

 University of Groningen

LangPro: Natural Language Theorem Prover
Abzianidze, Lasha

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Abzianidze, L. (2017). LangPro: Natural Language Theorem Prover. 115-120. Paper presented at
Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-02-2018

https://www.rug.nl/research/portal/en/publications/langpro-natural-language-theorem-prover(69194538-996d-4134-9219-9bd2b04b89f9).html

Proceedings of the 2017 EMNLP System Demonstrations, pages 115–120
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

LANGPRO: Natural Language Theorem Prover

Lasha Abzianidze
CLCG, University of Groningen

The Netherlands
L.Abzianidze@rug.nl

Abstract

LangPro is an automated theorem prover
for natural language.1 Given a set of
premises and a hypothesis, it is able to
prove semantic relations between them.
The prover is based on a version of an-
alytic tableau method specially designed
for natural logic. The proof procedure op-
erates on logical forms that preserve lin-
guistic expressions to a large extent. The
nature of proofs is deductive and transpar-
ent. On the FraCaS and SICK textual en-
tailment datasets, the prover achieves high
results comparable to state-of-the-art.

1 Introduction

Nowadays many formal logics come with their
own proof systems and with the automated theo-
rem provers based on these systems. If we share
Montagues’s famous belief that there is “no im-
portant theoretical difference between natural lan-
guages and the artificial languages of logicians”,
then there plausibly exists a proof system for nat-
ural languages too. On the other hand, studies on
Natural Logic seek a formal logic whose formu-
las are as close as possible to linguistic expres-
sions. Inspired by these research ideas, Muskens
(2010) proposed an analytic tableau system for
natural logic, where higher-order logic based on
a simple type theory is used as natural logic and a
version of analytic tableau method is designed for
it. Later, Abzianidze (2015b,a, 2016a) made the
tableau system suitable for wide-coverage reason-
ing by extending it and implementing a theorem
prover based on it.

This paper presents the Prolog implementation
of the theorem prover, called LangPro, in detail
and completes the previous publications in terms

1https://github.com/kovvalsky/LangPro

LangPro

CCG
parser

LLFgen
& Aligner

NLog
Prover

p1...
pn

h

v
⊥
#

trees LLFsIn Out

Figure 1: LangPro checks whether a set of
premises p1, . . . , pn entails (v), contradicts (⊥) or
is neutral (#) to a hypothesis h.

of the system description. The rest of the paper
is organized as follows. First, we briefly intro-
duce the tableau system and the employed natu-
ral logic. Then we characterize the architecture
and functionality of LangPro (see Figure 1). Be-
fore concluding, we briefly compare the prover to
the related textual entailment systems.

2 Natural Tableau

An analytic tableau method is a proof procedure
which searches a model, i.e. a possible situ-
ation, satisfying a set of logic formulas. The
search is performed by gradually applying infer-
ence rules, also called tableau rules, to the for-
mulas. A tableau rule has antecedents and conse-
quent and is easy to read, e.g., according to NOT
in Figure 3, if no A is B, then for any entity c, ei-
ther it is not A or it is not B. A tableau proof,
in short a tableau, is often depicted as an upside-
down tree with initial formulas at its root (Fig-
ure 2). After each rule application, new inferred
formulas are introduced in the tableau. Depend-
ing on the applied rules, the tableau can branch or
grow in depth. A tableau branch models a situ-
ation that satisfies all the formulas in the branch.
Closed branches, marked with ×, correspond to
inconsistent situations. The search for a possi-
ble situation fails if all branches are closed—the
tableau is closed.

The natural tableau is a tableau method for a

115

1 several pug bark : T
2 every(which bark dog)(be vicious) : T

3 no pug(be evil) : T

4 pug :c :T
5 bark :c :T

6 which bark dog :c :F

8 bark :c :F

10 ×

9 dog :c :F

11 ×

7 be vicious :c :T

12 vicious :c :T

13 pug :c :F

15 ×

14 be evil :c :F

16 evil :c :F

17 ×

∃T[1]

×[5,8] ×[4,9]

AUX[7]

×[4,13] AUX[14]

×[12,16]

∀T[2]

∧F[6]

NOT[3]

Figure 2: The tableau proves: several pugs bark.
every dog which barks is vicious. ⊥ no pug is evil.

version of natural logic.2 The terms of the nat-
ural logic, called Lambda Logical Forms (LLFs),
are simply typed λ-terms built up from variables
and constant lexical terms with the help of func-
tion application and λ-abstraction. The format of
a tableau entry, i.e. node, is a tuple consisting of a
modifier list, an LLF, an argument list and a truth
sign. The parts are delimited with a colon. The
empty lists are omitted for conciseness. For ex-
ample, the entries (1) and (2) both mean that it is
true that c barks loudly in Paris, where (α, β) is a
functional type that expects an argument of type α
and returns a value of type β.3

innp,vp,vpParisnp : loudlyvp,vpbarkvp : ce : T (1)

(innp,vp,vpParisnp)(loudlyvp,vpbarkvp ce) : T (2)

In order to prove a certain logical relation
between premises and a hypothesis, the natural
tableau searches a situation for the counterexam-
ple of the relation. The relation is proved if the
situation is not found, otherwise it is refuted. An
example of a closed natural tableau is shown in
Figure 2. It proves the contradiction relation as it
fails to find a situation for the counterexample—
the premises and the hypothesis being true. In or-

2It is an extended version of Muskens’ original tableau
system. The extension is three-fold and concerns the type
system, the format of tableau entries and the inventory of
tableau rules (Abzianidze, 2015b).

3LLFs are typed with syntactic and semantic types. In-
teraction between these types is established via the subtyping
relation, e.g., entities being a subtype of NPs, e <: np, makes
barkvp ce well-formed, where vp abbreviates (np, s).

C A B : [
#–

C] : F

A : [
#–

C] : F B : [
#–

C] : F
∧F

C ∈ {and,which}

AAUX B : [
#–

C] : X

B : [
#–

C] : X
AUX

Q A B : T

A : c : T
B : c : T

∃T

Q ∈ {several, a, . . .}
c is fresh

A : [
#–

C] : T
B : [

#–

C] : F

×
×

A v B

no A B : T
A : c : T

B : c : F
NOn

T

every A B : T

A : c : F B : c : T
∀T

c is old

no A B : T

A : c : F B : c : F
NOT

c is old

Figure 3: The inference rules employed in the
tableau proof of Figure 2. An entity term is old
(fresh) wrt a branch iff it is (not) in the branch.

LLFgen
CCG
Tree

CCG
Term

Corrected
CCG Term LLFs

FOL

DRTRemoving
directionality

Correcting
analyses

Type-raising
quantified NPs

Figure 4: The LLF generator produces a list of
LLFs from a single CCG derivation tree.

der to facilitate reading tableau proofs, type infor-
mation is omitted, the entries are enumerated and
arcs are labeled with tableau rule applications. For
example, 4 and 5 are obtained by applying ∃T to
1 : if it is true that several pugs bark, then there is
some entity c which is a pug and which barks.

3 LLF Generator

A Natural Tableau-based theorem prover for nat-
ural language requires automatic generation of
LLFs from raw text. To do so, we implement
a module, called LLFgen, that generates LLFs
from syntactic derivations of Combinatory Cate-
gorial Grammar (CCG, Steedman 2000). Given
a CCG derivation, LLFgen returns several LLFs
that model different orders of quantifier scopes
(see Figure 4).4 Figure 5 displays a CCG deriva-
tion where VP i abbreviates Si\NP .

LLFs are obtained from a CCG tree in three
major steps (Figure 4): (i) removing directionality
from CCG trees, (ii) correcting semantically inad-
equate analyses, and (iii) type-raising quantified
NPs (QNPs). Below we briefly describe each of
these steps and give corresponding examples.

Directionality information encoded in CCG cat-
egories and combinatory rules is redundant from
a semantic perspective, therefore we discard it in

4See Abzianidze (2016a, Ch. 3) for a detailed description.

116

ba[Sdcl]

fa[VP dcl]

fa[VPng]

fa[PP]

lx[NP,N]

water
N

water
NN

with
PP/NP

with
IN

fa[VPng/PP]

fa[NP]

steak
N

steak
NN

a
NP/N

a
DT

rinsing
(VPng/PP)/NP

rinse
VBG

is
VP dcl/VPng

be
VBZ

nobody
NP

nobody
DT

Figure 5: The CCG tree by C&C for nobody is
rinsing a steak with water (SICK-1379).

the first step: CCG categories are converted into
types (Y \X and Y/X (x, y)), and argument
constituents are placed after function ones in bi-
nary combinatory rules. Resulted structures are
called CCG terms (Figure 6).

Obtained CCG terms are often semantically in-
adequate. One of the reasons for this is lexical
(i.e. type-changing) rules (e.g., N 7→NP in Fig-
ure 5) of the CCG parsers which still remain in
CCG terms (e.g., [watern]np in Figure 6). These
rules are destructive from a compositional point of
view. We designed 13 schematic rewriting rules of
general type that correct CCG terms—make them
semantically more adequate and transparent. The
rules make use of types, part-of-speech (POS) and
named entity (NE) tags to match semantically in-
adequate analyses:5

• Certain non-compositional multiword expres-
sions are treated as constant terms: a lot of, in
front of, a few, because of, next to, etc.

• Type-changing rules are explained by changing
lexical types, decomposing terms or inserting
new terms. This step carries out conversions
like [europen]np europenp, [nobodyn]np
non,nppersonn, and [watern]np an,npwatern (see
Figure 7). Inserted an,np merely plays a role of
an existential quantifier.

• Several CCG analyses are altered in order
to reflect formal semantics, e.g., attributive
modifiers are pushed under a relative clause:
big (which run mouse) which run (big mouse);
and PPs are attached to nouns rather than NPs:
in (a box)(every pug) every (in (a box) pug).
5 To handcraft the rules, we used a development set of

1.7K CCG derivations obtained by parsing the sentences
from FraCaS (Cooper et al., 1996) and the trial portion of
SICK (Marelli et al., 2014) with CCG-based parsers: C&C
(Clark and Curran, 2007) and EasyCCG (Lewis and Steed-
man, 2014).

sdcl

nobody
np

nobody
DT

vpdcl

vpng

pp

np

water
n

water
NN

with
np, pp
with
IN

pp, vpng

np

steak
n

steak
NN

a
n, np

a
DT

rinsing
np, pp, vpng

rinse
VBG

is
vpng, vpdcl

be
VBZ

Figure 6: The CCG term obtained from the CCG
tree of Figure 5. NB: the lexical rule remains.

sdcl

np

person
n

person
NN

no
n, np
no
DT

vpdcl

vpng

pp

np

water
n

water
NN

a
n, np

a
DT

with
np, pp
with
IN

pp, vpng

np

steak
n

steak
NN

a
n, np

a
DT

rinsing
np, pp, vpng

rinse
VBG

is
vpng, vpdcl

be
VBZ

Figure 7: The corrected version of the CCG term
of Figure 6, with inserted and decomposed terms.

LLFs are obtained from corrected CCG terms
by type-raising QNPs from np to the type (vp, s)
of generalized quantifiers. Hence, several LLFs
are produced from a single CCG tree due to quan-
tifier scope ambiguity, e.g., (3–5) are some of the
LLFs obtained from the CCG term of Figure 7.6

N
(

be
(
λz. S

(
λx.W

(
λy. rinsex (with y)z

))))
(3)

N
(

be
(
λz.W

(
λy. S

(
λx. rinsex (with y)z

))))
(4)

W
(
λy. S

(
λx.N(be

(
rinse x (with y))

)))
(5)

Since LLFs encode instructions for semantic
composition, they can be used to composition-
ally derive semantics in other meaning represen-
tations (Figure 4), e.g., first-order logic (FOL) or
Discourse Representation Theory (DRT). For this
application, LLFgen can be used as an independent
tool. Given a CCG derivation in the Prolog format
(supported by both C&C and EasyCCG), LLFgen
can return LLFs in XML, HTML or LATEXformats.
For a CCG tree, it is also possible to get either only
the first LLF, e.g., (3), often reflecting the natural
order of quantifiers, or a list of LLFs with various
quantifier scope orders (possibly including seman-
tically equivalent LLFs, like (3) and (4)).

6The LLFs use the following abbreviations: S = aq steakn,
W = aq watern, and N = noq personn, where q = (n, vp, s).

117

4 Natural Logic Theorem Prover

The tableau theorem prover for natural logic
(NLogPro) represents a core part of LangPro (Fig-
ure 1). It is responsible for checking a set of lin-
guistic expressions on (in)consistency. NLogPro
consists of four components: the Proof Engine
builds tableau proofs by applying the rules from
the inventory of Rules; the rule applications are
validated by the properties of lexical terms (en-
coded in the Signature) and the lexical knowledge
(available from the Knowledge Base). We used the
same development data for LLFgen and NLogPro.

4.1 Signature

The signature (SG) lists lexical terms that have
algebraic properties relevant for inference, e.g.,
monotonicity, intersectivity, and implicativity.
The lexical items in the SG come with an argument
structure where each argument position is associ-
ated with a set of algebraic properties. For exam-
ple, every is characterized in the SG as [dw,up],
meaning that in its first argument every is down-
ward monotone while being upward monotone in
the second one. Currently, the SG lists about
20 lexical items, mostly generalized quantifiers
(GQs), that were found in the development data.

4.2 The Inventory of Rules

The inventory of rules (IR) contains all inference
rules used by the prover. Currently there are ca. 80
rules in the IR (some in Figure 3). Around a quar-
ter of the rules are from Muskens (2010) and the
rest are manually collected while exploring the de-
velopment data. The rules cover a plethora of phe-
nomena. Some of them are of a formal nature like
Boolean connectives and monotonicity and others
of linguistic nature: adjectives, prepositions, defi-
nite NPs, expletives, open compound nouns, light
verbs, copula, passives and attitude verbs.

The IR involves around 25 derivable rules—the
rules that represent shortcuts of several rule ap-
plications. One such rule is (NOn

T) in Figure 3,
which is a specific version of (NOT). Use of deriv-
able rules yields shorter tableau proofs but raises
a problem of performing the same rule application
several times. NLogPro avoids this by maintain-
ing a subsumption relation between the rules and
keeping track of rule applications per branch.

A user can introduce new rules in the IR as Pro-
log rules (Code 1): the head of the rule encodes
antecedent nodes ===> consequent nodes, and the

body is a list of Prolog goals specifying the condi-
tions the rule has to meet.

r(Name, Feats, ConstIndx, KeyWrd, KB,
br([nd(Mod1, LLF1, Arg1, Sign1),...

nd(ModN, LLFN, ArgN, SignN)],
Signature) ===>

[br([nd(Mod3, LLF3, Arg3, Sign3),...],
Signature3),

br([nd(Mod4, LLF4, Arg4, Sign4),...],
Signature4)]

:- Goal1, ..., GoalN. %conditions

Code 1: The Prolog format of tableau rules.
Feats denotes efficiency features, ConstIndx
and KB are the KB and indexing of constants re-
spectively (fixed for every rule), and KeyWrd de-
notes fixed lexical terms occurring in the rule.
Each branch maintains its own signature of enti-
ties introduced during the proof.

4.3 Knowledge Base
The knowledge base (BS) is based on the Pro-
log version of WordNet 3.0 (Fellbaum, 1998). At
this moment only the hyponymy/hypernymy, sim-
ilarity and antonymy relations are included in the
KB. For simplicity, LangPro does not do any word
sense disambiguation (WSD) but allows multi-
ple word senses for a lexical term. For example,
A v B iff SynSetA is a hyponym of SynSetB ,
or there are similar SenseA and SenseB , where
SenseA ∈ SynSetA and SenseB ∈ SynSetB .
In the prover, a user can restrict the number of
word senses per word by specifying a cutoff N ,
i.e. the N most frequent senses per word.

In addition to the WN relations, a user can in-
troduce new lexical relations in the KB as Prolog
facts, e.g., is_(crowd, group).

4.4 The Proof Engine
The proof engine (PE) is the component that builds
proof trees. While applying rules it takes into ac-
count computational efficiency of each rule where
the efficiency depends on the following categories:

• Branching: a rule is either branching (e.g., ∀T)
or non-branching (e.g., AUX).

• Semantic equivalence: this depends whether the
antecedents of a rule is semantically equivalent
to its consequents. For example, (∧F) encodes
the semantic equivalence while (NOT) does not.

• Producing: depending on whether a rule pro-
duces a fresh entity, it is a producer or a non-
producer. (∃T) is a producer while (∀T) is not.

118

• Consuming: a rule is a consumer iff it employs
an old entity from the branch during application.
The consumer rules are (∀T) and (NOT) but (∃T).

The most efficient combination of these features
is non-branching, semantic equivalence, non-
producing and non-consuming. Depending on a
priority order between these categories, called an
efficiency criterion, one can define a partial effi-
ciency order over the rules. In particular, (6) is one
of the best efficiency criteria on SICK (Abzian-
idze, 2016a, Ch. 6). According to (6), (∧F) is more
efficient than (NOn

T) since the equivalence is the
most prominent category in (6), and (∧F) is equiv-
alence in contrast to (NOn

T)

[equi, nonBr, nonProd, nonCons] (6)

A user can change the default criterion (6) by pass-
ing a criterion via the Prolog predicate effCr/1.

The PE builds two structures: a tree (see Fig-
ure 2) and a list. The latter represents a list of
the tree branches. The list structure is the main
data structure that guides the computation process
while the tree structure is optional (activated with
the predicate prooftree/0) and is used for dis-
playing proofs in a compact way. A few of the
predicates that control the proof procedure are:

• ral/1 sets a rule application limit to n, which
means that after n rules are applied the proof is
terminated. n = 400 by default.

• thE/0 always permits existential import from
definite NPs: it makes (∃T) applicable to the en-
try then,vp,s dogn barkvp : F.

• allInt/0 allows to treat lexical modifiers of
the form c

VB.|JJ|NN
n,n as intersective by default un-

less stated differently in the SG. This permits to
infer babyn : c : T and kangaroon : c : T from
babyn,nkangaroo : c : T, for better or worse.

• the/0, a2the/0, and s2the/0 are used as flags
and treat bare, indefinite, and plural NPs as def-
inite NPs, respectively.

5 LangPro: Natural Language Prover

The tableau-based theorem prover for natural lan-
guage is obtained by chaining a CCG parser,
LLFgen and NLogPro. In order to detect a se-
mantic relation between a set of premises {pi}ni=1

and a hypothesis h, first the corresponding LLFs
{Pi}ni=1 and H are obtained via a CCG parser and
LLFgen (i.e. for simplicity, a single LLF per sen-
tence). Then based on the lexical terms of the

LLFs, relevant sets of relations K and rules R are
collected from the KB and the IR, respectively. To
refute both entailment and contradiction relations
NLogPro builds two proof trees using K and R.
One starts with the counterexample (7) for entail-
ment and another with the counterexample (8) for
contradiction. The semantic relation which could
not be refuted (i.e. its tableau for the counterexam-
ple was closed) is said to be proved. The relation
is considered to be neutral iff both tableaux have
the same closure status: open or closed.

{P1 : T, . . . , Pn : T, H : F} (7)

{P1 : T, . . . , Pn : T, H : T} (8)
Entailment relations often do not depend on

semantics of phrases shared by premises and
hypotheses. To bypass analyzing the common
phrases, LangPro can use an optional CCG term
aligner in LLFgen (Figure 1), which identifies the
common CCG sub-terms and treats them as con-
stants. The sub-terms that are downward mono-
tone or indefinite NPs are excluded from align-
ments as they do not behave semantically as
constants. After aligning CCG terms, aligned
LLFs are obtained from them via the type-raising.
Tableau proofs with aligned LLFs are shorter.
Thus, first, a tableau with aligned LLFs is built,
and if the tableau did not close, then non-aligned
LLFs are used since alignment might prevent the
tableau from closing. On SICK, the aligner boosts
the accuracy by 1%. If stronger alignment is used
(i.e. aligning indefinite NPs), the accuracy on
SICK is increased by 2%. Both weak and strong
alignment options can be chosen in LangPro.

The parser component of LangPro can be filled
by C&C or EasyCCG. This results in two versions
of LangPro, ccLangPro and easyLangPro respec-
tively. Both versions achieve similar results on
FraCaS and SICK, and a simple aggregation of
their judgments (coLangPro) improves the accu-
racy on the unseen portion of SICK by 1%.

With respect to its rule-based nature, LangPro
is fast. Given ready CCG derivations, on average
100 SICK problems are classified in 3.5 seconds.7

Details about speed and impact of parameters on
the performance are given in Abzianidze (2016a).

In addition to an entailment judgment, LangPro
can output the actual tableau proof trees (similar

7This is measured on 8 × 2.4 GHz CPU machine, when
proving problems in parallel (via the paralle/0 predicate)
with the strong aligner option and the rule application limit
50—the configuration that achieves high performance both
in terms of speed and accuracy.

119

to Figure 2) in three formats: a drawing of a proof
tree via the XPCE GUI, a LATEX source code, an
XML output, or an HTML file.

6 Related work

Theorem proving techniques (Bos and Markert,
2005) or ideas from Natural Logic (MacCartney,
2009) were already used in recognizing textual
entailment (RTE). But the combination of these
two is a novel approach to RTE. The underlying
higher-order logic of LangPro guarantees sound
reasoning over several premises, including some
complex semantic phenomena. This is in con-
trast to the RTE systems that cannot reason over
several premises or cannot account for Booleans
and quantifiers, including the ones (MacCartney,
2009) inspired by Natural Logic, and in contrast
to those ones that use FOL representations and
cannot cover higher-order phenomena like gener-
alized quantifiers or subsective adjectives.

LangPro achieves state-of-the-art semantic
competence (with accuracy of 87%) on the
FraCaS sections commonly used for evaluation
(Abzianidze, 2016b,a). On SICK, the prover
obtains 82.1% of accuracy (Abzianidze, 2015a,
2016a) while state-of-the-art systems score in
the range of 81-87% and average performance of
human on the dataset is around 84%. Detailed
comparison of LangPro to the related RTE systems
is discussed in (Abzianidze, 2015a, 2016b,a).

7 Conclusion

The presented natural language prover involves a
unique combination of natural logic, higher-order
logic and a tableau method. Its natural logic
side simplifies generation of the logical forms and
makes the prover to be relatively easily scaled
up. Due to its higher-order virtue, the prover
easily accounts for complex semantic phenomena
untameable in FOL. Because of its high reliabil-
ity (less than 3% of its entailment and contradic-
tion judgments are incorrect), the judgments of the
prover can be successfully borrowed by other RTE
systems. Further scaling-up for longer sentences
(e.g., newswire text) and automated knowledge ac-
quisition present future challenges to the prover.

Acknowledgments

This work has been supported by the NWO-VICI
grant “Lost in Translation – Found in Meaning”
(288-89-003).

References
Lasha Abzianidze. 2015a. A tableau prover for natural

logic and language. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2492–2502. ACL.

Lasha Abzianidze. 2015b. Towards a wide-coverage
tableau method for natural logic. In Tsuyoshi Mu-
rata, Koji Mineshima, and Daisuke Bekki, editors,
New Frontiers in Artificial Intelligence: Revised Se-
lected Papers of JSAI-isAI 2014 Workshops, LENLS,
JURISIN, and GABA, pages 66–82. Springer.

Lasha Abzianidze. 2016a. A natural proof system for
natural language. Ph.D. thesis, Tilburg University.

Lasha Abzianidze. 2016b. Natural solution to fracas
entailment problems. In Proceedings of the Fifth
Joint Conference on Lexical and Computational Se-
mantics, pages 64–74. ACL.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 628–635.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics, 33.

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox,
Josef Van Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, Steve
Pulman, Ted Briscoe, Holger Maier, and Karsten
Konrad. 1996. FraCaS: A Framework for Compu-
tational Semantics. Deliverable D16.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database. MIT Press.

Mike Lewis and Mark Steedman. 2014. A* CCG pars-
ing with a supertag-factored model. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 990–1000.
ACL.

Bill MacCartney. 2009. Natural language inference.
Phd thesis, Stanford University.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A sick cure for the evaluation of com-
positional distributional semantic models. In Pro-
ceedings of LREC’14. ELRA.

Reinhard Muskens. 2010. An analytic tableau system
for natural logic. In Maria Aloni, Harald Bastiaanse,
Tikitu de Jager, and Katrin Schulz, editors, Logic,
Language and Meaning, volume 6042 of LNCS,
pages 104–113. Springer.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

120

