375 research outputs found

    A Logic-based Approach for Recognizing Textual Entailment Supported by Ontological Background Knowledge

    Full text link
    We present the architecture and the evaluation of a new system for recognizing textual entailment (RTE). In RTE we want to identify automatically the type of a logical relation between two input texts. In particular, we are interested in proving the existence of an entailment between them. We conceive our system as a modular environment allowing for a high-coverage syntactic and semantic text analysis combined with logical inference. For the syntactic and semantic analysis we combine a deep semantic analysis with a shallow one supported by statistical models in order to increase the quality and the accuracy of results. For RTE we use logical inference of first-order employing model-theoretic techniques and automated reasoning tools. The inference is supported with problem-relevant background knowledge extracted automatically and on demand from external sources like, e.g., WordNet, YAGO, and OpenCyc, or other, more experimental sources with, e.g., manually defined presupposition resolutions, or with axiomatized general and common sense knowledge. The results show that fine-grained and consistent knowledge coming from diverse sources is a necessary condition determining the correctness and traceability of results.Comment: 25 pages, 10 figure

    Normalized Alignment of Dependency Trees for Detecting Textual Entailment

    Get PDF
    In this paper, we investigate the usefulness of normalized alignment of dependency trees for entailment prediction. Overall, our approach yields an accuracy of 60% on the RTE2 test set, which is a significant improvement over the baseline. Results vary substantially across the different subsets, with a peak performance on the summarization data. We conclude that normalized alignment is useful for detecting textual entailments, but a robust approach will probably need to include additional sources of information

    LangPro: Natural Language Theorem Prover

    Get PDF
    LangPro is an automated theorem prover for natural language (https://github.com/kovvalsky/LangPro). Given a set of premises and a hypothesis, it is able to prove semantic relations between them. The prover is based on a version of analytic tableau method specially designed for natural logic. The proof procedure operates on logical forms that preserve linguistic expressions to a large extent. %This property makes the logical forms easily obtainable from syntactic trees. %, in particular, Combinatory Categorial Grammar derivation trees. The nature of proofs is deductive and transparent. On the FraCaS and SICK textual entailment datasets, the prover achieves high results comparable to state-of-the-art.Comment: 6 pages, 8 figures, Conference on Empirical Methods in Natural Language Processing (EMNLP) 201

    Logic Programs vs. First-Order Formulas in Textual Inference

    Get PDF
    In the problem of recognizing textual entailment, the goal is to decide, given a text and a hypothesis expressed in a natural language, whether a human reasoner would call the hypothesis a consequence of the text. One approach to this problem is to use a first-order reasoning tool to check whether the hypothesis can be derived from the text conjoined with relevant background knowledge, after expressing all of them by first-order formulas. Another possibility is to express the hypothesis, the text, and the background knowledge in a logic programming language, and use a logic programming system. We discuss the relation of these methods to each other and to the class of effectively propositional reasoning problems. This leads us to general conclusions regarding the relationship between classical logic and answer set programming as knowledge representation formalisms
    corecore