9,764 research outputs found

    Kernelized Hashcode Representations for Relation Extraction

    Full text link
    Kernel methods have produced state-of-the-art results for a number of NLP tasks such as relation extraction, but suffer from poor scalability due to the high cost of computing kernel similarities between natural language structures. A recently proposed technique, kernelized locality-sensitive hashing (KLSH), can significantly reduce the computational cost, but is only applicable to classifiers operating on kNN graphs. Here we propose to use random subspaces of KLSH codes for efficiently constructing an explicit representation of NLP structures suitable for general classification methods. Further, we propose an approach for optimizing the KLSH model for classification problems by maximizing an approximation of mutual information between the KLSH codes (feature vectors) and the class labels. We evaluate the proposed approach on biomedical relation extraction datasets, and observe significant and robust improvements in accuracy w.r.t. state-of-the-art classifiers, along with drastic (orders-of-magnitude) speedup compared to conventional kernel methods.Comment: To appear in the proceedings of conference, AAAI-1

    One-Shot Relational Learning for Knowledge Graphs

    Full text link
    Knowledge graphs (KGs) are the key components of various natural language processing applications. To further expand KGs' coverage, previous studies on knowledge graph completion usually require a large number of training instances for each relation. However, we observe that long-tail relations are actually more common in KGs and those newly added relations often do not have many known triples for training. In this work, we aim at predicting new facts under a challenging setting where only one training instance is available. We propose a one-shot relational learning framework, which utilizes the knowledge extracted by embedding models and learns a matching metric by considering both the learned embeddings and one-hop graph structures. Empirically, our model yields considerable performance improvements over existing embedding models, and also eliminates the need of re-training the embedding models when dealing with newly added relations.Comment: EMNLP 201

    Answering Complex Questions by Joining Multi-Document Evidence with Quasi Knowledge Graphs

    No full text
    Direct answering of questions that involve multiple entities and relations is a challenge for text-based QA. This problem is most pronounced when answers can be found only by joining evidence from multiple documents. Curated knowledge graphs (KGs) may yield good answers, but are limited by their inherent incompleteness and potential staleness. This paper presents QUEST, a method that can answer complex questions directly from textual sources on-the-fly, by computing similarity joins over partial results from different documents. Our method is completely unsupervised, avoiding training-data bottlenecks and being able to cope with rapidly evolving ad hoc topics and formulation style in user questions. QUEST builds a noisy quasi KG with node and edge weights, consisting of dynamically retrieved entity names and relational phrases. It augments this graph with types and semantic alignments, and computes the best answers by an algorithm for Group Steiner Trees. We evaluate QUEST on benchmarks of complex questions, and show that it substantially outperforms state-of-the-art baselines

    More is simpler : effectively and efficiently assessing node-pair similarities based on hyperlinks

    Get PDF
    Similarity assessment is one of the core tasks in hyperlink analysis. Recently, with the proliferation of applications, e.g., web search and collaborative filtering, SimRank has been a well-studied measure of similarity between two nodes in a graph. It recursively follows the philosophy that "two nodes are similar if they are referenced (have incoming edges) from similar nodes", which can be viewed as an aggregation of similarities based on incoming paths. Despite its popularity, SimRank has an undesirable property, i.e., "zero-similarity": It only accommodates paths with equal length from a common "center" node. Thus, a large portion of other paths are fully ignored. This paper attempts to remedy this issue. (1) We propose and rigorously justify SimRank*, a revised version of SimRank, which resolves such counter-intuitive "zero-similarity" issues while inheriting merits of the basic SimRank philosophy. (2) We show that the series form of SimRank* can be reduced to a fairly succinct and elegant closed form, which looks even simpler than SimRank, yet enriches semantics without suffering from increased computational cost. This leads to a fixed-point iterative paradigm of SimRank* in O(Knm) time on a graph of n nodes and m edges for K iterations, which is comparable to SimRank. (3) To further optimize SimRank* computation, we leverage a novel clustering strategy via edge concentration. Due to its NP-hardness, we devise an efficient and effective heuristic to speed up SimRank* computation to O(Knm) time, where m is generally much smaller than m. (4) Using real and synthetic data, we empirically verify the rich semantics of SimRank*, and demonstrate its high computation efficiency
    corecore