2,155 research outputs found
Retinal vessel segmentation using Gabor Filter and Textons
This paper presents a retinal vessel segmentation method that is inspired by the human visual system and uses a Gabor filter bank. Machine learning is used to optimize the filter parameters for retinal vessel extraction. The filter responses are represented as textons and this allows the corresponding membership functions to be used as the framework for learning vessel and non-vessel classes. Then, vessel texton memberships are used to generate segmentation results. We evaluate our method using the publicly available DRIVE database. It achieves competitive performance (sensitivity=0.7673, specificity=0.9602, accuracy=0.9430) compared to other recently published work. These figures are particularly interesting as our filter bank is quite generic and only includes Gabor responses. Our experimental results also show that the performance, in terms of sensitivity, is superior to other methods
Reflectance Hashing for Material Recognition
We introduce a novel method for using reflectance to identify materials.
Reflectance offers a unique signature of the material but is challenging to
measure and use for recognizing materials due to its high-dimensionality. In
this work, one-shot reflectance is captured using a unique optical camera
measuring {\it reflectance disks} where the pixel coordinates correspond to
surface viewing angles. The reflectance has class-specific stucture and angular
gradients computed in this reflectance space reveal the material class.
These reflectance disks encode discriminative information for efficient and
accurate material recognition. We introduce a framework called reflectance
hashing that models the reflectance disks with dictionary learning and binary
hashing. We demonstrate the effectiveness of reflectance hashing for material
recognition with a number of real-world materials
Using basic image features for texture classification
Representing texture images statistically as histograms over a discrete vocabulary of local features has proven widely effective for texture classification tasks. Images are described locally by vectors of, for example, responses to some filter bank; and a visual vocabulary is defined as a partition of this descriptor-response space, typically based on clustering. In this paper, we investigate the performance of an approach which represents textures as histograms over a visual vocabulary which is defined geometrically, based on the Basic Image Features of Griffin and Lillholm (Proc. SPIE 6492(09):1-11, 2007), rather than by clustering. BIFs provide a natural mathematical quantisation of a filter-response space into qualitatively distinct types of local image structure. We also extend our approach to deal with intra-class variations in scale. Our algorithm is simple: there is no need for a pre-training step to learn a visual dictionary, as in methods based on clustering, and no tuning of parameters is required to deal with different datasets. We have tested our implementation on three popular and challenging texture datasets and find that it produces consistently good classification results on each, including what we believe to be the best reported for the KTH-TIPS and equal best reported for the UIUCTex databases
A computational model of texture segmentation
An algorithm for finding texture boundaries in images is developed on the basis of a computational model of human texture perception. The model consists of three stages: (1) the image is convolved with a bank of even-symmetric linear filters followed by half-wave rectification to give a set of responses; (2) inhibition, localized in space, within and among the neural response profiles results in the suppression of weak responses when there are strong responses at the same or nearby locations; and (3) texture boundaries are detected using peaks in the gradients of the inhibited response profiles. The model is precisely specified, equally applicable to grey-scale and binary textures, and is motivated by detailed comparison with psychophysics and physiology. It makes predictions about the degree of discriminability of different texture pairs which match very well with experimental measurements of discriminability in human observers. From a machine-vision point of view, the scheme is a high-quality texture-edge detector which works equally on images of artificial and natural scenes. The algorithm makes the use of simple local and parallel operations, which makes it potentially real-time
A survey of exemplar-based texture synthesis
Exemplar-based texture synthesis is the process of generating, from an input
sample, new texture images of arbitrary size and which are perceptually
equivalent to the sample. The two main approaches are statistics-based methods
and patch re-arrangement methods. In the first class, a texture is
characterized by a statistical signature; then, a random sampling conditioned
to this signature produces genuinely different texture images. The second class
boils down to a clever "copy-paste" procedure, which stitches together large
regions of the sample. Hybrid methods try to combine ideas from both approaches
to avoid their hurdles. The recent approaches using convolutional neural
networks fit to this classification, some being statistical and others
performing patch re-arrangement in the feature space. They produce impressive
synthesis on various kinds of textures. Nevertheless, we found that most real
textures are organized at multiple scales, with global structures revealed at
coarse scales and highly varying details at finer ones. Thus, when confronted
with large natural images of textures the results of state-of-the-art methods
degrade rapidly, and the problem of modeling them remains wide open.Comment: v2: Added comments and typos fixes. New section added to describe
FRAME. New method presented: CNNMR
- …
