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Abstract 

This paper presents a retinal vessel segmentation method that is inspired by the 

human visual system and uses a Gabor filter bank. Machine learning is used to 

optimize the filter parameters for retinal vessel extraction. The filter responses are 

represented as textons and this allows the corresponding membership functions to be 

used as the framework for learning vessel and non-vessel classes. Then, vessel texton 

memberships are used to generate segmentation results. We evaluate our method 

using the publicly available DRIVE database. It achieves competitive performance 

(sensitivity (TPF) =0.7673, specificity (1-FPF) =0.9602, accuracy=0.9430), and 

especially its considerably higher sensitivity means it is better in detecting vessels 

than the other methods. These figures are particularly interesting as our filter bank is 

quite generic and only includes Gabor responses.  

1 Introduction 

Retinal vessel segmentation is an important preliminary stage in automatic assessment of 

retinopathy as it enables the vascular tree to be constructed. The integrity of the vascular 

tree is a key factor in assessment of systematic disease such as diabetes, glaucoma etc.  

Conventionally, the assessment of the retina vessel anomalies is a skilled time consuming 

task [1], and as such it has been the focus of research into automatic assessment techniques. 

Many techniques for automatic retinal vessel segmentation have been proposed 

[17][18][21][22][23] but a significant number use filter-banks to identify vessel and non-

vessel structures. The success of filter-based methods depends largely on the design of the 

filter bank used to extract vessel features. The work of Chaudhiri et al. [2] is a good 

example of a filter-bank approach that employs a classic matched filter (MF) and several 

authors have built on this idea. For instance, M. Al-Rawi et al. [3] improved the 

performance of the matched filter by optimizing the filter parameters. In [4], Gang et al. 

proposed an amplitude-modified second-order Gaussian filter. They optimized the 

parameters of the matcher filter via mathematical analysis and experimental simulation. 

Zhang et al. [5] proposed a novel extension of the MF approach named MF-FDOG to 

distinguish the vessels from non-vessel step edges. Wu et al. [6] used a compound filter-

bank that combines Hessian-based filters, matched filters and incorporates edge constraints 
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in a vessel enhancement stage. Further development of compound filters followed due to 

Adjeroh and Kandaswamy, et al. [7]  (RVF-20) and Zhang and Fisher [9] (MR11) for 

retinal vessel extraction. However these approaches that rely on special filters sometimes 

introduce pathological changes in the fundus image causing these anomalies to be 

segmented as vessels, whilst some tinny vessels are miss-segmented. Although a 

compound vessel enhanced filter set can address some of these limitations, it is 

computationally expensive since many filter kernels need to be applied on the image.  This 

work investigates if we can balance this situation by decreasing the number of filters while 

maintaining or improving the segmentation performance. Our technique uses the Gabor 

filter to enhance retinal vessels. The Gabor filter was originally proposed by Dennis Gabor 

[20] and subsequently used by Daugman [10][11] to model specific frequencies and 

orientations of certain cells in the visual cortex of some mammals. Because of its 

characteristics, Gabor filters have been widely used in many applications of image 

processing, such as object recognition, edge detection, and texture classification. In this 

paper, we present a procedure for parameter selection based on the retinal vessel features, 

and use a further parameter � to control the function’s performance.  Section 2.1 describes 

details of this procedure. We optimise the parameters within the framework of textons 

derived from vessel feature vectors. Texton-based approaches have been a significant 

branch of texture analysis processes since the term texton was first introduced by Julesz in 

the 1980’s [13]. Psychophysical experiments have shown that these texture primitives 

(microstructures) discriminate differences among various textures and models a process 

used by humans to discriminate one texture from another. Leung and Malik [14] described 

an operational definition of textons which enables textons to be generated automatically 

from an image [8][12]. 

We evaluate our experimental approach by training and testing on the publicly 

available DRIVE database [17]. The DRIVE data set contains 40 TIFF formatted RGB 

retinal images with a size of 565*584 pixels. The database is divided into training and test 

sets, each set consists of 20 images. For the test set, two sets of manual segmentation are 

provided by two observers. In practice, the first set is used as ground truth whilst the other 

one can be used to calculate the differences with the first one thus provides the 

measurements of independent human segmentation. The sensitivity (TPF), specificity (1-

FPF) and the overall accuracy are used as performance measures of the experiments. Our 

results are compared with other state of the art approaches. 

2 Method 

In this experiment we choose a Gabor filter kernel to extract features of retinal vessels as 

the function encodes information about specific frequencies and orientations. The Gabor 

filter was originally introduced by Dennis Gabor [20] and defined as 
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where �� � �  determine the spread of the Gaussian envelope and �*� �*  the origin in the 

spatial domain. If the terms �*� �* are set to 0, this Equation can also be written 
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, 67�   (Eqn. 3)                                      

where �8 � � 345 9 6 � 5:; 9, �8 � �� 5:; 9 6� 345 9 and < is the wave length (hence 1/�< 

is the spatial frequency) of the Gabor filter kernel. The angle parameter = > [0, �? ) 

determines the filter direction and specifies the orientation of normal parallel stripes of a 

Gabor function. The spatial aspect ratio @ determines the ellipticity of Gabor kernel (if @ 

equals 1, the kernel is circular) and�A is the standard deviation of Gaussian envelope. 

2.1 Optimization of Gabor filter parameters 

Because the vessel boundaries are normally presented and form (approximately) parallel 

edges, we model the vessel as an even symmetric function with B =0 and B  = ? 

corresponding to center-on and centre-off responses (Fig 1-c and 1-d). Since retinal vessels 

appear darker compared with their background (e.g. Fig.1-a) we choose B= �?  for our 

kernel model. Neurophysiological research shows that the parameter <  and A  are not 

independent [16]. Petkov and Kruizinga [15] reported that the ratio AC< is related to the 

half-response spatial frequency bandwidth b and can be set as follows. 

     


, � �

	DEF �
� G �H���H��                                (Eqn. 4) 

In practice, the bandwidth b controls the number of visible parallel excitatory and 

inhibitory stripe zones. Three zones, one inhibitory and two excitatory are visible in the 

retinal vessel structure (Fig.1-a) so we determined b=3 in our experiment. We set the 

spatial aspect ratio @ as 0.85 as our previous work suggests this ratio to be optimal. Since 

��I;J�K  are correlated, only one of them (K) is considered a free parameter.  Hence, we 

can write 

+,�-��� �� � ���

0�1�GL�&0�
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, 6 ��       (Eqn. 5) 

Orientation of the retinal vessels is another significant structural characteristic since 

vessels are neither vertical nor horizontal precisely. Hence, the Gabor filter kernels are 

designed to cover 12 different orientations in 15º increments. An optimized kernel size is 

obtained by considering the value of A. This plays a significant role in determining the 

width of vessels that will be detected. We choose K by plotting a family of ROC curves for 

a range of filter responses obtained from on a training set of images. Typical results are 

plotted in Figure 2 and from this analysis we chose the < =13 (Fig. 1-e). Using Eqn. 4 we 

find A is 3.12 and hence a suitable kernel size is 9 × 9. 

2.2 Generating the Texton 

A texton is an element (e.g. line segment, elongated blobs, cross and terminator) that is 

defined to represent the basic micro geometric textural structure in image [13]. The 

training procedure includes two stages. We trained vessel and non-vessel textons. In the 

vessel texton training stage our Gabor filter bank was applied to obtain filter response and 

the background was removed. 
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Figure 1:  Showing the characteristics of vessel boundaries, the symmetric Gabor kernel 

and the Gabor filter bank. (a) is a panel cropped from a gray-level retinal image; (b) a gray 

level profile from the red line crossing the vessel in (a); (c) Gabor kernel with parameter  

B=0; (d) Gabor kernel with parameter B=�?; (e) is optimized Gabor filter bank for retinal 

vessel feature extraction. 

To train non-vessel textons vessel pixels were removed in order to obtain non-vessel 

influences background responses. The textons were generated by employing a k-means 

clustering algorithm on the filter responses. As representations of texture, the textons were 

aggregated based on the properties of distances calculated from memberships to clustering 

centres. This procedure is an iterative process.  

Initially, K random points were selected as the means (centroids) of K clusters. 

Corresponding memberships were selected based on differences of Euclidean distance 

between means and centre bins. New means of those memberships were calculated again 

which were new clustering centroids. The process runs iteratively until it converges. Both 

vessel textons and background textons were stored in a texton dictionary and subsequently 

used in test stage. In test stage, the trained textons were assigned depending on responses 

of filter bank and corresponding memberships are calculated. The vessel texton relative 

memberships generate texton maps and the final segmentation results are obtained by 

combining various vessel texton relative maps. At textons training stage, various values of 

parameter K (no. of cluster centres) were chosen (K= 2,…,20). The corresponding 

accuracies were calculated by evaluating with respect to ground truth. The appropriate 

K=12 can be selected since the corresponding accuracy reaches maximum. 

 

 

 

 

 

 

 

Figure 2:  the ROC curves obtained by different lambda values. 

(a) (b) 

(c) (d) (e) 
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3 Experiment results  

The proposed method was tested and evaluated on DRIVE data sets. In order to quantify 

the performance of proposed approach, the resulting segmentation is compared to its 

corresponding ground truth. The ground truth is defined by a binary vessel mask in which 

all vessel pixels are set to one and all non-vessel pixels are set to zero. Our algorithm was 

evaluated in terms of sensitivity, specificity and accuracy for each sample of test images. 

The sensitivity (TPF) represents the true positive rate of segmentation and a significant 

factor in evaluating the performance of the method. The specificity (1-FPF) indicates the 

correct classification rate for segmentation of non-vessel pixels. The accuracy refers the 

overall segmentation performance. As shown in Table 1, for the DRIVE dataset, average 

specificity reaches 0.9602 with 0.7673 sensitivity, the average accuracy is 0.9430. To verify 

the performance of our proposed methods, we compare results with other state-of-the art 

approaches for retinal vessel segmentation. Table 1 presents corresponding results. The 

relative terms of measurement are average obtained from all of the test images. The 

experimental results show that our proposed method has produced a much better sensitivity, 

whilst maintaining almost the same overall accuracy, compared with the best other methods. 

In practice, it’s difficult to balance the sensitivity and specificity. Normally, with increasing 

sensitivity, the value of specificity might reduce and this, in turn changes the overall 

accuracy. In our experiment, we find the sensitivity increase more than 5% however the 

specificity just reduce 1% compare with other methods. This verifies the robustness of our 

method in detecting retinal vessels.  

Method 
Performance Results 

database Sensitivity Specificity Accuracy 

2nd observer DRIVE 0.7761 0.9725 0.9473 

Our method DRIVE 0.7673 0.9602 0.9430 

Mendonca [19] DRIVE 0.7344 0.9764 0.9452 

Zana[18] DRIVE 0.6696 0.9769 0.9377 

Staal [17] DRIVE 0.7194 0.9773 0.9441 

Zhang [5] DRIVE 0.7120 0.9724 0.9382 

Soares [22] DRIVE 0.7283 0.9788 0.9466 

Fraz[23] DRIVE 0.7525 0.9722 0.9476 

Table 1: comparative results on DRIVE database  

4 Conclusion 

We proposed a novel method for retinal vessel segmentation by using both Gabor filter and 

texton. A new filter bank for retinal vessel network enhancement was designed based on the 

human visual system and the corresponding parameters of the Gabor filter were optimized 

using a ROC analysis of the filter performance on training data. Our experimental results 

demonstrated that our method significantly enhances the true positive rate while 

maintaining a level of specificity that is comparable with other approaches. The overall 

performance accuracy (0.943) is better than most of state-of-the-art retinal vessel 

segmentation methods proposed by other authors. Although the performance of our method 

in terms of sensitivity, specificity, and accuracy is good, we can find some limitations and 

weaknesses from our method.  Visually, some false positive pixels are evident in our 

segmentation results, especially in an area around the optic disc (OD). This is because the 

area surrounding the OD exhibits strong contrast and so there are significant gradient 

changes on its boundary. We intend to address these limitations in our further work.   
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