individual species when certain of groups of variables were withheld (Appendix A, 

Table S4). This was especially evident for sugar maple, which fell from a 58% UA and 48% PA 

in the 50th percentile RF model to a 40% UA and 31% PA in the model with the LiDAR data 

withheld (Appendix A, Table 4(b)). 
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2.3.2 Useful variables identified by ANOVA and a decision tree  

 

 ANOVA analyses revealed that LiDAR intensity had the strongest individual ability to 

discriminate tree species (Table 2.4), and further analysis using pair-wise t-tests revealed that 

sugar maple had significantly higher intensity than other species (Figure 2.5 (a)). Reflectance in 

the blue wavelengths during the spring and summer was among the next strongest variables 

(Table 2.4), and t-tests revealed that red oak crowns had lower summer blue reflectance and 

higher spring blue reflectance (Figures 2.5 (b) & (c)). The vegetation indices also proved to be 

useful variables (Table 2.4), particularly the plant senescence index which indicated a notably 

higher index value for tulip poplar during the autumn phenology image acquisition (Figure 2.5 

(d)).  
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Table 2.4 Features selected by Random Forest, feature selection sorted by decreasing F-value 

obtained from ANOVA tests of species differences 

 

1NS: not significant  

2SP: Spring; SU: Summer; AU: Autumn; LI: LiDAR; TE: Texture;; VI: Vegetation indices 

            Most of these useful variables were also selected by the decision tree analysis. The most 

parsimonious decision tree used 8 variables.  As with the RF model, the decision tree notably 

Feature name Significance
1 F -ratio Variable groups

2

Average intensity <0.001 10.1 LI

Spring blue reflectance <0.001 9.22 SP

Summer NDVI <0.0001 9.02 SU&VI

Spring NDVI <0.0001 8.2 SP&VI

Spring NIR reflectance <0.0001 7.93 SP

Summer red reflectance <0.001 7.75 SU

GLCM entropy of intensity <0.0001 7.72 LI&TE

Summer blue reflectance 0.0002 7.2 SU

Autumn GLCM entropy 0.0002 7.16 AU&TE

Spring GLCM entropy 0.0002 7.11 SP&TE

Spring green reflectance 0.0003 6.79 SP

Spring Brightness 0.0003 6.79 SP

Summer GLCM entropy 0.0005 6.33 SU&TE

LiDAR GLCM entropy 0.0013 5.53 LI&TE

Autumn blue reflectance 0.002 5.21 AU

Autumn Plant Senescence 0.0022 5.13 AU &VI

Autumn NIR and yellow ratio 0.0031 4.84 AU &VI

Autumn coastal reflectance 0.0033 4.81 AU

Autumn Red Edge and yellow ratio 0.0075 4.16 AU &VI

Autumn NIR2 reflectance 0.0096 3.96 AU

Autumn red reflectance 0.0108 3.88 AU

NIR1 reflectance 0.013 3.73 AU

Sping red reflectance 0.014 3.67 SP

Autumn Brightness 0.0172 3.51 AU

Autumn NDVI 0.0218 3.33 AU &VI

Autumn Enhanced vegetation index 0.0269 3.16 AU &VI

Autumn Red Edge reflectance 0.0343 2.97 AU

LiDAR GLCM homogeneity 0.0346 2.96 LI&TE

Autumn Panchromatic reflectance 0.0406 2.84 AU

Spring Panchromatic reflectance 0.0427 2.8 SP

LiDAR Tree height NS 2.58 LI

Intensity GLCM contrast NS 1.76 LI&TE

Intensity GLCM dissimilarity NS 1.59 LI&TE

Autumn yellow reflectance NS 1.32 AU

Summer NIR reflectance NS 1.23 SU

Summer GLCM dissimilarity NS 0.79 SU&TE

Summer Brightness NS 0.63 SU

Autumn green reflectance NS 0.52 AU

Autumn GLCM homogeneity NS 0.13 AU &TE
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contained variables derived from each of the four image datasets (spring, summer, autumn, and 

leaf-on LiDAR) (Figure 2.6). Summer blue reflectance was the initial node, followed by blue and 

brightness bands from the spring image.  Three spectral indices describing species differences in 

the autumn senescence, and two LiDAR variables describing differences in intensity and entropy 

of height provided the final nodes discriminating all four species (Figure 2.6).  

  

Figure 2.4 Per cent of Kappa value lost by removing each group of variables 

Table 2.5   Confusion matrix from RF classification of individual trees with top 50th percentile of 

variables. 

 

PA: Producer’s accuracy;  UA: User’s accuracy; OA: Overall accuracy  

 

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 2 0 1 1 4 50

Red oak 10 50 14 5 79 63

Sugar maple 3 5 15 3 26 58

Tulip poplar 5 2 2 17 26 65

Total 20 57 32 26 135

PA (%) 10 88 47 65

OA (%)=62

Reference
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Figure 2.5 Key results from the ANOVA tests, letters denote significant differences in means, as 
assessed by pair-wise t-tests 

 

Figure 2.6 Decision tree based on 50th percentile of variables. Affirmative logical decisions are 
in each case to the left. 
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 2.4 Discussion  
 

 Our results strongly support the hypothesis that the combination of phenology and 

structural information from individual tree crowns can enhance the discrimination of tree species.  

First, our RF results supported the hypothesis that each group of variables would enhance model 

performance (Figure 2.4). Our separate analysis using a decision tree supported this combination 

because all three phenology images and LiDAR were included in the most parsimonious decision 

tree (Figure 2.6). However, the relative degree to which the groups of variables affected model 

accuracy differed from some previous studies.  For instance, whereas we found the summer and 

spring phenology periods to contain the most useful variables for species discrimination (Figure 

2.4), others have found a peak autumn image to be most useful (e.g. Key et al. 2001). Even so, 

reflectance and spectral indices from the autumn image were selected by RF (Table 2.3), and also 

formed key parts of the decision tree analysis (Figure 2.6).  Thus, our data still indicate strong 

support for including autumn phenology in species discrimination methods.  The RF analysis also 

indicated that LiDAR-derived variables were the second most useful group of variables, which 

adds support to a growing number of studies emphasizing the importance of LiDAR information 

for tree species classification (Donoghue et al. 2007, Kim 2007, Dalponte et al. 2008, Voss and 

Sugumaran 2008, Jones et al. 2010, Korpela et al. 2010, Ghosh et al. 2014, Eitel et al. 2016).  

 Our ANOVA and decision tree analyses suggest several mechanisms by which spectral 

and structural information help discriminate broadleaf deciduous tree species based on their 

unique phenology and crown architectural traits. Specifically, the spectral information in the 

visible wavelengths helps to describe the unique phenology of leaf pigments and photosynthetic 

activity in each tree species, while the phenology of NIR spectral reflectance and LiDAR describe 

essential species differences in tree crown architecture (Gates et al. 1965, Asner 1998, 

Mohammed et al. 2000, Rautiainen et al. 2004, Ollinger 2011, Eamus et al. 2016). First, our 

observations that red oak has a high spring blue reflectance (Figure 2.5 (c)), low summer blue 
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reflectance (Figure 2.5 (b)), and a high autumn NIR reflectance (Figure 2.6) matches with field 

observations that red oak crowns tend to have a later leaf emergence in the spring, grow dense 

crowns of photosynthetically active leaves in the summer, and senesce later in the autumn relative 

to other species. High GLCM entropy of height as indicated by the decision tree differentiation of 

red oaks (Figure 2.6) suggests that red oak has relatively more within-crown gaps than other 

species. Next, a higher plant senescence index for tulip poplar (Figure 2.6) matches field 

observations of an earlier autumn leaf senescence in tulip poplar than other species (particularly 

red oak). Finally, coupled with observations of its lower entropy of height, observations of high 

summer LiDAR intensity (Figure 2.5 (a) and 2.6) indicate that sugar maple has a flatter and 

more horizontal crown architecture (Kim et al. 2009, Fassnacht et al. 2016, Budei et al. 2018).  

The importance of LiDAR for characterizing this unique crown architecture of sugar maple was 

borne out by the large drop in classification accuracy when LiDAR variables were removed from 

the RF model (Table 2.4 and Appendix A Table 3 (b)).   

Although the overall accuracies obtained in this study were lower than might be useful 

for mapping purposes, we emphasize that the ultimate purpose of this study was to provide 

guidance in data selection for future mapping, and not necessarily to produce a map directly from 

these data (see, for example, Key et al. 2001, for a similar research design). Indeed, the strong 

complementarity of spectral and structural information in our study illustrates how the 

combination of LiDAR and multi-temporal images can contribute to tree species discrimination, 

especially in forests where trees have similar functional types and reflectance characteristics 

(Dalponte et al. 2008, Jones et al. 2010, Alonzo et al. 2014).  Yet, the overall accuracy of our 

discrimination algorithm (Kappa = 42%) highlights that substantial obstacles still remain toward 

an ultimate goal of automatic crown-level species discrimination from remotely sensed data.  Our 

study exemplifies the challenge of these obstacles.  First, our study design relied on available 

archived data.  While we were able to match archive data to key phenology periods, it was 
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challenging to precisely co-register the images that had less than ideal viewing geometries (Table 

2.1), and were collected over a topographically complex study site. Second, study areas like the 

Fernow Experimental Forest are especially challenging for discriminating tree species because 

the trees (1) have similar growth forms, leaf types and leaf habits, and (2) have high within-

species variance in phenology and crown architecture linked to strong competition for light 

within a diverse forest on steeply sloping terrain.  Given these unique characteristics of our study 

design and study area, we suggest that our classification accuracy and evidence of data 

combination are quite conservative results.  As such, in more forgiving study contexts, we would 

expect substantially higher accuracies and even stronger evidence for the advantage of 

combinations of multispectral and LiDAR data.  

 2.5 Conclusion   
 

 The significant contribution of this paper is that combining multi-temporal imagery with 

leaf-on LiDAR can enhance the ability to discriminating tree species based on their phenology 

and crown architectural characteristics. Specifically, our results reveal that the combination of 

multi-temporal high-resolution images with leaf-on LiDAR data improves the discrimination of 

four broadleaf deciduous tree species: red oak, sugar maple, black cherry and tulip poplar. We 

tested six groups of variables for their classification performance: (1) spring, (2) summer, and (3) 

autumn phenology, (4) height and intensity data from leaf-on LiDAR, (5) spectral indices and (6) 

texture information. When a specific group of variables was removed, the decrease in Random 

Forest classification accuracy demonstrates the importance of such variables. In addition, our 

ANOVA and decision tree results illustrate specific mechanisms to discriminate species based on 

their unique phenology and crown architectural properties. Continuing to build on these findings 

can provide a robust path toward the ultimate goal of automatic crown-level tree species 

discrimination. 
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 The RF classification indicated that the Kappa value dropped each time a specific group 

of variables was removed. This strongly indicates all three seasons of high-spatial resolution 

multi-temporal satellite data and leaf-on LIDAR enhanced the ability to discriminate trees 

species. We find that summer phenology is most helpful to classify tree species since our model 

is most affected (declined in Kappa accuracy of 6.1%) by removing summer phenology features. 

Crown structural and architecture features from LiDAR were the second best variables for 

discriminating tree species. Next, texture features, fall phenology and vegetation indices showed 

similar importance for tree species classification. Variables from a spring image were the least 

helpful to classify tree species, but they still cause 2.3% drop in Kappa value when excluded.  

 The decision tree and ANOVA results provide additional evidence regarding how these 

imagery sources combine to identify the distinct spectral and structural properties for each tree 

species. We found blue band reflectance from multi-temporal remote sensing imagery to be a 

useful variable in describing unique phenological and structural features associated with leaf 

emergence. Autumn NIR may be important for capturing differences for red oak associated with 

leaf senescence. Moreover, for crown architectural properties, relative lower summer blue 

reflectance indicates dense crowns; higher entropy of height suggests more within-crown gaps in 

red oak. In another abundant species, sugar maple, we also found that higher summer LiDAR 

intensity corresponds with flatter crown architecture (Lower height entropy). Thus, for 

discriminating broadleaf deciduous tree species, this study supports the utility of high spatial 

multi-temporal satellite images in the spring, summer and fall to capture the most distinctive 

phenology patterns while also supporting the use of leaf-on LiDAR for capturing key differences 

in tree crown architecture.   
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Appendix A. 

Table S1 RMSE for all the geo-referenced images in meters. 

 

       

Table S2 (a) Confusion matrix from RF classification with only summer variables 

 

Table S2 (b) Confusion matrix from RF classification with only LiDAR variables 

 

Sensor MS RMSE (m) PAN RMSE (m)

GeoEye 0.76 0.46

Pleiades 0.15 0.59

WorldView2 0.0056 0.86

    

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 2 0 1 3 6 33

Red oak 9 50 17 9 85 59

Sugar maple 4 5 10 4 23 43

Tulip poplar 5 2 4 10 21 48

Total 20 57 32 26 135

PA (%) 10 88 31 38

OA (%)=53

Reference

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 3 1 1 4 9 33

Red oak 9 39 16 11 75 52

Sugar maple 3 7 14 3 27 52

Tulip poplar 5 10 1 8 24 33

Total 20 57 32 26 135

PA (%) 15 68 44 31

OA (%)=47

Reference
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Table S2 (c) Confusion matrix from RF classification with only texture variables 

 

Table S2 (d) Confusion matrix from RF classification with only autumn variables 

 

Table S2 (e) Confusion matrix from RF classification with only vegetation indices 

 

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 3 3 1 1 8 38

Red oak 12 38 16 10 76 50

Sugar maple 3 6 8 5 22 36

Tulip poplar 2 10 7 10 29 34

Total 20 57 32 26 135

PA (%) 15 67 25 38

OA (%)=44

Reference

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 4 0 0 1 5 80

Red oak 12 44 11 9 76 58

Sugar maple 1 8 13 6 28 46

Tulip poplar 3 5 8 10 26 38

Total 20 57 32 26 135

PA (%) 20 77 41 38

OA (%)=56

Reference

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 2 2 1 1 6 33

Red oak 15 47 17 10 89 53

Sugar maple 1 5 11 2 19 58

Tulip poplar 2 3 3 13 21 62

Total 20 57 32 26 135

PA (%) 10 82 34 50

OA (%)=54

Reference
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Table S2 (f) Confusion matrix from RF classification with only spring variables 

 

 

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 6 3 4 4 17 35

Red oak 6 45 12 9 72 63

Sugar maple 3 4 13 6 26 50

Tulip poplar 5 5 3 7 20 35

Total 20 57 32 26 135

PA (%) 30 79 41 27

OA (%)=53

Reference
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Table S3. ANOVA assumption test, based on errors normally distributed with equal variance. 

 

Feature name Normality Homogeneity of variance p -value F -ratio

Average intensity Yes Yes <0.001 10.1

Spring blue reflectance No Yes <0.001 9.22

Summer NDVI No Yes <0.0001 9.02

Spring NDVI Yes Yes <0.0001 8.2

Spring NIR reflectance No Yes <0.0001 7.93

Summer red reflectance Yes Yes <0.001 7.75

Intensity GLCM entropy Yes Yes <0.0001 7.72

Summer blue reflectance Yes Yes 0.0002 7.2

Autumn GLCM entropy Yes Yes 0.0002 7.16

Spring GLCM entropy Yes Yes 0.0002 7.11

Spring green reflectance Yes Yes 0.0003 6.79

Spring Brightness No Yes 0.0003 6.79

Summer GLCM entropy Yes Yes 0.0005 6.33

LiDAR GLCM entropy Yes Yes 0.0013 5.53

Autumn blue reflectance Yes Yes 0.002 5.21

Autumn Plant Senescence Yes Yes 0.0022 5.13

Autumn NIR and yellow ratio Yes No 0.0031 4.84

Autumn coastal reflectance Yes Yes 0.0033 4.81

Autumn Red Edge and yellow ratio Yes No 0.0075 4.16

Autumn NIR2 reflectance Yes Yes 0.0096 3.96

Autumn red reflectance Yes No 0.0108 3.88

NIR1 reflectance Yes Yes 0.013 3.73

Spring red reflectance Yes Yes 0.014 3.67

Autumn Brightness Yes No 0.0172 3.51

Autumn NDVI Yes Yes 0.0218 3.33

Autumn Enhanced vegetation index Yes Yes 0.0269 3.16

Autumn Red Edge reflectance Yes Yes 0.0343 2.97

LiDAR GLCM homogeneity No Yes 0.0346 2.96

Autumn Panchromatic reflectance No No 0.0406 2.84

Spring Panchromatic reflectance No Yes 0.0427 2.8

LiDAR Tree height No Yes NS 2.58

Intensity GLCM contrast No Yes NS 1.76

Intensity GLCM dissimilarity Yes Yes NS 1.59

Autumn yellow reflectance Yes No NS 1.32

Summer NIR reflectance Yes Yes NS 1.23

Summer GLCM dissimilarity Yes Yes NS 0.79

Summer Brightness Yes Yes NS 0.63

Autumn green reflectance No No NS 0.52

Autumn GLCM homogeneity Yes Yes NS 0.13



 

31 
 

Table S4 (a)  Confusion matrix from RF classification with top 50th percentile of variables exclude 

summer variables 

 

Table S4 (b)  Confusion matrix from RF classification with top 50th percentile of variables 

excludes LiDAR variables 

 

Table S4 (c)  Confusion matrix from RF classification with top 50th percentile of variables 

excludes texture variables 

 

 

 

 

 

 

 

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 3 0 1 1 5 60

Red oak 11 48 12 10 81 59

Sugar maple 2 7 16 3 28 57

Tulip poplar 4 2 3 12 21 57

Total 20 57 32 26 135

PA (%) 15 84 50 46

OA (%)=59

Reference

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 5 1 4 2 12 42

Red oak 8 45 16 5 74 61

Sugar maple 4 7 10 4 25 40

Tulip poplar 3 4 2 15 24 63

Total 20 57 32 26 135

PA (%) 25 79 31 58

OA (%)=56

Reference

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 5 3 2 3 13 38

Red oak 8 44 13 5 70 63

Sugar maple 4 6 15 3 28 54

Tulip poplar 3 4 2 15 24 63

Total 20 57 32 26 135

PA (%) 25 77 47 58

OA (%)=59

Reference
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Table S4 (d)  Confusion matrix from RF classification with top 50th percentile of variables 

excludes autumn variables 

 

Table S4 (e)  Confusion matrix from RF classification with top 50th percentile of variables 

excludes vegetation indices 

 

 

Table S4 (f)  Confusion matrix from RF classification with top 50th percentile of variables 

excludes spring variables 

 

 

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 4 2 2 2 10 40

Red oak 6 48 12 6 72 67

Sugar maple 5 3 14 5 27 52

Tulip poplar 5 4 4 13 26 50

Total 20 57 32 26 135

PA (%) 20 84 44 50

OA (%)=59

Reference

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 6 2 2 2 12 50

Red oak 5 47 12 4 68 69

Sugar maple 5 5 15 9 34 44

Tulip poplar 4 3 3 11 21 52

Total 20 57 32 26 135

PA (%) 30 82 47 42

OA (%)=59

Reference

Classification Black cherry Red oak Sugar maple Tulip poplar Total UA (%)

Black cherry 4 2 0 1 7 57

Red oak 9 47 12 6 74 64

Sugar maple 4 5 16 5 30 53

Tulip poplar 3 3 4 14 24 58

Total 20 57 32 26 135

PA (%) 20 82 50 54

OA (%)=60

Reference
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Figure S1. Kappa value by using each group of variables as a single source 
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Abstract  

With the promise of transformative changes for the management of rural and 

urban forests, the discrimination of tree species from satellite imagery has been a 

long-standing goal of remote sensing.  For the species-rich urban setting of 

Washington, D.C. USA, we evaluate current prospects toward this goal by 

combining a RandomForest object-based tree species classification method with 

two large datasets 1) A suite of 12 very high resolution (VHR) WorldView-3 

images (WV-3), whose image acquisition date cover each pheno-phase of the 

growing season from April to November; and 2) the Washington D.C. 

Department of Transportation’s (DDOT) field inventory of almost 50,000 street 

trees. We classify the 19 most abundant tree species with an overall accuracy of 

63.7% and classify the ten most abundant genera with an overall accuracy of 

75.6%. We observe (1) a decline in classification accuracy with each added 

species (2) larger declines in accuracy when attempting to classify species in the 

same genus, and (3) images taken from spring leaf emergence and fall 

senescence phenological period have the most potential to discriminate trees at 

both species and genus level.  Especially if satellite data can be matched to these 

key pheno-phases, our study highlights that current VHR satellite sensors now 

have the radiometric, spectral, and spatial resolution to begin serving in their 

long-awaited role as powerful tools for managing species-rich urban forests.   
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3.1 Introduction 
Obtaining spatially accurate information of tree species is critical for sustainable forest 

management in rural and urban settings, where the large variety of trees provides economic, 

aesthetic, as well as ecosystem values (Miller 1996, Nowark et al. 2006). With the increased 

availability of high temporal, spatial and spectral resolution satellite data during the past two 

decades, researchers have made large efforts on collecting tree species information via remote 

sensing imagery (Key et al. 2001, Holmgren et al. 2008, Immitzer et al. 2012, Jensen et al. 2012, 

Pu and Landry 2012, Alonzo et al. 2014, Karlson et al. 2016, Wang et al. 2016, Madonsela et al. 

2017, Fang et al. 2018). Yet, three key challenges remain: (1) a comprehensive assessment of 

phenology and its impact on spectral response of different species in tree species classification, 

(2) the availability of a sufficient forest reference inventory with a wide range of tree species in 

different taxonomic levels; and (3) a robust analysis method to discriminate a large numbers of 

tree species.    

Researchers have investigated the effects of temporal resolution, or phenology, for tree 

species mapping using high spatial resolution images in both rural and urban settings (Key et al. 

2001, Immitzer et al. 2012, Pu and Landry 2012, Karlson et al. 2016, Fang et al. 2018, Pu, Landry 

and Yu 2018, Hubert et al. 2019). They demonstrated the advantages of using multi-seasonal or 

multi-temporal images over using a single date of very high resolution (VHR) image for tree 

species classification (Key et al. 2001, Xiao Ustin and McPherson 2004, Li et al. 2015, Karlson et 

al. 2016, Madonsela et al. 2017, Fang et al. 2018, Pu, Landry and Yu 2018, Yan et al. 2018). 

Multi-seasonal VHR images are crucial for capturing key phenological development features of 

tree species during different transition periods. In urban settings, Li et al. (2015) reported an 

overall accuracy around 92% using bi-temporal VHR images from September and October to 

classify four urban tree species in parts of Beijing, China. Beside tree species mapping using bi-

temporal data, Key et al. (2001) evaluated the potential of VHR images acquired in more than 

two seasons for tree species classification. By comparing images from four dates in May, June 
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and October, they recommended an autumn image (October) to reach the highest tree species 

classification accuracy. However, Pu, Landry and Yu (2018) found that an image from late spring 

(April) produced the highest classification accuracy for seven urban tree species compared with 

images from February, May, August and November, since April image captured the seasonal 

transition from dry-spring to wet-summer in Tampa, FL.  These previous studies were limited to 

their image acquisition time, each of which only covered part of the pheono-phases from the 

growing season period from April to November. A more systematic study is therefore needed to 

fill the gap for a comprehensive understanding of the importance of phenology by using images 

taken from each of the pheno-phases covering the entire growing season for urban tree species 

classification.  

Perhaps due to the limited sample size for calibration/validation in the forest inventory 

database, there is a wide range in the number of tree species and taxonomic levels included in 

remote sensing-based tree species mapping projects. (Xiao, Ustin and McPherson 2004, 

Holmgren et al. 2008, Immitzer et al. 2012, Ghosh et al. 2014, Karlson et al. 2016, Pu, Landry 

and Yu 2018). For example, Holmgren (2008) classified three types of trees (pine, spruce, and 

other deciduous trees) with an overall accuracy around 96%. Karlson et al. (2016) classified five 

dominant tree species in a mixed forest including both deciduous and evergreen trees via 

RandomForest (RF) classifier and the overall accuracy was 83%. Immitzer et al. (2012) identified 

ten tree species in a mixed forest and derived the overall accuracy around 82% from RF. Xiao, 

Ustin and McPherson (2004) classified three forest tree types (Conifer, broadleaf deciduous and 

broadleaf evergreen) and sixteen tree species using spectral mixture analysis with overall 

accuracy as 90% and 70% respectively; they also argued that the accuracy was highly affected by 

the crown size and the density of leaves. Among these studies, high accuracies were derived, but 

there is limited discussion on how the number or types of classes affect the accuracy of tree 

species mapping. In addition, the classification taxonomic level varies due to the complexity of 

tree species composition in urban settings. Some studies focused on classifying trees within the 
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deciduous forest (Pu and Landry 2012) while some focused on discriminating deciduous trees 

from conifers (Immitzer et al. 2012, Karlson et al. 2016). In order to avoid a bias due to the 

different number of tree species classified, in this study we concentrate on exploring how 

different taxonomic levels and number of classes affect the performance of tree species 

classification in the urban forest setting.  

The recent advancement in machine learning algorithms has presented new prospects for 

object-based remote sensing image classification, as well as robust linkages leveraging remote 

sensing imagery and forest inventory database for tree species identification (Xiao, Ustin and 

McPherson 2004, Holmgren et al. 2008, Immitzer et al. 2012, Ghosh et al. 2014, Liu et al. 2015, 

Karlson et al. 2016, Fang et al. 2018, Pu, Landry and Yu 2018). Non-parametric classifiers such 

as RF are often preferred for tree species mapping because of their typically higher prediction 

accuracy (Maxwell, Warner and Fang 2018). Moreover, the RF classifier does not require 

normally distributed input data. Our study uses RF classification to leverage 1) high-resolution 

remote sensing images covering the entire growing season and 2) a large forest inventory 

database for object-based tree species classification. We chose object-based image analysis since 

it significantly improved tree species classification accuracy by incorporating the inherent 

spectral variability within individual tree crowns (Im et al. 2014, Li et al. 2015, Karlson et al. 

2016, Fang et al. 2018).  

 In this study, we aim to 1) examine the potential of using VHR images to identify urban 

street tree species in terms of the number of classes and taxonomic levels; 2) identify the key 

pheno-phases that can govern urban tree species classification accuracy, by using a time series of 

WV-3 imagery which has been adopted for tree species classification and health assessment (Li et 

al, 2015, Au 2018, Ferreira et al. 2019), and a large forest inventory reporting tree species 

information over 160 species from District Department of Transportation (DDOT). We 

hypothesize that 1) the overall accuracy will decrease with each added class because the potential 

for spectral similarity between classes increased; 2) leaf pigment-induced changes in visible-light 
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spectral bands during spring leaf emergence or fall senescence phenology periods will be the 

most predictive components of spectral variability linked to species differences.  

3.2  Methods 

3.2.1 Study area  

 

Washington D.C. has extensive urban forests with tree coverage around 30% of the land 

area (Andrada II et al. 2015). The city landscape has a large variety of tree species, including 

native trees such as elms, maples, oaks, and exotic trees such as cherries and ginkgos. Besides 

trees under private ownership or maintained by various local agencies (e.g. National Capital 

Planning commission, National Park Services, District of Columbia’s Department of Parks and 

Recreation), the Urban Forestry Administration (UFA) is the District’s governmental agency 

which responsible for planting, pruning, removal and other routine maintenance of the remaining 

street trees in the public spaces.  These street trees comprise approximately 9% of the entire 

Washington D.C. urban forest (Government of the District of Columbia 2010). In order to 

maximize the overlap of this street tree database with archived WV-3 images, we set our study 

site within central Washington D.C., covering approximately 45 km2 (Figure 3.1).  
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Figure 3.1 a)   Study area (within red boundary) in the District of Columbia. b) Portion of the 
digitized tree locations superimposed on a WorldView-3 true color image from September 28 
2014.  

3.2.2 Field dataset 

 

 We obtained the tree inventory data from the DDOT Street Spatial Database (District of 

Columbia Government 2018).  The field survey dataset contains attributes of street trees such as 

the tree stem coordinates, species common name, tree health condition class (excellent, good, fair, 

poor and dead), and diameter at breast height (DBH) in U.S feet. In total, there are 49,303 tree 

stems within our 45 km2 study areas. To avoid difficulties from small tree crowns, we only 

considered mature trees with DBH greater than 10.16 cm (4 inches) (Nascimebene et al. 2009, 

Memiaghe et al. 2016).  In addition, we also excluded trees labeled as “dead”. Finally, to 

eliminate bias from small sample sizes, we only considered tree species with more than 200 

individuals (~1% of the full dataset).  After applying these criteria, our final tree inventory data 

consists of the top nineteen species.  These belong to ten different genera and account for 16,496 

individual trees (Table 3.1) which is 33.5% of the total database.  
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Table 3.1  The most common 19 species with genus information, ranked by sample size 

 

* Symbols adopted from USDA Plants Database 

3.2.3 Image datasets 

We purchased twelve WV-3 cloud-free Atmospheric Compensation (ACOMP) images from a 

DigitalGlobe vendor. WV-3 images comprise eight multispectral bands (B1-8) (four traditional 

multispectral bands (Blue (B2: 450 – 510 nm), Green (B3: 510 – 580 nm), NIR-1 (B7: 770 – 895 

nm), Red (B5: 630 – 690 nm), four additional bands (Coastal (B1: 400 – 450 nm), Yellow (B4: 585 

– 625 nm), Red edge (B6: 705 – 745 nm), NIR-2 (B8: 860 – 1040 nm)) at a spatial resolution of 

1.2 m and one panchromatic band at a spatial resolution of 0.3m: Panchromatic band (450 – 800 

nm). Our high temporal resolution WV-3 images from 2014 to 2017 cover the entire leaf-on 

period from April to November with different pheno-phases (Table 3.2).  We applied Rational 

Polynomial Coefficient (RPC) orthorectification for WV-3 images using National Agriculture 

Imagery Program (NAIP) images as the reference raster (Maxwell et al. 2017) and LiDAR data 

Common Name Scientific name Symbol* Number of trees sampled

1 Red maple Acer rubrum ACRU 2854

2 Willow oak Quercus phellos QUPH 1909

3 American elm Ulmus americana ULAM 1728

4 Pin oak Quercus palustris QUPA2 1703

5 Japanese zelkova Zelkova serrata ZESE80 1226

6 Red oak Quercus rubra QURU 1065

7 Sugar maple Acer saccharum ACSA 891

8 London plane tree Platanus  acerifolia PLHI 814

9 Little leaf linden Tilia cordata TICO2 700

10 Ginkgo Ginkgo biloba GINKG 682

11 Norway maple Acer platanoides ACPL 590

12 Chinese elm Ulmus parvifolia ULCH 469

13 Scarlet oak Quercus coccinea QUCO2 395

14 American linden Tilia americana TIAM 295

15 Sawtooth oak Quercus acutissima QUAC80 293

16 Cherry Prunus avium PRAV 231

17 American sycamore Platanus occidentalis PLOC 225

18 Sweetgum Liquidambar styraciflua LIST2 220

19 Bradford callery pear Pyrus calleryana PYCA80 206

Total 16,496
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(District of Columbia Government 2009) as DEM raster in ENVI 5.4. The resulting 

orthorectification had an RMSE less than 1 pixel.  

 

Table 3.2 12 sets of WorldView-3 data  

 

 3.2.4 Tree crown delineation  

 

We applied a two-step delineation procedure to delineate tree crowns as individual objects.  

First, we determined a common crown buffer size of 4.5 m, based on the average diameter at 

breast height DBH (33.8cm=13.3 inches) and an allometric equation (Lamson 1987).  Then we 

applied these radial buffers for the GPS coordinates of all tree stems location in the DDOT 

database in ArcMap 10.6. Next, we checked the histogram of each NDVI image and masked 

pixels within these radial buffers that had NDVI values less than 0.25 in order to remove 

confounding influence of non-vegetated portions of possible tree crowns. We visually confirmed 

the performance of our crown delineation procedure by checking a random subset of 100 crowns. 

3.2.5 Vegetation indices calculation and RandomForest classification 

 

We first calculated 11 vegetation indices in ENVI 5.4 (Table 3.3) by combining both visible 

and near infrared bands from each of the twelve WV-3 images (12 dates * 11 indices = 132 

vegetation indices in total). These typical vegetation indices measure the general quantity of 

Time Season Day Of Year Mean Off nadir °

18-Apr-15 early leaf emergence 108 16.4

16-May-16 late leaf emergence 137 23.9

11-Jun-17 full leaf expansion 162 22.2

16-Jul-15 full leaf expansion 197 19.4

24-Jul-16 full leaf expansion 206 24.3

30-Jul-17 full leaf expansion 211 14.0

30-Aug-17 full leaf expansion 242 14.7

17-Sep-15 early leaf senescence 260 17.0

28-Sep-14 early leaf senescence 271 26.6

11-Oct-16 late leaf senescence 285 22.0

31-Oct-15 late leaf senescence 304 24.0

18-Nov-16 late leaf senescence 323 17.5
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vegetation greenness, which are also frequently mentioned for other tree species discrimination 

studies (Pu and Landry 2012, Li et al. 2015, Karlson et al. 2016, Fang et al. 2018, Pu, Landry and 

Yu 2018). Second, we calculated four types of texture features using panchromatic bands for each 

image based on the grey-level co-occurrence matrices (GLCM) in eCognition. These texture 

variables can help describe differences in crown architecture (e.g. within crown gaps) between 

different tree species. The four types of texture features are (1) Homogeneity. Within the 

delineated crown object, homogeneity describes the similarity of pixel values. (2) Contrast. 

Contrast summarizes the variation of pixel values exponentially. (3) Entropy. Within the 

delineated crown object, entropy measures the disorder or randomness in the image values.  (4) 

Dissimilarity. It measures the heterogeneity of pixel values linearly within the tree crown. We 

used all 132 vegetation indices and 48 texture variables as predictors for RF classification. Since 

we tested the performance of RF by the number of classes, we didn’t apply feature selection and 

feature reduction process to maintain consistency in using 180 predictors between each model.  

We applied RandomForest (RF) machine learning algorithm for classifying tree species using 

the 180 predictors calculated above. Using large numbers of decision trees with a bootstrapped 

sample of training data each time, a RF classifier is an ensemble classifier which avoids the 

shortage of regular decision trees (Maxwell, Warner and Fang 2018). For each binary split within 

a tree, RF uses maximum node purity (Karlson et al. 2016). One of the benefits of RF 

classification is that, since the classification uses a subset of the data in each tree, it produces a 

so-called out-of-bag error. To evaluate how discrimination accuracy is sensitive to the number of 

classes included in the sample, we ranked our tree inventory data by sample size from high to low 

for top nineteen species (10 genera). Next, we grouped our tree inventory into 1) eighteen subsets 

at the species level: we selected the two most dominant species as the first subset, and we added 

one more species (the next largest class) each time iterately into the next subset until we reached 

nineteen species for the 18th subset; 2) 9 subsets at genus level: we selected the two most 

dominant genera as the first subset, and we added one more genus (the next largest class) each 
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time iterately into the next subset until we reached ten genera for the 9th subset.  For each of these 

subsets, we randomly selected 75% of the dataset as training data and treated the remaining 25% 

as validation. We applied the up-sampling method for each of training set (Caret package) prior to 

RF classification in order to avoid bias induced by class imbalance (Maxwell, Warner and Fang 

2018). Then we implemented a 10-fold cross validation RF classifier (mtry=100) for each 

training dataset using Caret package in R (Kuhn 2012, Maxwell, Warner and Fang 2018) 

independently. We used the validation data for prediction and confusion matrix generation. We 

evaluated the potential of WorldView-3 images to classify tree species by recording validation 

kappa and overall accuracy calculated from confusion matrices. Based on these evaluations, we 

tested the effect of the number of classes on urban tree species classification accuracy by adding 

one more class (the next most abundant class) each time at both species and genus level. We 

assessed the most optimum pheno-phases of WV-3 data to classify nineteen urban tree species 

and ten genera by analyzing variable importance provided by the RF classifier.  

Table 3.3 Vegetation indices calculated for tree species classification 

*Where R is the reflectance and the subscript refers to the spectral band (e.g. Blue, Red, etc). 

 
 

Feature name Description* Reference

NDVI1 (R NIR-1 - R Red) / ( R NIR-1 + R Red) Rouse et al. 1973

NDVI2 (R NIR-2 - R Red) / ( R NIR-2 + R Red) Rouse et al. 1973

RENDVI1 (R NIR-2 - R RedEdge) / ( R NIR-1 + R RedEdge) Karlson et al. 2016

RENDVI2 (R NIR-2 - R RedEdge) / ( R NIR-2 + R RedEdge) Karlson et al. 2016

Green Red Ratio (GR) (R Green - R Red) / ( R Green + R Red) Karlson et al. 2016

Green Yellow Ratio (GY) (R Green - R Yellow) / ( R Green + R Yellow) 

Green Normalized Difference Vegetation Index  1 (GNDVI1) (R NIR-1 - R Green) / ( R NIR-1 + R Green) Gitelson, A., and M. Merzlyak, 1998

Green Normalized Difference Vegetation Index  2 (GNDVI2) (R NIR-1 - R Green) / ( R NIR-1 + R Green) Gitelson, A., and M. Merzlyak, 1998

Green Leaf Index (GLI) ((R Green – R Red)+ ( R Green - R Blue)) /(2*RGreen+RRed+RBlue) Louhaichi et al. 2001

EVI1 2.5 x ((R NIR-1 - R Red)/( R NIR-1 + 6 x R Red - 7.5 x R Blue + 1))     Omer et al. 2016

EVI2 2.5 x ((R NIR-2 - R Red)/( R NIR-2 + 6 x R Red - 7.5 x R Blue + 1))     Omer et al. 2016

GLCM homogeneity GLCM homogeneity 

GLCM contrast GLCM contrast 

GLCM entropy GLCM entropy 

GLCM dissimilarity GLCM dissimilarity 

Pu and Landry 2012

Vegetation Index

Texture
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3.3 Results 

3.3.1 The effect of number of classes on urban tree species classification  

 

Generally, by adding one more class each time, validation kappa accuracy and overall 

accuracy exhibited similar trends at both species and genus level (Figure 3.2 a, b). With each 

added class, the validation kappa accuracy gradually decreased with each added class. When 

classifying nineteen classes at the species level, we derived the lowest validation kappa accuracy 

as 59.8% (Overall accuracy =63.7%). Similarly, we derived the lowest validation kappa accuracy 

as 68.5% (Overall accuracy =75.6%) when classifying ten genera.  Another observation is that the 

validation kappa accuracy decreased more rapidly at the species level than at the genus level by 

adding a class each time. In particular, the validation accuracy decreased from 78.3% to 72.6% 

when adding red oak for 6 species classification, and then the validation accuracy declined again 

to 68.2% after adding sugar maple as the 7th class.  We derived the largest decrease of validation 

kappa (3.3%) at genus level when adding Ulmus for 3 genera classification (kappa accuracy= 

75.6%, overall accuracy 84.8%).  

 We generated two confusion matrices from validation datasets containing our whole 

sample of nineteen tree species (Table 3.4) and 10 genera (Table 3.5). The producers’ accuracy 

values for each class ranged from 1.0% to 84.1% for nineteen tree species classification (Table 

3.4). We found the highest producers’ accuracy for Ginkgo (GINKG, Producers’ 

accuracy=84.1%, User’s accuracy= 76.9%, validation sample size=170); for the more abundant 

species red oak (QURU) had a relatively lower producers’ accuracy (Producers’ accuracy=50.0%, 

User’s accuracy=63.6%, validation sample size=266). The spectral confusion for red oaks mainly 

occurred with pin oaks (QUPA2) and willow oaks (QUPH).  For the ten genera classification, 

(Table 3.5), we observed a relatively lower producers’ accuracy for the more abundant genus 

Ulmus (Producers’ accuracy=62.8%, User’s accuracy= 79.5%, validation sample size=549) 

compared with the producers’ accuracy for less abundant genus Zelkova (Producers’ accuracy 
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=75.5 %, User’s accuracy= 88.2%, validation sample size=306). The lower producers’ accuracy 

for elms was associate with confusion with Acer and Quercus.   

 

3.3.2 Variable importance for 19 species and 10 genera classification  

 

We selected the most influential ten predictors for nineteen species and ten genera 

classification based on variable importance provided by RandomForest classifier (Fig 3.3a & b). 

While the variable importance rank was different between each classification, we found a large 

agreement on the top ten important variables component at both taxonomic levels. We also 

observed that all these ten top variables, which consist of seven types of vegetation indices (GLI, 

GR, NDVI1, RENDVI2, GNDVI1, EVI1, GY), belong to vegetation indices rather than texture 

variables calculated from spring leaf emergence or fall senescence images. In addition, vegetation 

indices calculated using the visible band spectrum, such as GLI (green and red), had the highest 

rank, whereas vegetation indices calculated by infrared bands (i.e. RENDVI) and texture 

variables were less important for classification.  
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a.     

b.  

 

Figure 3.2 Validation Kappa Accuracy from RF classification at species level (a) (from 2 to 19 

most common species) and genus level (b) (from 2 to 10 most common genera).  
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Table 3.4  Confusion matrix from the validation of the 19 species classification.  

  

PA: Producer’s accuracy; UA: User’s accuracy; OA: Overall accuracy 

 

 

 

 

ULAM TIAM PLOC PYCA80 PRAV ULCH GINKG ZESE80 TICO2 PLHI ACPL QUPA2 ACRU QURU QUAC80 QUCO2 ACSA LIST2 QUPH Total UA (%)

ULAM 326 6 0 2 2 10 3 10 5 3 7 5 42 12 0 2 7 0 14 456 71.5

TIAM 1 23 0 0 0 0 0 0 10 0 2 0 0 0 1 0 0 0 0 37 62.2

PLOC 0 0 7 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 11 63.6

PYCA80 0 0 0 21 0 0 0 0 1 1 0 1 2 1 0 1 0 0 4 32 65.6

PRAV 1 0 0 0 14 0 3 2 0 2 1 3 8 1 0 0 3 2 4 44 31.8

ULCH 8 1 0 1 2 40 0 2 2 0 0 3 1 0 1 2 0 0 5 68 58.8

GINKG 8 1 0 0 1 2 143 1 5 1 5 2 8 3 2 0 0 0 4 186 76.9

ZESE80 4 2 0 7 3 7 0 240 3 1 2 5 8 6 1 2 10 3 1 305 78.7

TICO2 10 25 1 3 1 3 3 2 105 1 12 1 10 0 2 0 1 3 2 185 56.8

PLHI 8 2 31 1 11 12 5 2 5 156 6 11 15 4 3 7 3 2 11 295 52.9

ACPL 3 4 1 1 0 1 0 0 9 0 67 2 8 1 0 0 2 0 3 102 65.7

QUPA2 4 0 2 3 2 5 0 12 1 2 3 294 18 62 4 49 7 2 23 493 59.6

ACRU 33 5 8 9 17 15 7 18 20 15 22 33 543 18 8 11 79 4 48 913 59.5

QURU 3 1 0 2 0 4 0 6 0 2 2 27 6 133 0 12 4 0 7 209 63.6

QUAC80 0 0 2 0 0 1 0 0 0 0 0 1 2 2 42 1 0 0 2 53 79.2

QUCO2 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 1 0 0 0 6 16.7

ACSA 3 2 0 0 0 1 1 7 1 2 7 1 24 3 0 0 102 0 4 158 64.6

LIST2 2 0 1 1 1 1 1 0 0 5 1 3 1 0 3 0 1 29 4 54 53.7

QUPH 18 2 3 1 4 15 4 4 8 9 11 30 17 20 6 11 4 10 341 518 65.8

Total 432 74 56 52 58 117 170 306 175 204 148 426 714 266 73 99 223 55 477

PA (%) 75.5 31.1 12.5 40.4 24.1 34.2 84.1 78.4 60.0 76.5 45.3 69.0 76.1 50.0 57.5 1.0 45.7 52.7 71.5

OA (%) = 63.7 Kappa (%) = 59.8

Reference
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Table 3.5  Confusion matrix for 10 genera classification  

 

  PA: Producer’s accuracy; UA: User’s accuracy; OA: Overall accuracy 

  

Acer Ginkgo Liquidambar Platanus Prunus Pyrus Quercus Tilia Ulmus Zelkova Total UA (%)

Acer 901 13 8 41 34 14 133 64 91 44 1343 67.1

Ginkgo 4 140 0 0 0 0 7 2 2 0 155 90.3

Liquidambar 2 0 21 5 1 1 3 0 4 0 37 56.8

Platanus 15 2 1 178 5 0 19 3 9 3 235 75.7

Prunus 3 0 2 1 7 0 0 1 0 0 14 50.0

Pyrus 1 0 0 2 0 14 4 1 1 0 23 60.9

Quercus 95 9 21 29 9 15 1127 12 83 25 1425 79.1

Tilia 26 3 1 0 0 0 3 152 10 1 196 77.6

Ulmus 30 3 1 4 1 2 34 12 345 2 434 79.5

Zelkova 7 0 0 0 1 6 11 2 4 231 262 88.2

Total 1084 170 55 260 58 52 1341 249 549 306 3116

PA (%) 83.1 82.4 38.2 68.5 12.1 26.9 84.0 61.0 62.8 75.5

OA (%) =75.6 Kappa (%) = 68.5

Reference
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a)      

b)  
 

Figure 3.3  Top ten important variables at a) 19 species  b) 10 genera level.   Variable importance is defined by the RF 
algorithm. 
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 3.4 Discussion  
 

 By using a robust machine learning algorithm to leverage large forest inventory data as well as a 

suite of high spatial resolution images, our study makes three novel contributions to tree species 

classification research.  First, our study reaffirms that focusing on dates with distinctive phenology, which 

can enhance inter-species spectral variability, is a key asset for tree species mapping (Key et al. 2001, Hill 

et al. 2010, Li et al. 2015, Madonsela et al. 2017).   Second, we confirmed that the performance of tree 

species classification is affected by the number of classes and by the taxonomic level of those classes. 

Third, we successfully classified nineteen tree species at crown-level in an exclusively deciduous forest 

setting. Previous studies investigated tree species mapping in a mixed forest (Xiao, Ustin and McPherson 

2004, Holmgren et al. 2008, Immitzer et al. 2012, Ghosh et al. 2014, Karlson et al. 2016, Pu, Landry and 

Yu 2018), while our study is more challenging since our study site is dominated by deciduous trees. Our 

approach confirmed that remote sensing images taken from spring leaf emergence and fall senescence 

phenological period have the most potential to discriminate trees at both species and genus level. 

3.4.1 Effects from number of classes and taxonomic levels  

 

The quality of the training samples such as the number of training samples and class imbalance 

affects the performance of machine learning algorithms including RF (Maxwell, Warner and Fang 

2018). Previous research for tree species classification typically varies from 3 to over 19 species (Xiao 

and McPherson 2005, Holmgren et al. 2008, Immitzer et al. 2012, Pu and Landry 2012, Ghosh et al. 

2014, Karlson et al. 2016, Fang et al., 2018). Our study investigated the relationship among the number 

of classes to be identified and the validation kappa accuracy of RF classification for mapping urban 

street trees.  We found that both the size of training samples and the taxonomic group can affect the 

classification accuracy. Specifically, we found a negative relationship between the number of classes 

being identified and the accuracy of the validation data is measured by the kappa coefficients (Figure 

3.2a). As the training sample size for each added class decreases between different models, our sample 
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potentially becomes more biased, and less representative of the within-class spectral variability 

exhibited by the validation sample for the added class. Therefore, the validation kappa and overall 

accuracy decreased gradually at both species and genus level. Despite effect from smaller sample size 

for added classes, the similarity between the added class and the existing classes also resulted in the 

validation kappa to decline. For example, in Figure 3.2a, the largest drop in kappa after adding a new 

class is the 6 species classification declined 5.7% after adding red oak. Errors in this 6 tree species 

classification were mainly related to the spectral similarity between red oak and other species of the 

same Erythrobalanus sub genus group, such as pin oak.  This is associated with the fact that red oaks 

and pin oaks are closely related taxonomic groups which share a similar phenological timing and thus 

share similar spectral characteristics in the expression of the leaf emergence and senescence phases. It is 

challenging to capture these similar spectral features between red oaks and pin oaks, which resulted in 

low validation accuracy. Moreover, our confusion matrices in Table 3.5 further suggested that species 

with different taxonomic level provided more inter-species spectral variability for tree species 

discrimination. For instance, ginkgo produced the highest producer’s accuracy even though ginkgo was 

not our most common species. Since ginkgo does not share the same genus with other species, ginkgo 

has its own division and unique crown-level spectral features at both species and genus level 

classification.  

Our assessment of classification at the genus level provided complementary information for the 

importance of taxonomic levels for tree species classification. There tends to be greater phenological 

separation between different genera than different species in the same genus. For instance, at the species 

level, red oak produced low producer’s accuracy due to spectral similarity with other types of oaks. In 

contrast, in our ten genera classification, oaks produced the highest producer’s accuracy, which further 

validates that the similarity within same taxonomic groups can reduce accuracy while the variability 

among different taxonomic groups can improve classification accuracy. Thus, we do not recommend 

comparing accuracies directly from different studies since taxonomic levels have a large impact on 

classification accuracy.  For example, Immitzer et al. (2012) and Karlson et al. (2016) both reported 
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overall accuracy over 80% for ten species and five species classification. The overall accuracy of ten 

species classification was as high as five species classification since the study site was a mixed forest 

where most of the species were in different taxonomic groups. A heterogeneous landscape, a mixed 

forest, or site with tree species in different taxonomic groups would likely result in a higher species 

classification accuracy. High spatial resolution images capture more inter-genus spectral variability 

compared with inter-species spectral variability, which makes it more difficult to classify trees at 

species level.  

3.4.2 Key pheno-phases for tree species mapping  

 

Our assessment of variable importance suggests that high spatial resolution images acquired 

during spring leaf emergence and fall senescence phenology contributed most for the classification 

accuracy. In addition, vegetation indices, which describe the pigment-induced change between species, 

contribute more for tree species classification than texture variables, which can indicate structural 

features for each crown. This is contrast to Xiao and McPherson (2005) who suggest a spring or summer 

image rather than an autumn image provides better separation of tree species. Our results indicated that 

spring and autumn images especially late autumn images from October and November were most 

helpful to characterize the spectral differences due to leaf senescence. Variables calculated from a June 

or July image with peak vegetation contributed less to tree species classification, since the spectral 

variability between different species was relatively low. Moreover, this spectral difference among 

species was highly related to their species-specific autumn color rather than their crown architecture 

since the top three important variables (GLI, GR) were calculated using the visible bands of red and 

green. Specifically, the phenological variability in timing and the expression of leaf pigments caused 

tree species differences to be most visible during the spring leaf emergence and fall leaf senescence. In 

addition to the importance of indices calculated by yellow band to describe the leaf-pigment induced 

spectral difference (Kalson et al. 2016), our results demonstrated that indices calculated from other 

visible bands i.e. red and green band were the most important factors for successful tree species 
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mapping. Our late-autumn images successfully captured the leaf pigment-induced changes in visible 

light spectral bands which aligned with these species-specific autumn color features. For example, 

ginkgo turns bright yellow (Del 2007) and oak turns red, orange, or brown in late autumn. These 

species-specific phenological patterns and leaf pigment-induced changes have enabled a better 

separation between ginkgo and red oak. In conclusion, the transition periods during spring leaf 

emergence and fall senescence provide the most leaf pigment-induced spectral variability and they are 

optimum phenology periods for successful tree species mapping.  

 3.5 Conclusion 
 

Overall, by using RandomForest classifier to leverage high spatial resolution images, large forest 

inventory datasets and spatially accurate crown objects, this study highlights the opportunities for using 

VHR images to discriminate broadleaf trees at both species and genus level in all environments. First, this 

study demonstrated the benefits of phenology using 12 WV-3 images for 16,496 deciduous tree species 

classification in Washington D.C. Our study comprehensively evaluated the performance of different 

pheno-phases from the entire leaf-on period from April to November for tree species mapping. We 

conclude that images taken in spring leaf emergence and fall senescence are the optimum phenological 

period to discriminate individual tree species. The red and green visible bands are significant in their 

contribution towards the pigment-induced changes in tree species classification. Second, these remote 

sensing images have the potential to classify trees with an overall accuracy of 63.7% at the species level 

and 75.6% at the genus level. VHR remote sensing images have more potential to separate species at 

genus level than species level due to the higher inter-genus spectral variability.  With enough sample size 

for calibration/validation in the forest inventory database, we also evaluated the performance for tree 

species mapping on a function of the number of classes (2-19 tree species classification and 2-10 genera 

classification) and their taxonomic levels. We conclude that the decline of classification accuracy is 

associated with species in similar taxonomic groups. We suggest future studies to use images taken 
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during spring leaf emergence or fall senescence period to document the leaf pigment-induce changes for 

tree species mapping in both urban and rural environments.   
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*Paper currently in revision for re-submission to Remote Sensing of Environment.  

Abstract  

Spatially accurate and timely information on tree health is an essential component of 

maintaining sustainable urban environments.  We evaluate the potential of WorldView-3 

(WV-3) satellite images from June 11th, July 30th and August 30th, 2017 to discriminate 

the field-measured health condition class of 2538 trees within the District of Columbia 

Department of Transportation’s Street Tree Spatial Database.  For each street tree in each 

image, we measured six vegetation indices (VIs), and find that the NDVI1, defined as the 

normalized ratio of the red and first near infrared bands, on the July image shows the 

most potential to discriminate among trees measured in good, fair, and poor health 

condition classes.  Yet, the variability in VIs attributable to health condition class is 

small, especially relative to the large declines in VIs between the June and August image 

dates.  This greendown phenological pattern occurs similarly for trees in all health 

condition classes, and is thus essential to consider when comparing VIs from different 

years or months.  Based on these findings, we propose two strategies for using high-

resolution satellite data in street tree health management: (1) using anniversary date 

imagery to track the VIs of individual trees from year to year, and (2) using single-date 

imagery to prioritize field-based street tree health assessments.    
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4.1 Introduction 
 

More than half of the world's population now lives in cities (Lederbogen et al. 2011) and tree health 

conditions have been widely recognized as central for the sustainability of these expanding urban 

populations (Huang et al. 2007, Xiao and McPherson 2005).  As a case study representative of other large 

urban centers worldwide (Gregg et al. 2003, McPherson et al. 1994, Nowak and Crane 2002, Wong and 

Yu 2005), our study focuses on Washington D.C., where nearly 30% of the land surface is covered by 

urban trees. Each year, these trees provide D.C. with $3.6 billion in structural values (e.g. providing shade 

to cool buildings), and $2.5 million in functional values like pollution removal (Nowak et al. 2006). There 

are approximately 1,928,000 trees (Nowak et al. 2006) throughout D.C., and extensive efforts with an 

annual budget around $15.5 million are directed toward urban tree management (e.g. planting, pruning, 

removing, maintaining). To improve this urban tree management process, District Department of 

Transportation (DDOT) has created a Street Tree Spatial Database to track the location and attributes (e.g. 

DBH, health condition class, and species) of all street trees since 2006, and they have expended 

considerable effort to regularly update this database.  

Poor tree health can be caused by biotic agents like fungi, bacteria or viruses, or abiotic agents such 

as drought or freezing injury (Jackson 1986). In addition, because of urban environmental disturbances 

such as air pollution, compacted soil, damage from traffic or pedestrians, and improper planting, urban 

street trees typically face a more stressful environment compared with trees in native forests (McIntyre 

2006).  Previously, one of the most common trees in D.C., the American elm (Ulmus americana), was 

almost entirely lost to Dutch elm disease (Ophiostoma spp., Banfield 1968, Nowak et al. 2006). 

Currently, over 30% of the tree population in D.C. is at risk of being lost to the Asian Longhorned Beetle 

(Anoplophora glabripennis, Nowak et al. 2006).  Less severe, more chronic agents, such as Bacterial leaf 

scorch (Harris and Balci 2015) also affect street trees in D.C.  These diseases and pests are often the 

initiators of diminished tree health, which can directly lead to tree death, ensuing economic losses, and 

deteriorating quality of life in urban settings (Harris and Balci 2015, Nowak et al. 2006).  
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        Tree health is traditionally monitored via field surveys. However, there is great potential for using 

remote sensing to monitor tree health.  Poor health is often expressed by lowered leaf water or chlorophyll 

content, which both affect the spectral reflectance of trees (Knipling 1970, Chaves et al. 2002, Xiao and 

McPherson 2005, Huang et al. 2007, Sankaran et al. 2010, Eitel et al. 2011, Asmaryan et al. 2013).  

Indeed, promising research from non-urban forests has demonstrated potential for evaluating vegetation 

health from multispectral and hyperspectral data collected at the scale of a pixel or leaf (Xiao and 

McPherson 2005, Franke and Menz 2007, Huang et al. 2007, Delalieux et al. 2009, Eitel et al. 2011, 

Lambert et al. 2013, Michez et al. 2016). For instance, increased presence of Huanglongbing disease 

(Candidatus Liberibacter spp.) was associated with decreased NIR reflectance in citrus trees (Li et al. 

2012). Given the sensitivity of the NIR spectral region to tree health, various vegetation indices like the 

normalized difference vegetation index (NDVI) are often correlated with poor health (Xiao and 

McPherson 2005, Eitel et al. 2011). Yet, despite the well-established linkages among spectral reflectance 

and tree health at pixel and leaf scales in rural settings, there remain substantial challenges for researchers 

and managers wishing to apply satellite data to assess the health of street trees at the biologically-

meaningful, and necessary management scale of individual tree crowns.  

Here, we take advantage of promising new field and image datasets to evaluate the current prospects 

for meeting these challenges by matching 2308 street trees in the DDOT Street Tree Spatial Database 

with atmospherically corrected WorldView-3 spectral data collected on June 11th, July 30th, and August 

30th, 2017.  Recently, an exploratory analysis of trees in various cities around the world found that the 

high spatial, radiometric, and spectral resolution of WV-3 data was useful for resolving individual urban 

trees, and for tracking spectral changes consistent with declining tree health (Au 2018).  Building from 

that work, the goal of our study is to systematically evaluate whether WV-3 data can be used to detect a 

statistical difference among street trees marked by the DDOT as having different field-assessed health 

condition classes (e.g. good, fair, poor).  By robustly evaluating whether a signal of individual street tree 

health can be detected from satellite imagery, our study can lay a foundation and provide guidelines for 

urban foresters wishing to incorporate remote sensing imagery into the management of street tree health.  
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We explicitly examine essential remote sensing data considerations in the areas of spatial resolution, 

useful spectral regions, and temporal variability.  First, to take full advantage of the high spatial resolution 

of WV-3 data, we present a novel, two-step adaptive process to delineate individual street tree crown-

objects based on the field and image data.  Second, since tree health may affect the visible, red edge, and 

NIR portions of the spectrum, we evaluate which spectral vegetation indices (VIs) might best describe the 

spectral differences in street tree health. Finally, we consider how non-health related spectral variability 

within the growing season (e.g. related to such factors such as greendown phenology, Elmore et al. 2012, 

Reaves et al. 2018) may affect prospects for street tree health assessments.  Based on our findings, we 

discuss two promising strategies for using high-resolution satellite data in street tree health management.  

4.2 Methods 

4.2.1 Study area  

 

Washington D.C. has extensive urban forests covering much of the city (Andrada II et al. 2015).  

Besides trees under private ownership or various local agencies (e.g. National Capital Planning 

commission, District of Columbia’s Department of Parks and Recreation), the Urban Forestry 

Administration (UFA) is the District’s governmental agency which responsible for planting, pruning, 

removal and other routine maintenance of the remaining street trees in the public spaces.  These street 

trees comprise approximately 9% of the entire Washington D.C. urban forest (Government of the District 

of Columbia 2010). In order to maximize the overlap of this street tree database with available cloud-free 

archived WV-3 imagery, we set our study site within Washington D.C. to a 25 km2 area (Figure 4.1).  
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Figure 4.1. a)   Study area (within red boundary) in the District of Columbia. b) Portion of the digitized 
street tree locations superimposed on a WorldView-3 true color image from August 30, 2017. 

4.2.2 Image datasets 

We purchased WV-3 cloud-free Atmospheric Compensation (ACOMP) imagery from a DigitalGlobe 

vendor. The ACOMP products mitigate the effects of haze and atmospheric scattering and provide 

normalized surface reflectance values (reflectance index) of the surface objects for both panchromatic and 

multi-spectral images (DigitalGlobe, Inc. 2016). The ACOMP products also include radiometric 

corrections (e.g. non-response detector filling, calibrations of the relative radiometric response between 

detectors), as well as sensor correction rectification with respect to the internal detector geometry and 

scan distortion (Ferreira et al. 2019). To independently validate the ACOMP product, we used 50 pixels 

from pseudo-invariant objects distributed throughout the study area to confirm that there is no significant 

difference (P=0.88 in ANOVA test) in the mean NDVI on different dates (Hadjimitsis et al. 2009).  

a.                                                                          b. 
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The data contain eight multispectral bands (B1-8) at a spatial resolution of 1.2 m and one panchromatic 

band at a spatial resolution of 0.3m: Panchromatic band (450 – 800 nm), Coastal (B1: 400 – 450 nm), 

Blue (B2: 450 – 510 nm), Green (B3: 510 – 580 nm), Yellow (B4: 585 – 625 nm), Red (B5: 630 – 690 nm), 

Red edge (B6: 705 – 745 nm), NIR-1 (B7: 770 – 895 nm) and NIR-2 (B8: 860 – 1040 nm).  In order to 

evaluate the ability of imagery to assess tree health at different points during the leaf-on period, we 

acquired three archived WV-3 images from June 11, 2017 (Day of year (DOY) 162), July 30, 2017 (DOY 

211), and August 30, 2017 (DOY 242). The off nadir view angles of these images were 22.2o, 14.0 o and 

14.7o respectively. We used cubic convolution resampling to individually register each image to the 

DDOT LiDAR Reflective surface (District of Columbia Government 2009) (RMSE < 1 pixel). 

4.2.3 Field dataset 

 

 We downloaded the tree inventory data from the DDOT Street Spatial Database on March 8th 

2018 (District of Columbia Government 2018). This D.C. tree inventory was first created by Casey Trees 

Foundation in 2002 and has been updated by the Urban Forestry Administration since 2006.  The dataset 

contains attributes of all street trees such as the tree stem coordinates, species common name, tree health 

condition class, and diameter at breast height (DBH). In total, there are 18,434 tree stems within our 

25km2 study area. Even with the high spatial resolution of WV-3, most trees were too small to provide 

enough spectral data, so we restricted our study to mature trees with DBH greater than 10.16 cm (4 

inches) (Nascimebene et al. 2009, Memiaghe et al.2016).  The database describes five classes of tree 

health condition: excellent, good, fair, poor and dead. A given tree health condition is determined in the 

field by the quality of a crown and growth vigor (Appendix B Table s1, s2).  Only 30 trees were marked 

excellent, so we merged these trees with those marked “good”.  Furthermore, we did not include trees 

classified as “dead”, or trees that did not contain at least 3 pixels that met our NDVI-based tree 

delineation criteria (see section 2.4).   Our final dataset included 1854 trees in the good health condition 

class, 388 in the fair health condition class, and 66 trees in the poor health condition class, for a total 

sample size of 2380 trees.  Even though there are 95 tree species in this sample, just under half of the 
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trees are from five tree species: willow oak (Quercus phellos), red maple (Acer rubrum), pin oak 

(Quercus palustris), American elm (Ulmus americana), and red oak (Quercus rubra). 

4.2.4 Tree crown delineation  

 

We used a two-step process to delineate tree-crown objects, which are objects that contain pixels 

belonging to the crown of an individual tree.  First, we extracted all pixels within a radial buffer from the 

spatial coordinates of each tree trunk.  To avoid introducing uncertainties from allometric equations from 

the 95 different tree species in our study area, we use the average DBH (34.8cm) and a single allometric 

equation (Gering and May 1995) to determine an average crown diameter of 9.1m.  Accordingly, we 

applied a buffer radius of 4.55m as the first step in delineating each tree crown-object.   Second, in order 

to avoid the confounding influence of background non-vegetated pixels (e.g. pavement), we masked any 

pixels with NDVI1 values less than 0.5 (Figure 4.2, Li et al. 2015, Karlson et al. 2016). Using a random 

subset of 100 tree-crown objects, we visually confirmed from pan-sharpened imagery that this two-step 

tree procedure was effective in delineating individual tree crown-objects. We note that for large trees, the 

individual tree crown-objects conservatively include only the central portion of the tree crown.  

 

        

a    b    c 

Figure 4.2 Example of the two-step tree crown-object delineation. Red circle: 4.55m radial tree 
crown buffer. a) True Color WV-3 image from August 30, 2017. b) NDVI1 calculated from the NIR1 and 
red bands. c) Application of the 0.5 NDVI1 threshold, showing the delineated tree crown-object as all the 
white pixels whose majority area falls within the red radial crown buffer.    
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The tree crown-objects in our study are generally not affected by variable spectral reflectance of the 

background, because we are only examining public street trees, and not urban trees in park-like settings 

with backgrounds dominated by other vegetation (e.g. grass).  Our field observations and visual 

examination of available leaf-off imagery revealed that the street trees have two distinct types of 

backgrounds: 1) a relatively pure background of pavement (often with a metal grate surrounding the 

trunk), and 2) a mixed background consisting of pavement and a tree box containing soil, bark mulch, and 

ground vegetation.  Yet, even for the 66 trees within the poor health class where thinning leaf area might 

cause the background to have a consequential effect on the spectral reflectance of a tree crown-object (49 

trees with mixed background and 17 trees with pure background of pavement), we found no statistical 

difference (p=0.2, 0.9, 0.2 for ANOVA test using images acquired from June, July and August 

respectively) in NDVI of trees sorted by these two background types.   

4.2.5 Data analysis 

 

We focus on VIs because they describe expected changes to multiple parts of the spectral profiles 

from trees with different tree health conditions. Our assumption is that the shape of the spectrum is a 

generally more sensitive indicator of tree health than the magnitude of the reflectance in any one band.  

This was supported by preliminary work, in which we examined other image spectral information, 

including raw reflectance on each multi-spectral band, and panchromatic (30cm pixel resolution) image 

texture within the crown objects. This preliminary work indicated that VIs are the most useful and 

straightforward means to statistically test the difference between tree health classes.   

Based on knowledge of how tree health might affect spectral reflectance in the NIR, green, red, and 

yellow portions of the spectrum, we calculated six vegetation indices from each of the three sets of 

images. NDVI1 using the red and first NIR band, NDVI2 using red and the second NIR band,  Red Edge 

NDVI (REDNVI), Green yellow ratio (GY), and the Green Red ratio (GR) (Boochs et al. 1990, Pontius et 

al. 2008, Karlson et al. 2016).  After we extracted and averaged the pixel VI values within each delineated 

tree crown-object, we used repeated non-parametric Wilcoxon/Kruskal-Wallis tests for each combination 
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of VI and image date to evaluate the statistical difference among the VI values of  tree crown-objects in 

different health condition classes.  We identified the most sensitive VI/image date combination as the one 

that achieved the highest Chi-square value.     

4.3 Results 
 

       Within each of the three image dates, the VI values of trees in good, fair and poor health 

condition classes were all highly statistically different (Table 4.1).  Tree health condition class also had 

the expected effects on VIs; trees in the poor health condition class had the lowest mean VI values, trees 

in the fair health condition class had intermediate mean VI values, and trees in the good health condition 

class had the highest mean VI values (Figure 4.3).  As measured by the highest Chi-square from the 

Wilcoxon/Kruskal-Wallis analyses, the most sensitive VI was NDVI on the July 30th (DOY 211) image 

(Table 4.1). The VI’s that included red edge bands were the next most sensitive, followed by the VIs 

using only visible light bands.   

 

Table 4.1 Chi-square values from non-parametric Wilcoxon/Kruskal-Wallis tests of statistical 
difference in VI values among trees in good, fair and poor health condition classes.  All tests were 
significant at p < 0.001.   The bold value denotes the most sensitive image date/VI combination.     

 

  Vegetation Index June July August 

NDVI1 65.97 102.46 77.80 

NDVI2 70.89 94.18 75.57 

RENDVI1 73.71 83.78 46.12 

RENDVI2 72.17 72.17 41.16 

Green Yellow ratio 37.74 48.96 23.61 

Green Red ratio 46.43 48.79 25.14 

 1 
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Figure 4.3 Mean (error bars represent +/- 1 standard error) vegetation index values for trees in three 

health condition classes.  Based on webcam and Landsat phenology data for our study area (from Figure 

7 in Elmore et al. 2012), we also show vertical dotted lines to mark the average DOY of full leaf 

expansion (DOY145), and leaf senescence (DOY 255). 
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4.4 Discussion  
 

4.4.1 Comparison of VIs for tree health condition class assessment 

 

We find that the most sensitive VI for detecting tree health condition class was NDVI1. Previous 

studies illustrated the usefulness of red edge NDVI for early observation of trees with poor health 

conditions (Eitel et al. 2011, Karlson et al. 2016), but we find that the traditional NDVI outperformed 

red edge NDVI in testing the statistical difference of trees in poor, fair and good condition classes 

(Table 4.1). Within the DDOT field surveys, tree health condition classes are evaluated based on the 

crown quality and vigor (Appendix B Table s1, s2). Our results suggest that NDVI1 best matches with 

these field-observed health symptoms. Field observers also note changes in leaf color when assigning a 

tree health condition class, with the increased presence of yellow leaves leading to a fair or poor health 

assessment. By showing that the Green Yellow ratio (calculated from visible bands) is significantly 

different between tree health condition classes, our study reconfirms the potential utility of yellow band 

(Karlson et al. 2016) to describe tree health condition classes. Yet, NDVI1 outperformed Green Yellow 

ratio, which suggests that the change in NIR band reflectance for trees under poor health class is greater 

than the change in yellow band.  This is likely because field-based tree health evaluators more strongly 

associate health with a change of leaf area rather than a change in leaf color.   

We also focused on the most sensitive index, NDVI1, to evaluate how NDVI1 varied by tree 

species.  Among the five most abundant tree species that had a large enough sample size to statistically 

analyze, we find that there are significant differences in NDVI1 (Appendix B Figure s1). Red maple 

had the lowest NDVI1, while red oak had the highest.   Based on this finding of variability in VI among 

species, we also tried to repeat our analysis of the most sensitive VI on a species-specific basis.  

However, for each species, this analysis was hampered by low sample sizes in several health condition 

classes (Appendix B Table s3).  Nevertheless, this exploratory species-specific analysis suggests that 

the most sensitive VI may not be consistent across different tree species (Appendix B Table s4-8). 



 

66 
 

Thus, even while we find NDVI1 to be the best all-purpose VI for assessing tree health condition 

classes, individual species may exhibit tree health condition symptoms that better align with spectral 

variability described by other VIs.  

 4.4.2 Effects of image acquisition date  

 

According to an analysis by Elmore et al. (2012) of the Landsat data record and phenology web 

camera (phenocam) imagery, the leaf-on period in Washington D.C extends from a full leaf expansion 

date around DOY 145 to an average date of leaf senescence around DOY 255 (Figure 4.3).  These 

Landsat and phenocam data from our study area also both evidence a steady decline in greenness during 

this leaf-on period (Elmore et al. 2012).  Importantly, our analysis from the three images illustrates that 

the ACOMP WV-3 data also captures this greendown phenology (Figure 4.3). As we detail in section 

4.3, this decline in greenness, or greendown (Reaves et al. 2018), during the leaf-on period is a 

pervasive feature in vegetation phenology, and has important implications for selecting high resolution 

satellite data to assess street tree health.   

We found that the July image (DOY 211), midway through the leaf-on period, appears to be the 

strongest for detecting a signal of statistical difference in NDVI1 based on field-measured tree health 

condition classes (Table 1).  We suggest that the June image (DOY 162) is less helpful describing tree 

health condition symptoms because this date is close to the full leaf expansion date for some tree 

species.  This timing could cause some trees to have the spectral effects of tree health convolved with 

spectral effects of a late full leaf expansion date.  Indeed, in our exploratory species-specific analyses, 

we found that for red maple, and American elm, the VIs from the June image were actually more 

sensitive than from the July image (Appendix B Tables s4-s6).  We suggest that the weaker strength of 

the June image may be driven by relatively late leaf out dates of other species, including the two most 

common species, Willow oak and pin oak.  In these two oak species, the July image was more sensitive 

in detecting a statistical difference between tree health classes (Appendix B Tables s7 & s8).   For all 

species, the August image (DOY 242) may have been too close to the average leaf senescence date, 
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which could cause some trees to have the spectral effects of tree health convolved with spectral effects 

of leaf senescence.  Thus, we recommend using image dates that are safely within the middle of the leaf-

on period.   

A further supplemental analysis revealed that our study greatly benefitted from the availability of 

field-measured heath condition data collected at the same time as the imagery during the 2017 growing 

season.  We used other archived ACOMP WV-3 imagery from 2014, 2015, and 2016 to track the 

NDVI1 of all the trees in different 2017 health condition classes.  This analysis shows that there was 

limited statistical difference in NDVI1 among trees in different health classes in the years preceding the 

field-based health assessment in 2017 (Appendix B Figure s2).   

4.4.3 Strategies for using remote sensing data in street tree health research and 

management 

 

In our preliminary work with these datasets, we attempted to apply machine learning algorithms 

to directly discriminate tree health classes from VI’s, raw reflectance on each multispectral band, and 

panchromatic (30cm pixel resolution) image texture metrics extracted from each crown object.  

However, this analysis revealed that the ability to directly discriminate tree health classes is 

overwhelmed by other drivers of spectral reflectance in this complex urban environment. Nevertheless, 

our findings evidencing a robust, remotely detectable signal of statistical difference among the health 

classes of individual street trees does highlight two realistic and useful approaches for advancing the 

integration of high-resolution multispectral satellite data into street tree health research and 

management.   

First, researchers and street tree managers could use multi-year, anniversary-date imagery to track 

VIs of individual trees.  Tracking individual trees avoids the large spatial variation in VI likely driven 

by tree species differences (see e.g. Appendix B Figure s1), as well as myriad site-specific effects on 

VI caused by tree age, past management actions, and tree ecophysiological responses to the complex 

urban environment.  In choosing anniversary-date imagery, we emphasize that researchers and managers 
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should attempt to minimize VI change related to tree phenology, and especially change associated with 

leaf expansion, greendown, and leaf senescence.  Furthermore, researchers or managers wishing to 

target health assessments to individual tree species may find it advantageous to match the anniversary 

date and the selected diagnostic VI to the most sensitive date/VI for the target species (see e.g. 

Appendix B Tables s4-s8). This anniversary date approach will require future research in order to build 

on our single-year analysis, and confirm that changes in field-observed individual street tree health 

across years can be linked to inter-annual changes in VIs extracted from imagery.    

Second, we suggest that researchers could use a VI threshold on a single-date image during the 

leaf-on period to identify priority trees for field-based street tree health evaluation.  Based on our 

species-specific exploratory analysis, we suggest that this approach could also be refined by matching 

the image date and VI for a particular species of interest.  For example, rather than using the all-purpose 

VI of NDVI1 on an image in the middle of the leaf-on period (e.g. our July image), an urban tree 

manager in Washington D.C. might be best advised to use the NDVI2 VI on an image from the early 

part of the leaf-on period in order to prioritize fieldwork assessing the health of red maple trees 

(Appendix B Table s6).   

We suggest two other productive lines of future research that can overcome remaining challenges 

to remotely assessing the health of individual trees in urban settings. First, our study found that tree 

heath was most expressed by changes in NDVI1, which is likely driven by reduced reflectance in the 

NIR as trees lose leaf area in response to declining health. Accordingly, future studies may profit from 

directly assessing these health-related crown structural changes using high-resolution LiDAR, especially 

from terrestrial and UAV platforms (Disney 2019). Second, our final dataset for tree health condition 

analysis included 2308 mature trees, which is only 13% of the entire street tree inventory of Washington 

D.C.. We suggest other near-surface remote sensing methods leveraging phenocams and high-resolution 

UAV data (Dash et al. 2018, Fillipa et al. 2018), may be successful in not only overcoming issues of 

image availability and cloud cover that limited our study area, but can also create opportunities to apply 

our findings to smaller and younger trees.   
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4.5 Conclusion 
 

We evaluate the ability of six WV-3 VIs extracted from delineated tree street tree crown-objects on 

images from three different dates to find statistical differences among the field-measured health condition 

class of 2308 street trees in central Washington D.C.  We find that spectral data useful for tree health 

analysis can be effectively extracted from imagery by delineating tree crown-objects using an NDVI-

threshold mask within a buffer around a field-measured GPS point of the tree trunk.  Extracted VIs from 

all image dates revealed highly significant differences among tree health condition classes. Moreover, 

NDVI1 from an image from the middle of the leaf-on period has the most potential to assess the health 

condition class of street trees in central Washington D.C.  Our results thus provide insight into the utility 

of high-resolution satellite data as a tool for research and management of street tree health.  In 

highlighting avenues for further research in this exciting application, we propose two strategies that 

account for essential considerations of phenology and tree species.       
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Appendix B. 

Table s1 Tree health condition assessment parameters in the field 

 

Table s2 Tree health condition assessment.  Score equals crown quality value plus Vigor value. 

 

 

Figure s1. Significant (p<0.0001) tree species differences in NDVI1 on the July 30th, 2017 image.  These 

significant species differences were generally consistent across other Vis and image dates (data not 

shown). 

Parameter Crown Quality (Value) Vigor (Value)

0-25% Poor (1) Poor (1)

25-50% Fair (2) Fair (2)

50-75% Good (3) Good (3)

75-100% Excellent (4) Excellent (4)

Notes
Percentage of crown that is free from dieback, disease, 

and/or other physiological abnormality

Year-over-year shoot elongation and 

distribution of growth throughout crown.

Condition Score

Excellent ≥7

Good 5 to 6

Fair 3 to 5

Poor 2 to 3

Dead 0 to 1
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Figure s2  Median  NDVI1 values for each of  three health conditions from 2014 to 2017 during leaf-on 

period.   

 

 

Table s3 Number of trees within the three health condition classes for the top five species.

 

Table s4 Chi-square values from non-parametric Wilcoxon/Kruskal-Wallis separating VI means among 

trees in good, fair and poor condition classes for American elm.  For this and subsequent tables, the bold 

value denotes the most sensitive image date/VI combination.  Statistically significant (p < 0.05) tests are 

in red.   

 

 

 

  Poor Fair Good Sum 

American elm 1 26 175 202 

Red oak 3 18 121 142 

Pin oak 9 25 95 129 

Red maple 10 86 164 260 

Willow oak 6 65 376 447 

 1 
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  Vegetation Index June July August 

 Chi-square P>ChiSq Chi-square P>ChiSq Chi-square P>ChiSq 

NDVI1 4.44 0.11 0.4882 0.7834 3.1973 0.2022 

NDVI2 4.0684 0.1308 0.4141 0.813 2.9087 0.2336 

RENDVI1 5.6096 0.0605 2.4034 0.3007 1.7963 0.4073 

RENDVI2 3.6469 0.1615 2.2661 0.3221 0.7242 0.6962 

Green Yellow ratio 5.10 0.078 1.9044 0.3859 2.438 0.2955 

Green Red ratio 6.6127 0.0366 0.4615 0.7939 3.2143 0.2005 

 

 

Table s5   Chi-square values from non-parametric Wilcoxon/Kruskal-Wallis separating VI means among 

trees in good, fair and poor condition classes for red oak.  

  Vegetation Index June July August 

 Chi-square P>ChiSq Chi-square P>ChiSq Chi-square P>ChiSq 

NDVI1 5.2389 0.0728 7.8841 0.0194 9.1013 0.0106 

NDVI2 4.4924 0.1058 8.2025 0.0166 6.0391 0.0488 

RENDVI1 7.1241 0.0284 5.7159 0.0574 4.8124 0.0902 

RENDVI2 3.7627 0.1524 4.633 0.0986 3.6675 0.1598 

Green Yellow ratio 6.1451 0.0463 9.4742 0.0088 7.5254 0.0232 

Green Red ratio 6.1538 0.0461 9.8965 0.0071 5.574 0.0616 

 

 

Table s6   Chi-square values from non-parametric Wilcoxon/Kruskal-Wallis separating VI means among 

trees in good, fair and poor health condition classes for Red maple.   

  Vegetation Index June July August 

 Chi-square P>ChiSq Chi-square P>ChiSq Chi-square P>ChiSq 

NDVI1 29.9469 <0.0001 31.3282 <0.0001 16.5029 0.0003 

NDVI2 32.7131 <0.0001 32.0169 <0.0001 19.4022 <0.0001 

RENDVI1 24.7394 <0.0001 30.424 <0.0001 6.2454 0.044 

RENDVI2 30.4282 <0.0001 33.919 <0.0001 6.8311 0.0329 

Green Yellow ratio 8.1561 0.0169 11.4977 0.0032 4.2895 0.1171 

Green Red ratio 24.9307 <0.0001 11.3198 0.0035 4.0845 0.1297 
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Table s7   Chi-square values from non-parametric Wilcoxon/Kruskal-Wallis separating VI means among 

trees in good, fair and poor health condition classes for Pin oak. 

 

  Vegetation Index June July August 

 Chi-square P>ChiSq Chi-square P>ChiSq Chi-square P>ChiSq 

NDVI1 23.279 <0.0001 25.2396 <0.0001 16.7129 0.0002 

NDVI2 23.6311 <0.0001 23.9345 <0.0001 17.098 0.0002 

RENDVI1 10.3354 0.0057 6.9747 0.0306 0.2662 0.8754 

RENDVI2 9.5863 0.0083 5.8788 0.0529 1.1273 0.5691 

Green Yellow ratio 17.1886 0.0002 16.1929 0.0003 9.5148 0.0086 

Green Red ratio 16.4918 0.0003 18.2798 0.0001 11.9735 0.0025 

 

 

Table s8   Chi-square values from non-parametric Wilcoxon/Kruskal-Wallis separating VI means among 

trees in good, fair and poor health condition classes for Willow oak.   

  Vegetation Index June July August 

 Chi-square P>ChiSq Chi-square P>ChiSq Chi-square P>ChiSq 

NDVI1 7.7428 0.0208 8.0214 0.0181 6.9741 0.0306 

NDVI2 6.6044 0.0368 6.5345 0.0381 6.2732 0.0434 

RENDVI1 15.949 0.0003 19.0574 <0.0001 12.4481 0.002 

RENDVI2 17.195 0.0002 15.1112 0.0005 13.1384 0.0014 

Green Yellow ratio 3.7075 0.1566 3.1059 0.2116 5.4296 0.0662 

Green Red ratio 1.5415 0.4627 2.5702 0.2766 0.087 0.9574 
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5. Conclusion and future work 

5.1 Dissertation summary  
 

 This dissertation expands the sub-field of using remote sensing datasets to discriminate individual 

tree species and describe tree health classes statistically.  For trees in rural forests, I successfully classified 

four broadleaf tree species using passive multi-spectral remote sensing imagery and active leaf-on LiDAR 

data in Fernow Experimental Forest, WV. For trees in urban settings, I classified 19 broadleaf tree species 

or 10 genera using a suit of VHR WorldView-3 images in Washington D.C.. Moreover, I also detected 

the statistical differences among three health conditions for these urban street trees using VHR 

WorldView-3 images in 2017. This research not only benefits researchers in remote sensing, but also 

benefits forest managers and urban foresters by making specific contributions in each of the three 

manuscripts.  

 In the first manuscript, the combination of multiple VHR images with leaf-on LiDAR data 

improves the discrimination of four broadleaf deciduous tree species: red oak, sugar maple, black cherry 

and tulip poplar in Fernow Experimental Forest. My assessment evaluated the potential of six types of 

features in 1) spring, (2) summer, and (3) autumn phenology, (4) height and intensity data from leaf-on 

LiDAR, (5) spectral indices and (6) texture features to discriminate tree species. I concluded that combing 

high spatial resolution multi-temporal satellite data with LiDAR datasets can enhance the ability to 

discriminate tree species at the crown level. Summer phenology is the most helpful feature, and crown 

structural features from LiDAR are the second-best variables for tree species discrimination. 

 In the second manuscript, by using RandomForest classifier to leverage these three advances 1) 

12 high spatial resolution images covering each pheno-phase of the growing season from April to 

November, 2) large forest inventory datasets and 3) spatially accurate crown objects, I concluded that 

images acquired from spring leaf emergence and fall senescence are the optimum pheno-phase to 

discriminate individual tree species in Washington D.C..  I also found that remote sensing images 
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successfully captured the pigment-induced changes between different species especially using red and 

green visible bands. Moreover, VHR images have the potential to classify trees with an overall accuracy 

of 63.7 % at the species level and 75.6 % at the genus level. The confusion for tree species classification 

is associated with the decreased sample size of smaller class, and species in similar taxonomic groups. 

 Finally, in the third manuscript, my results confirmed the utility of VHR satellite data as a tool for 

research and management of street tree health. The six types of vegetation indices calculated from three 

WorldView-3 images (June 11th July 30th and August 30th, 2017) were statistically different between three 

categories of tree health conditions. I concluded that VHR remote sensing imagery have the potential to 

detect differences between tree health conditions statistically, and NDVI from an image from the middle 

of the leaf-on period performed the best. Since these VHR multi-temporal remote sensing image also have 

the potential to capture green-down phenology, I proposed two strategies for using VHR satellite data in 

street tree health management: (1) using anniversary date imagery from similar pheno-phase to track the 

VIs of individual trees from year to year in order to minimize VI change related to tree phenology, and (2) 

using single-date imagery to prioritize field-based street tree health assessments.    

5.2 Remaining challenges and future research 
 

 While providing insights and promising results for tree species and health status detection using 

remote sensing in both rural and urban forests, this dissertation also elucidated other topics worthy of 

additional investigations.  First, one of the limitations for the first chapter is the complexity of terrain 

conditions in Fernow Experimental Forest. It is more challenging to precisely co-register multiple images 

from leaf-on period and locate individual trees based on their inaccurate field-surveyed coordinates due to 

steep slopes. Exploring exactly how slope and complex terrain conditions influence the tree location 

identification from the imagery would be a major leap forward for tree species classification in rural 

areas. Second, my dissertation only implemented two machine learning classifiers (RandomForest and 
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Decision trees) for tree species classification. It is necessary to scientifically determine the optimum 

classifier by comparing more machine learning classifiers for tree species classification.  

 Towards these two additional investigations mentioned above, I have used a multi-seasonal 

dataset of three WorldView2 images (image acquisition date: 5/14/2015, 8/16/2014, 9/23/2010) and the 

large field inventory (19 species with 1528 individual trees) to discriminate tree species in West Virginia 

Research Forest (WV Research Forest). For the filed inventory, Dr. Landenberger and his colleagues 

manually generated non-overlapping 1528 tree crowns with 19 species (Figure 5.1) by field interpretation 

of high spatial resolution aerial photos in 2000. The sample size and accuracy of this dataset is 

considerable for testing machine learning classifiers, especially relative to other published studies which 

typically have sample sizes much less than 1500 crowns.  Crown boundaries were drawn carefully in the 

field with gaps identified to minimize the effects from background or terrain in 2000. The major concern 

or drawback of these 1528 crowns is they were created more than 15 years ago. Even though it is 

impossible for trees to change location or species type, trees may have fallen down and new trees might 

grow or trees become damaged during these years. In order to increase the reliability and decrease the 

error due to the 19 year gap, I updated the reference dataset using high spatial resolution (about 5cm 

resolution) UAV images collected for Dr. McNeil and Dr. Michael Strager in spring, summer, and fall 

2016. I identified new gaps and remove crowns if they do no longer exist. However, there are still large 

discrepancies of tree locations between the updated field inventory map and three WorldView-2 images. 

Next, I also tried to adopt another inventory from Henry Lieberman, who had collected 1991 crowns, 26 

species with location, height and DBH in WVU Research Forest in summer 2016. I tried to match tree 

locations using spatial join tool for the crown polygons from Dr. Landenberger in 2000 and tree stems 

surveyed in 2016.  However, due to the complexity of terrain conditions (steep slopes) and the overlap of 

tree crowns in WV Research Forest, it is still challenging to match tree locations based on the 

measurements from 2000 and 2016 (Figure 5.2). There were still discrepancies for tree stem location and 

species information. In order to ultimately test different machine learning classifiers, accurate forest 



 

77 
 

inventory reference datasets are necessary. Bringing in high quality LiDAR data with both canopy height 

model and digital terrain model in WV Research Forest as the next step will help to minimize the 

influences of slope and complex terrain conditions for tree location identification. With the updated 

accurate forest inventory as a reference map, I can proceed to test different machine learning classifiers 

including SVM, RF, Decision Tree, k-means Nearest Neighborhood and Neural Network for tree species 

classification. 

 

Figure 5.1 Species distribution for WV Research Forest in 2000 
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Figure 5.2 Inconsistency of tree species reference map in WV Research Forest. Crown polygons were 

delineated by Dr. Landenberger in 2000 (Left). Tree stem locations were provided by Henry Liebermamn 

in 2016 (Right). Dr. Michael Strager provided the UAV image in 2016 as base map 

 

 

Additionally, for tree health condition detection in Washington D.C., I only considered vegetation 

indices, texture and phenological patterns provided by different spectral bands between three categories of 

health conditions. Trees under poor health condition may also result in changes like the loss of branches 

and leaves, which will change their crown-level structure and architecture compared with healthy trees. 

High-quality LiDAR provides the opportunity to describe tree health conditions based on their crown-

level architecture. Examining the potential of LiDAR using texture and structural features is my third 

future work direction and it would be another significant insight into tree health condition detection in 

urban settings. Moreover, by calculating biomass and tree height from LiDAR data, I can also assess the 

forest loss due to trees under poor health condition in urban settings.  

  



 

79 
 

6. Reference 

Ahokas, E., Kaasalainen, S., Hyyppä, J., & Suomalainen, J. (2006). Calibration of the optech ALTM 3100 
laser scanner intensity data using brightness targets. In Revue Francaise de Photogrammetrie et de 
Teledetection (pp. 10–16). 

Alonzo, M., Bookhagen, B., & Roberts, D. A. (2014). Urban tree species mapping using hyperspectral and 
lidar data fusion. Remote Sensing of Environment, 148, 70–83. 
https://doi.org/10.1016/j.rse.2014.03.018 

Andrada II, R., Deng, J., & Gazal, L. (2015). Exploring peoples preferences on specific attributes of urban 
forests in Washington DC: A conjoint approach. Journal of Horticulture and Forestry, 7(10), 200-
209. 

Asmaryan, S., Warner, T. A., Muradyan, V., & Nersisyan, G. (2013). Mapping tree stress associated with 
urban pollution using the WorldView-2 Red Edge band. Remote Sensing Letters, 4(2), 200–209. 
https://doi.org/10.1080/2150704X.2012.715771 

Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote 
Sensing of Environment, 64(3), 234–253. https://doi.org/10.1016/S0034-4257(98)00014-5 

Au. (2018). An integrated approach to tree stress monitoring. Arborist news. 
http://geocarto.com.hk/readings/aug2018_issue/#page/1    

Banfield, W. M. (1968). Dutch Elm Disease Recurrence and Recovery in American Elm. Journal of 
Phytopathology, 62(1), 21–60. https://doi.org/10.1111/j.1439-0434.1968.tb02345.x 

Boochs, F., Kupfer, G., Dockter, K., & Kuhbaüch, W. (1990). Shape of the red edge as vitality indicator for 
plants. International Journal of Remote Sensing, 11(10), 1741–1753. 
https://doi.org/10.1080/01431169008955127 

Brandtberg, T. (2007). Classifying individual tree species under leaf-off and leaf-on conditions using 
airborne lidar. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5), 325–340. 
https://doi.org/10.1016/j.isprsjprs.2006.10.006 

Brandtberg, T., Warner, T. A., Landenberger, R. E., & McGraw, J. B. (2003). Detection and analysis of 
individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern 
deciduous forest in North America. Remote Sensing of Environment, 85(3), 290–303. 
https://doi.org/10.1016/S0034-4257(03)00008-7 

Budei, B. C., St-Onge, B., Hopkinson, C., & Audet, F. A. (2018). Identifying the genus or species of 
individual trees using a three-wavelength airborne lidar system. Remote Sensing of Environment. 
https://doi.org/10.1016/j.rse.2017.09.037 

Burnham, M. B., Cumming, J. R., Adams, M. B., & Peterjohn, W. T. (2017). Soluble soil aluminum alters 
the relative uptake of mineral nitrogen forms by six mature temperate broadleaf tree species: 
possible implications for watershed nitrate retention. Oecologia, 185(3), 327–337. 
https://doi.org/10.1007/s00442-017-3955-8 

Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P. P., Osório, M. L., … Pinheiro, C. 
(2002). How plants cope with water stress in the field. Photosynthesis and growth. Annals of 
Botany, 89(SPEC. ISS.), 907–916. https://doi.org/10.1093/aob/mcf105 



 

80 
 

Chavez Jr, P. S., Chavez, P. S., & Chavez Jr., P. S. (1996). Image-Based Atmospheric Corrections - Revisited 
and Improved. Photogrammetric Engineering & Remote Sensing, 62(9), 1025–1036. 

Cho, M. A., Malahlela, O., & Ramoelo, A. (2015). Assessing the utility WorldView-2 imagery for tree 
species mapping in South African subtropical humid forest and the conservation implications: 
Dukuduku forest patch as case study. International Journal of Applied Earth Observation and 
Geoinformation, 38, 349–357. https://doi.org/10.1016/j.jag.2015.01.015 

Cochrane, M. A. (2000). Using vegetation reflectance variability for species level classification of 
hyperspectral data. International Journal of Remote Sensing, 21(10), 2075–2087. 
https://doi.org/10.1080/01431160050021303 

Colgan, M. S., Baldeck, C. A., Féret, J. baptiste, & Asner, G. P. (2012). Mapping savanna tree species at 
ecosystem scales using support vector machine classification and BRDF correction on airborne 
hyperspectral and LiDAR data. Remote Sensing, 4(11), 3462–3480. 
https://doi.org/10.3390/rs4113462 

Dalponte, M., Bruzzone, L., & Gianelle, D. (2008). Fusion of hyperspectral and LIDAR remote sensing data 
for classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing, 
46(5), 1416–1427. https://doi.org/10.1109/TGRS.2008.916480 

Dalponte, M., Ø rka, H. O., Gobakken, T., Gianelle, D., & Næ sset, E. (2013). Tree species classification in 
boreal forests with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 
51(5), 2632–2645. https://doi.org/10.1109/TGRS.2012.2216272 

Dash, J. P., Pearse, G. D., & Watt, M. S. (2018). UAV multispectral imagery can complement satellite data 
for monitoring forest health. Remote Sensing, 10(8), 1–22. https://doi.org/10.3390/rs10081216 

Delalieux, S., Somers, B., Verstraeten, W. W., van Aardt, J. A. N., Keulemans, W., & Coppin, P. (2009). 
Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. 
International Journal of Remote Sensing, 30(8), 1887–1912. 
https://doi.org/10.1080/01431160802541556 

Del Tredici, P. (2007). The Phenology of Sexual Reproduction in Ginkgo biloba: Ecological and 
Evolutionary Implications. The Botanical Review, 73(4), 267–278. https://doi.org/10.1663/0006-
8101(2007)73[267:tposri]2.0.co;2 

DigitalGlobe Inc. (2016). Digitalglobe Atmospheric Compensation. Retrieved from 
https://explore.digitalglobe.com/AComp.html  

Disney, M. (2019). Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. New 
Phytologist, 222(4), 1736–1741. https://doi.org/10.1111/nph.15517 

District of Columbia Government. (2009). LiDAR - Reflective Surface. Retrieved from  
https://dcgis.maps.arcgis.com/home/item.html?id=1057f1898171442487816b7f891dc2fc     

District of Columbia Government. (2018). Urban Forestry Street Trees. Retrieved from  
http://opendata.dc.gov/datasets/f6c3c04113944f23a7993f2e603abaf2_23  

Donoghue, D. N. M., Watt, P. J., Cox, N. J., & Wilson, J. (2007). Remote sensing of species mixtures in 
conifer plantations using LiDAR height and intensity data. Remote Sensing of Environment, 110(4), 
509–522. https://doi.org/10.1016/j.rse.2007.02.032 



 

81 
 

Dwyer, J. F., Nowak, D. J., & Noble, M. H. (2003). Sustaining urban forests. Journal of Arboriculture, 
29(1), 49–55. 

Eitel, J. U. H., Höfle, B., Vierling, L. A., Abellán, A., Asner, G. P., Deems, J. S., … Vierling, K. T. (2016). 
Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote 
Sensing of Environment. https://doi.org/10.1016/j.rse.2016.08.018 

Eitel, J. U. H., Vierling, L. A., Litvak, M. E., Long, D. S., Schulthess, U., Ager, A. A., … Stoscheck, L. (2011). 
Broadband, red-edge information from satellites improves early stress detection in a New Mexico 
conifer woodland. Remote Sensing of Environment, 115(12), 3640–3646. 
https://doi.org/10.1016/j.rse.2011.09.002 

Elmore, A. J., Guinn, S. M., Minsley, B. J., & Richardson, A. D. (2012). Landscape controls on the timing of 
spring, autumn, and growing season length in mid-Atlantic forests. Global Change Biology, 18(2), 
656–674. https://doi.org/10.1111/j.1365-2486.2011.02521.x 

Eamus, D., A. Huete, and Q. Yu. (2016). “Vegetation Dynamics: a Synthesis of Plant 
Ecophysiology.”Remote Sensing and Modelling. New York: Cambridge University Press. 

Evans, J. S., and M. A. Murphy. (2014)  Rfutilities. R Package Version 1.0-0. http://CRAN.R-
project.org/package=rfUtilities 

Fang, F., Im, J., Lee, J., & Kim, K. (2016). An improved tree crown delineation method based on live 
crown ratios from airborne LiDAR data. GIScience and Remote Sensing, 53(3), 402–419. 
https://doi.org/10.1080/15481603.2016.1158774 

Fang, F., McNeil, B. E., Warner, T. A., & Maxwell, A. E. (2018). Combining high spatial resolution multi-
temporal satellite data with leaf-on LiDAR to enhance tree species discrimination at the crown 
level. International Journal of Remote Sensing, 39(23), 9054–9072. 
https://doi.org/10.1080/01431161.2018.1504343 

Fassnacht, F. E., Latifi, H., Stereńczak, K., Modzelewska, A., Lefsky, M., Waser, L. T., … Ghosh, A. (2016). 
Review of studies on tree species classification from remotely sensed data. Remote Sensing of 
Environment. https://doi.org/10.1016/j.rse.2016.08.013 

Ferreira, M. P., Wagner, F. H., Aragão, L. E. O. C., Shimabukuro, Y. E., & de Souza Filho, C. R. (2019). Tree 
species classification in tropical forests using visible to shortwave infrared WorldView-3 images and 
texture analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 149, 119–131. 
https://doi.org/10.1016/j.isprsjprs.2019.01.019 

Filippa, G., Cremonese, E., Migliavacca, M., Galvagno, M., Sonnentag, O., Humphreys, E., … Richardson, 
A. D. (2018). NDVI derived from near-infrared-enabled digital cameras: Applicability across 
different plant functional types. Agricultural and Forest Meteorology, 249(April 2017), 275–285. 
https://doi.org/10.1016/j.agrformet.2017.11.003 

Franke, J., & Menz, G. (2007). Multi-temporal wheat disease detection by multi-spectral remote sensing. 
Precision Agriculture, 8(3), 161–172. https://doi.org/10.1007/s11119-007-9036-y 

Ganguly, S., Friedl, M. A., Tan, B., Zhang, X., & Verma, M. (2010). Land surface phenology from MODIS: 
Characterization of the Collection 5 global land cover dynamics product. Remote Sensing of 
Environment, 114(8), 1805–1816. https://doi.org/10.1016/j.rse.2010.04.005 

Gates, D. M., Keegan, H. J., Schleter, J. C., & Weidner, V. R. (1965). Spectral Properties of Plants. Applied 



 

82 
 

Optics, 4(1), 11. https://doi.org/10.1364/ao.4.000011 

Gering, L. R., & May, D. M. (1995). The relationship of diameter at breast height and crown diameter for 
four species groups in Hardin County, Tennessee. Southern Journal of Applied Forestry, 19(4), 177–
181. 

Ghosh, A., Fassnacht, F. E., Joshi, P. K., & Kochb, B. (2014). A framework for mapping tree species 
combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial 
scales. International Journal of Applied Earth Observation and Geoinformation, 26(1), 49–63. 
https://doi.org/10.1016/j.jag.2013.05.017 

Government of the District of Columbia/ District Department of Transportation. (2010). District of 
Columbia Assessment of Urban Forest Resources and Strategy. Washington D.C 

Gregg, J. W., Jones, C. G., & Dawson, T. E. (2003). Urbanization effects on tree growth in the vicinity of 
New York City. Nature, 424(6945), 183–187. https://doi.org/10.1038/nature01728 

Hadjimitsis, D. G., Clayton, C. R. I., & Retalis, A. (2009). The use of selected pseudo-invariant targets for 
the application of atmospheric correction in multi-temporal studies using satellite remotely sensed 
imagery. International Journal of Applied Earth Observation and Geoinformation, 11(3), 192–200. 
https://doi.org/10.1016/j.jag.2009.01.005 

Haralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image Classification. IEEE 
Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621. 
https://doi.org/10.1109/TSMC.1973.4309314 

Harris, J. L., & Balci, Y. (2015). Population structure of the bacterial pathogen Xylella fastidiosa among 
street trees in Washington D.C. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0121297 

He, Y., Bo, Y., de Jong, R., Li, A., Zhu, Y., & Cheng, J. (2015). Comparison of vegetation phenological 
metrics extracted from GIMMS NDVIg and MERIS MTCI data sets over China. International Journal 
of Remote Sensing, 36(1), 300–317. https://doi.org/10.1080/01431161.2014.994719 

Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. 
International Journal of Applied Earth Observation and Geoinformation, 13(1), 152–160. 
https://doi.org/10.1016/j.jag.2010.09.010 

Hill, R. A., Wilson, A. K., George, M., & Hinsley, S. A. (2010). Mapping tree species in temperate 
deciduous woodland using time-series multi-spectral data. Applied Vegetation Science, 13(1), 86–
99. https://doi.org/10.1111/j.1654-109X.2009.01053.x 

Holmgren, J., & Persson, Å. (2004). Identifying species of individual trees using airborne laser scanner. 
Remote Sensing of Environment, 90(4), 415–423. https://doi.org/10.1016/S0034-4257(03)00140-8 

Holmgren, J., Persson, Å., & Söderman, U. (2008). Species identification of individual trees by combining 
high resolution LiDAR data with multi-spectral images. In International Journal of Remote Sensing 
(Vol. 29, pp. 1537–1552). https://doi.org/10.1080/01431160701736471 

Huang, W., Lamb, D. W., Niu, Z., Zhang, Y., Liu, L., & Wang, J. (2007). Identification of yellow rust in 
wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. 
Precision Agriculture, 8(4–5), 187–197. https://doi.org/10.1007/s11119-007-9038-9 

Hubert, F., Aragão, L. E. O. C., Roberto, C., & Filho, D. S. (2019). Tree species classification in tropical 



 

83 
 

forests using visible to shortwave infrared WorldView-3 images and texture analysis. 

Hughes, G. F. (1968). On the Mean Accuracy of Statistical Pattern Recognizers. IEEE Transactions on 
Information Theory, 14(1), 55–63. https://doi.org/10.1109/TIT.1968.1054102 

Im, J., Quackenbush, L. J., Li, M., & Fang, F. (2014). Optimum Scale in Object-Based Image Analysis. In 
Scale Issues in Remote Sensing (Vol. 9781118305, pp. 197–214). 
https://doi.org/10.1002/9781118801628.ch10 

Immitzer, M., Atzberger, C., & Koukal, T. (2012). Tree species classification with Random forest using 
very high spatial resolution 8-band worldView-2 satellite data. Remote Sensing, 4(9), 2661–2693. 
https://doi.org/10.3390/rs4092661 

Jackson, R. D. (1986). Remote Sensing of Biotic and Abiotic Plant Stress. Annual Review of 
Phytopathology, 24(1), 265–287. https://doi.org/10.1146/annurev.py.24.090186.001405 

Jensen, R. R., Hardin, P. J., & Hardin, A. J. (2012). Classification of urban tree species using hyperspectral 
imagery. Geocarto International, 27(5), 443–458. https://doi.org/10.1080/10106049.2011.638989 

Jones, T. G., Coops, N. C., & Sharma, T. (2010). Assessing the utility of airborne hyperspectral and LiDAR 
data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sensing of 
Environment, 114(12), 2841–2852. https://doi.org/10.1016/j.rse.2010.07.002 

Karlson, M., Ostwald, M., Reese, H., Bazié, H. R., & Tankoano, B. (2016). Assessing the potential of multi-
seasonal WorldView-2 imagery for mapping West African agroforestry tree species. International 
Journal of Applied Earth Observation and Geoinformation, 50, 80–88. 
https://doi.org/10.1016/j.jag.2016.03.004 

Key, T., Warner, T. A., McGraw, J. B., & Fajvan, M. A. (2001). A comparison of multispectral and 
multitemporal information in high spatial resolution imagery for classification of individual tree 
species in a temperate hardwood forest. Remote Sensing of Environment, 75(1), 100–112. 
https://doi.org/10.1016/S0034-4257(00)00159-0 

Kim, S (2007) Individual tree species identification using LIDAR- derived crown structures and intensity 
data. Doctoral dissertation, University of Washington. 

Kim, S., McGaughey, R. J., Andersen, H. E., & Schreuder, G. (2009). Tree species differentiation using 
intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sensing of 
Environment. https://doi.org/10.1016/j.rse.2009.03.017 

Klosterman, S. T., Hufkens, K., Gray, J. M., Melaas, E., Sonnentag, O., Lavine, I., … Richardson, A. D. 
(2014). Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using 
PhenoCam imagery. Biogeosciences, 11(16), 4305–4320. https://doi.org/10.5194/bg-11-4305-2014 

Knipling, E. B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared 
radiation from vegetation. Remote Sensing of Environment, 1(3), 155–159. 
https://doi.org/10.1016/S0034-4257(70)80021-9 

Knyazikhin, Y., Schull, M. A., Stenberg, P., Mõttus, M., Rautiainen, M., Yang, Y., … Myneni, R. B. (2013). 
Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the National Academy of 
Sciences of the United States of America, 110(3), E185-92. 
https://doi.org/10.1073/pnas.1210196109 



 

84 
 

Korpela, I., Ole Ø rka, H., Maltamo, M., Tokola, T., & Hyyppä, J. (2010). Tree species classification using 
airborne LiDAR - effects of stand and tree parameters, downsizing of training set, intensity 
normalization, and sensor type. Silva Fennica, 44(2), 319–339. 

Kuhn, M., J. Wing, S. Weston, A. Williams, C. Keefer, A. Engelhardt, T. Cooper, et al. (2016). 
Caret:Classification and Regression Training. R package version 6.0-73. 
https://cran.rproject.org/web/packages/caret/index.html. 

L.Sayn-Wittgenstein. (1978). Recognition of tree species on aerial photographs. Photogrammetria. 
https://doi.org/10.1016/0031-8663(80)90020-4 

Lambert, J., Drenou, C., Denux, J. P., Balent, G., & Cheret, V. (2013). Monitoring forest decline through 
remote sensing time series analysis. GIScience and Remote Sensing, 50(4), 437–457. 
https://doi.org/10.1080/15481603.2013.820070 

Lamson, N. I. (1987). D.b.h./Crown Diameter Relationships in Mixed Appalachian Hardwood stands. US 
Department of Agriculture. Forest Service Research Paper, NE-610, 1–3. Retrieved from 
http://www.fs.fed.us/ne/newtown_square/publications/research_papers/pdfs/scanned/OCR/ne_r
p610.pdf 

Lederbogen, F., Kirsch, P., Haddad, L., Streit, F., Tost, H., Schuch, P., … Meyer-Lindenberg, A. (2011). City 
living and urban upbringing affect neural social stress processing in humans. Nature, 474(7352), 
498–501. https://doi.org/10.1038/nature10190 

Li, D., Ke, Y., Gong, H., & Li, X. (2015). Object-based urban tree species classification using bi-temporal 
worldview-2 and worldview-3 images. Remote Sensing, 7(12), 16917–16937. 
https://doi.org/10.3390/rs71215861 

Li, X., Lee, W. S., Li, M., Ehsani, R., Mishra, A. R., Yang, C., & Mangan, R. L. (2012). Spectral difference 
analysis and airborne imaging classification for citrus greening infected trees. Computers and 
Electronics in Agriculture, 83, 32–46. https://doi.org/10.1016/j.compag.2012.01.010 

Liu, D., & Xia, F. (2010). Remote Sensing Letters Assessing object-based classification: advantages and 
limitations Assessing object-based classification: advantages and limitations. Remote Sensing 
Letters, 1(4), 187–194. https://doi.org/10.1080/01431161003743173 

Liu, T., Im, J., & Quackenbush, L. J. (2015). A novel transferable individual tree crown delineation model 
based on Fishing Net Dragging and boundary classification. ISPRS Journal of Photogrammetry and 
Remote Sensing, 110, 34–47. https://doi.org/10.1016/j.isprsjprs.2015.10.002 

Madonsela, S., Cho, M. A., Mathieu, R., Mutanga, O., Ramoelo, A., Kaszta, Ż., … Wolff, E. (2017). Multi-
phenology WorldView-2 imagery improves remote sensing of savannah tree species. International 
Journal of Applied Earth Observation and Geoinformation, 58, 65–73. 
https://doi.org/10.1016/j.jag.2017.01.018 

Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in 
remote sensing: An applied review. International Journal of Remote Sensing. 
https://doi.org/10.1080/01431161.2018.1433343 

Maxwell, A. E., Warner, T. A., Vanderbilt, B. C., & Ramezan, C. A. (2017). Land Cover Classification and 
Feature Extraction from National Agriculture Imagery Program (NAIP) Orthoimagery: A Review. 
Photogrammetric Engineering & Remote Sensing, 83(11), 737–747. 
https://doi.org/10.14358/pers.83.10.737 



 

85 
 

McIntyre, N. E. (2006). Ecology of Urban Arthropods: A Review and a Call to Action. Annals of the 
Entomological Society of America, 93(4), 825–835. https://doi.org/10.1603/0013-
8746(2000)093[0825:eouaar]2.0.co;2 

McPherson, G., Nowak, D., & Rowntree, R. (1994). Chicago’s urban forest ecosystem: results of the 
Chicago Urban Forest Climate Project: GTR-NE-186. In Chicago’s urban forest ecosystem: results of 
the Chicago Urban Forest Climate Project. Gen. Tech. Rep. NE-186. 

Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support 
vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790. 
https://doi.org/10.1109/TGRS.2004.831865 

Memiaghe, H. R., Lutz, J. A., Korte, L., Alonso, A., & Kenfack, D. (2016). Ecological Importance of Small-
Diameter Trees to the Structure, Diversity and Biomass of a Tropical Evergreen Forest at Rabi, 
Gabon. PLoS ONE, 11(5). https://doi.org/10.1371/journal.pone.0154988 

Michez, A., Piégay, H., Lisein, J., Claessens, H., & Lejeune, P. (2016). Classification of riparian forest 
species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial 
system. Environmental Monitoring and Assessment, 188(3), 1–19. https://doi.org/10.1007/s10661-
015-4996-2 

Miller, R. W. (1996). Urban forestry: planning and managing urban greenspaces. Urban forestry: 
planning and managing urban greenspaces. 

Mohammed, G. H., Noland, T. L., Irving, P. H., Sampson, P. H., Zarco-Tejada, P. J., &, & Miller, J. R. (2000). 
Natural and stress-induced effects on leaf spectral reflectance in Ontario species. Forest Research 
Report (Vol. 156). 

Nascimbene, J., Marini, L., Motta, R., & Nimis, P. L. (2009). Influence of tree age, tree size and crown 
structure on lichen communities in mature Alpine spruce forests. Biodiversity and Conservation, 
18(6), 1509–1522. https://doi.org/10.1007/s10531-008-9537-7 

Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. In 
Environmental Pollution (Vol. 116, pp. 381–389). https://doi.org/10.1016/S0269-7491(01)00214-7 

Nowak, D. J., Hoehn III, R. E., Crane, D. E., Stevens, J. C., & Walton, J. T. (2006). Assessing urban forest 
effects and values: Washington, D.C.’s urban forest. Resource Bulletin - Northern Research Station, 
USDA Forest Service, (No.NRS-1), 24 pp. 

Ollinger, S. V. (2011). Sources of variability in canopy reflectance and the convergent properties of 
plants. New Phytologist. https://doi.org/10.1111/j.1469-8137.2010.03536.x 

Omer, G., Mutanga, O., Abdel-Rahman, E. M., & Adam, E. (2016). Empirical prediction of leaf area index 
(LAI) of endangered tree species in intact and fragmented indigenous forests ecosystems using 
WorldView-2 data and two robust machine learning algorithms. Remote Sensing, 8(4). 
https://doi.org/10.3390/rs8040324 

Pontius, J., Martin, M., Plourde, L., & Hallett, R. (2008). Ash decline assessment in emerald ash borer-
infested regions: A test of tree-level, hyperspectral technologies. Remote Sensing of Environment, 
112(5), 2665–2676. https://doi.org/10.1016/j.rse.2007.12.011 

Pu, R., & Landry, S. (2012). A comparative analysis of high spatial resolution IKONOS and WorldView-2 
imagery for mapping urban tree species. Remote Sensing of Environment, 124, 516–533. 



 

86 
 

https://doi.org/10.1016/j.rse.2012.06.011 

Pu, R., Landry, S., & Yu, Q. (2018). Assessing the potential of multi-seasonal high resolution Pléiades 
satellite imagery for mapping urban tree species. International Journal of Applied Earth 
Observation and Geoinformation, 71, 144–158. https://doi.org/10.1016/j.jag.2018.05.005 

Rautiainen, M., Stenberg, P., Nilson, T., & Kuusk, A. (2004). The effect of crown shape on the reflectance 
of coniferous stands. Remote Sensing of Environment, 89(1), 41–52. 
https://doi.org/10.1016/j.rse.2003.10.001 

Reaves, V. C., Elmore, A. J., Nelson, D. M., & McNeil, B. E. (2018). Drivers of spatial variability in 
greendown within an oak-hickory forest landscape. Remote Sensing of Environment, 210, 422–433. 
https://doi.org/10.1016/j.rse.2018.03.027 

Reed, B. C., Schwartz, M. D., & Xiao, X. (2009). Remote Sensing Phenology. In Phenology of Ecosystem 
Processes (pp. 231–246). https://doi.org/10.1007/978-1-4419-0026-5_10 

Reed, Bradley C, Brown, J. F., Vanderzee, D., Loveland, T. R., James W, & Ohlen, D. O. (1994). Measuring 
phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703–714. 
https://doi.org/10.2307/3235884 

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., & Ohno, H. (2005). A crop 
phenology detection method using time-series MODIS data. Remote Sensing of Environment, 96(3–
4), 366–374. https://doi.org/10.1016/j.rse.2005.03.008 

Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting 
plant diseases. Computers and Electronics in Agriculture. 
https://doi.org/10.1016/j.compag.2010.02.007 

Sooyoung Kim. (2007). Individual Tree Species Identification using LIDAR- derived Crown Structures and 
Intensity Data, 1–121. 

Therneau, T., B. Atkinson, and B. Ripley. (2017). Rpart: Recursive Partitioning and Regression Trees.R 
package version 4.1-11. https://cran.rproject.org/web/packages/rpart/index.html. 

Toutin, T. (2004). Geometric processing of remote sensing images: Models, algorithms and methods. 
International Journal of Remote Sensing, 25(10), 1893–1924. 
https://doi.org/10.1080/0143116031000101611 

Trimble. (2011). Ecognition Developer 8.64. 1 User Guide. Munich: Trimble. 

Vain, A., Kaasalainen, S., Hyyppä, J., & Ahokas, E. (2009). Calibration of laser scanning intensity data 
using brightness targets. The method developed by the Finnish Geodetic Institute. Geodesy and 
Cartography, 35(3), 77–81. https://doi.org/10.3846/1392-1541.2009.35.77-81 

Van Ewijk, K. Y., Randin, C. F., Treitz, P. M., & Scott, N. A. (2014). Predicting fine-scale tree species 
abundance patterns using biotic variables derived from LiDAR and high spatial resolution imagery. 
Remote Sensing of Environment, 150, 120–131. https://doi.org/10.1016/j.rse.2014.04.026 

Vaughn, N. R., Moskal, L. M., & Turnblom, E. C. (2012). Tree species detection accuracies using discrete 
point lidar and airborne waveform lidar. Remote Sensing, 4(2), 377–403. 
https://doi.org/10.3390/rs4020377 

Vauhkonen, J., Ø rka, H. O., Holmgren, J., Dalponte, M., Heinzel, J., & Koch, B. (2014). Tree Species 



 

87 
 

Recognition Based on Airborne Laser Scanning and Complementary Data Sources (pp. 135–156). 
https://doi.org/10.1007/978-94-017-8663-8_7 

Verlic, A., Duric, N., Kokalj, Z., Marsetic, A., Simoncic, P., & Ostir, K. (2014). TREE SPECIES 
CLASSIFICATION USING WORLDVIEW-2 SATELLITE IMAGES AND LASER SCANNING DATA IN A 
NATURAL URBAN FOREST. SUMARSKI LIST, 138(9–10), 477–488. 

Voss, M., & Sugumaran, R. (2008). Seasonal effect on tree species classification in an urban environment 
using hyperspectral data, LiDAR, and an object-oriented approach. Sensors, 8(5), 3020–3036. 
https://doi.org/10.3390/s8053020 

Wang, T., Zhang, H., Lin, H., & Fang, C. (2016). Textural-spectral feature-based species classification of 
mangroves in Mai Po nature reserve from worldview-3 imagery. Remote Sensing, 8(1). 
https://doi.org/10.3390/rs8010024 

Warner, T. (2011). Kernel-Based Texture in Remote Sensing Image Classification. Geography Compass, 
5(10), 781–798. https://doi.org/10.1111/j.1749-8198.2011.00451.x 

Warner, T. A., Lee, J. Y., & Mcgraw, J. B. (1999). Delineation and identification of individual trees in the 
eastern deciduous forest. In Automated Interpretation of High Spatial Resolution Digital Imagery 
for Forestry (pp. 81–91). 

Waser, L. T., Küchler, M., Jütte, K., & Stampfer, T. (2014). Evaluating the potential of worldview-2 data to 
classify tree species and different levels of ash mortality. Remote Sensing, 6(5), 4515–4545. 
https://doi.org/10.3390/rs6054515 

Wolter, P. T., Mladenoff, D. J., Host, G. E., & Crow, T. R. (1995). Improved forest classification in the 
northern Lake States using multi-temporal landsat imagery. Photogrammetric Engineering and 
Remote Sensing, 61(9), 1129–1143. 

Wolter, P. T., & Townsend, P. A. (2011). Multi-sensor data fusion for estimating forest species 
composition and abundance in northern Minnesota. Remote Sensing of Environment, 115(2), 671–
691. https://doi.org/10.1016/j.rse.2010.10.010 

Wong, N. H., & Yu, C. (2005). Study of green areas and urban heat island in a tropical city. Habitat 
International, 29(3), 547–558. https://doi.org/10.1016/j.habitatint.2004.04.008 

Xiao, Q., & McPherson, E. G. (2005). Tree health mapping with multispectral remote sensing data at UC 
Davis, California. Urban Ecosystems, 8(3–4), 349–361. https://doi.org/10.1007/s11252-005-4867-7 

Xiao, Q., Ustin, S. L., & McPherson, E. G. (2004). Using AVIRIS data and multiple-masking techniques to 
map urban forest tree species. International Journal of Remote Sensing, 25(24), 5637–5654. 
https://doi.org/10.1080/01431160412331291224 

Yan, J., Zhou, W., Han, L., & Qian, Y. (2018). Mapping vegetation functional types in urban areas with 
WorldView-2 imagery: Integrating object-based classification with phenology. Urban Forestry and 
Urban Greening, 31, 230–240. https://doi.org/10.1016/j.ufug.2018.01.021 

Zhang, K., & Hu, B. (2012). Individual urban tree species classification using very high spatial resolution 
airborne multi-spectral imagery using longitudinal profiles. Remote Sensing, 4(6), 1741–1757. 
https://doi.org/10.3390/rs4061741 


	Crown-level mapping of tree species and health from remote sensing of rural and urban forests
	Recommended Citation

	tmp.1563549843.pdf.0lgKv

