762 research outputs found

    Using webcrawling of publicly available websites to assess E-commerce relationships

    Get PDF
    We investigate e-commerce success factors concerning their impact on the success of commerce transactions between businesses companies. In scientific literature, many e-commerce success factors are introduced. Most of them are focused on companies' website quality. They are evaluated concerning companies' success in the business-to- consumer (B2C) environment where consumers choose their preferred e-commerce websites based on these success factors e.g. website content quality, website interaction, and website customization. In contrast to previous work, this research focuses on the usage of existing e-commerce success factors for predicting successfulness of business-to-business (B2B) ecommerce. The introduced methodology is based on the identification of semantic textual patterns representing success factors from the websites of B2B companies. The successfulness of the identified success factors in B2B ecommerce is evaluated by regression modeling. As a result, it is shown that some B2C e-commerce success factors also enable the predicting of B2B e-commerce success while others do not. This contributes to the existing literature concerning ecommerce success factors. Further, these findings are valuable for B2B e-commerce websites creation

    Spectral Adversarial Training for Robust Graph Neural Network

    Full text link
    Recent studies demonstrate that Graph Neural Networks (GNNs) are vulnerable to slight but adversarially designed perturbations, known as adversarial examples. To address this issue, robust training methods against adversarial examples have received considerable attention in the literature. \emph{Adversarial Training (AT)} is a successful approach to learning a robust model using adversarially perturbed training samples. Existing AT methods on GNNs typically construct adversarial perturbations in terms of graph structures or node features. However, they are less effective and fraught with challenges on graph data due to the discreteness of graph structure and the relationships between connected examples. In this work, we seek to address these challenges and propose Spectral Adversarial Training (SAT), a simple yet effective adversarial training approach for GNNs. SAT first adopts a low-rank approximation of the graph structure based on spectral decomposition, and then constructs adversarial perturbations in the spectral domain rather than directly manipulating the original graph structure. To investigate its effectiveness, we employ SAT on three widely used GNNs. Experimental results on four public graph datasets demonstrate that SAT significantly improves the robustness of GNNs against adversarial attacks without sacrificing classification accuracy and training efficiency.Comment: Accepted by TKDE. Code availiable at https://github.com/EdisonLeeeee/SA

    K-Space at TRECVid 2007

    Get PDF
    In this paper we describe K-Space participation in TRECVid 2007. K-Space participated in two tasks, high-level feature extraction and interactive search. We present our approaches for each of these activities and provide a brief analysis of our results. Our high-level feature submission utilized multi-modal low-level features which included visual, audio and temporal elements. Specific concept detectors (such as Face detectors) developed by K-Space partners were also used. We experimented with different machine learning approaches including logistic regression and support vector machines (SVM). Finally we also experimented with both early and late fusion for feature combination. This year we also participated in interactive search, submitting 6 runs. We developed two interfaces which both utilized the same retrieval functionality. Our objective was to measure the effect of context, which was supported to different degrees in each interface, on user performance. The first of the two systems was a ‘shot’ based interface, where the results from a query were presented as a ranked list of shots. The second interface was ‘broadcast’ based, where results were presented as a ranked list of broadcasts. Both systems made use of the outputs of our high-level feature submission as well as low-level visual features

    K-Space at TRECVID 2008

    Get PDF
    In this paper we describe K-Space’s participation in TRECVid 2008 in the interactive search task. For 2008 the K-Space group performed one of the largest interactive video information retrieval experiments conducted in a laboratory setting. We had three institutions participating in a multi-site multi-system experiment. In total 36 users participated, 12 each from Dublin City University (DCU, Ireland), University of Glasgow (GU, Scotland) and Centrum Wiskunde and Informatica (CWI, the Netherlands). Three user interfaces were developed, two from DCU which were also used in 2007 as well as an interface from GU. All interfaces leveraged the same search service. Using a latin squares arrangement, each user conducted 12 topics, leading in total to 6 runs per site, 18 in total. We officially submitted for evaluation 3 of these runs to NIST with an additional expert run using a 4th system. Our submitted runs performed around the median. In this paper we will present an overview of the search system utilized, the experimental setup and a preliminary analysis of our results

    K-Space at TRECVid 2008

    Get PDF
    In this paper we describe K-Space’s participation in TRECVid 2008 in the interactive search task. For 2008 the K-Space group performed one of the largest interactive video information retrieval experiments conducted in a laboratory setting. We had three institutions participating in a multi-site multi-system experiment. In total 36 users participated, 12 each from Dublin City University (DCU, Ireland), University of Glasgow (GU, Scotland) and Centrum Wiskunde & Informatica (CWI, the Netherlands). Three user interfaces were developed, two from DCU which were also used in 2007 as well as an interface from GU. All interfaces leveraged the same search service. Using a latin squares arrangement, each user conducted 12 topics, leading in total to 6 runs per site, 18 in total. We officially submitted for evaluation 3 of these runs to NIST with an additional expert run using a 4th system. Our submitted runs performed around the median. In this paper we will present an overview of the search system utilized, the experimental setup and a preliminary analysis of our results

    Integrating prior knowledge into factorization approaches for relational learning

    Get PDF
    An efficient way to represent the domain knowledge is relational data, where information is recorded in form of relationships between entities. Relational data is becoming ubiquitous over the years for knowledge representation due to the fact that many real-word data is inherently interlinked. Some well-known examples of relational data are: the World Wide Web (WWW), a system of interlinked hypertext documents; the Linked Open Data (LOD) cloud of the Semantic Web, a collection of published data and their interlinks; and finally the Internet of Things (IoT), a network of physical objects with internal states and communications ability. Relational data has been addressed by many different machine learning approaches, the most promising ones are in the area of relational learning, which is the focus of this thesis. While conventional machine learning algorithms consider entities as being independent instances randomly sampled from some statistical distribution and being represented as data points in a vector space, relational learning takes into account the overall network environment when predicting the label of an entity, an attribute value of an entity or the existence of a relationship between entities. An important feature is that relational learning can exploit contextual information that is more distant in the relational network. As the volume and structural complexity of the relational data increase constantly in the era of Big Data, scalability and the modeling power become crucial for relational learning algorithms. Previous relational learning algorithms either provide an intuitive representation of the model, such as Inductive Logic Programming (ILP) and Markov Logic Networks (MLNs), or assume a set of latent variables to explain the observed data, such as the Infinite Hidden Relational Model (IHRM), the Infinite Relational Model (IRM) and factorization approaches. Models with intuitive representations often involve some form of structure learning which leads to scalability problems due to a typically large search space. Factorizations are among the best-performing approaches for large-scale relational learning since the algebraic computations can easily be parallelized and since they can exploit data sparsity. Previous factorization approaches exploit only patterns in the relational data itself and the focus of the thesis is to investigate how additional prior information (comprehensive information), either in form of unstructured data (e.g., texts) or structured patterns (e.g., in form of rules) can be considered in the factorization approaches. The goal is to enhance the predictive power of factorization approaches by involving prior knowledge for the learning, and on the other hand to reduce the model complexity for efficient learning. This thesis contains two main contributions: The first contribution presents a general and novel framework for predicting relationships in multirelational data using a set of matrices describing the various instantiated relations in the network. The instantiated relations, derived or learnt from prior knowledge, are integrated as entities' attributes or entity-pairs' attributes into different adjacency matrices for the learning. All the information available is then combined in an additive way. Efficient learning is achieved using an alternating least squares approach exploiting sparse matrix algebra and low-rank approximation. As an illustration, several algorithms are proposed to include information extraction, deductive reasoning and contextual information in matrix factorizations for the Semantic Web scenario and for recommendation systems. Experiments on various data sets are conducted for each proposed algorithm to show the improvement in predictive power by combining matrix factorizations with prior knowledge in a modular way. In contrast to a matrix, a 3-way tensor si a more natural representation for the multirelational data where entities are connected by different types of relations. A 3-way tensor is a three dimensional array which represents the multirelational data by using the first two dimensions for entities and using the third dimension for different types of relations. In the thesis, an analysis on the computational complexity of tensor models shows that the decomposition rank is key for the success of an efficient tensor decomposition algorithm, and that the factorization rank can be reduced by including observable patterns. Based on these theoretical considerations, a second contribution of this thesis develops a novel tensor decomposition approach - an Additive Relational Effects (ARE) model - which combines the strengths of factorization approaches and prior knowledge in an additive way to discover different relational effects from the relational data. As a result, ARE consists of a decomposition part which derives the strong relational leaning effects from a highly scalable tensor decomposition approach RESCAL and a Tucker 1 tensor which integrates the prior knowledge as instantiated relations. An efficient least squares approach is proposed to compute the combined model ARE. The additive model contains weights that reflect the degree of reliability of the prior knowledge, as evaluated by the data. Experiments on several benchmark data sets show that the inclusion of prior knowledge can lead to better performing models at a low tensor rank, with significant benefits for run-time and storage requirements. In particular, the results show that ARE outperforms state-of-the-art relational learning algorithms including intuitive models such as MRC, which is an approach based on Markov Logic with structure learning, factorization approaches such as Tucker, CP, Bayesian Clustered Tensor Factorization (BCTF), the Latent Factor Model (LFM), RESCAL, and other latent models such as the IRM. A final experiment on a Cora data set for paper topic classification shows the improvement of ARE over RESCAL in both predictive power and runtime performance, since ARE requires a significantly lower rank

    A Statistical Model of Riemannian Metric Variation for Deformable Shape Analysis

    Get PDF
    The analysis of deformable 3D shape is often cast in terms of the shape's intrinsic geometry due to its invariance to a wide range of non-rigid deformations. However, object's plasticity in non-rigid transformation often result in transformations that are not completely isometric in the surface's geometry and whose mode of deviation from isometry is an identifiable characteristic of the shape and its deformation modes. In this paper, we propose a novel generative model of the variations of the intrinsic metric of de formable shapes, based on the spectral decomposition of the Laplace-Beltrami operator. To this end, we assume two independent models for the eigenvectors and the eigenvalues of the graph-Laplacian of a 3D mesh which are learned in a supervised way from a set of shapes belonging to the same class. We show how this model can be efficiently learned given a set of 3D meshes, and evaluate the performance of the resulting generative model in shape classification and retrieval tasks. Comparison with state-of-the-art solutions for these problems confirm the validity of the approach
    corecore