516 research outputs found

    Finite Fields: Theory and Applications

    Get PDF
    Finite ïŹelds are the focal point of many interesting geometric, algorithmic and combinatorial problems. The workshop was devoted to progress on these questions, with an eye also on the important applications of ïŹnite ïŹeld techniques in cryptography, error correcting codes, and random number generation

    Quantum algorithms for algebraic problems

    Full text link
    Quantum computers can execute algorithms that dramatically outperform classical computation. As the best-known example, Shor discovered an efficient quantum algorithm for factoring integers, whereas factoring appears to be difficult for classical computers. Understanding what other computational problems can be solved significantly faster using quantum algorithms is one of the major challenges in the theory of quantum computation, and such algorithms motivate the formidable task of building a large-scale quantum computer. This article reviews the current state of quantum algorithms, focusing on algorithms with superpolynomial speedup over classical computation, and in particular, on problems with an algebraic flavor.Comment: 52 pages, 3 figures, to appear in Reviews of Modern Physic

    Algebraic methods in randomness and pseudorandomness

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 183-188).Algebra and randomness come together rather nicely in computation. A central example of this relationship in action is the Schwartz-Zippel lemma and its application to the fast randomized checking of polynomial identities. In this thesis, we further this relationship in two ways: (1) by compiling new algebraic techniques that are of potential computational interest, and (2) demonstrating the relevance of these techniques by making progress on several questions in randomness and pseudorandomness. The technical ingredients we introduce include: " Multiplicity-enhanced versions of the Schwartz-Zippel lenina and the "polynomial method", extending their applicability to "higher-degree" polynomials. " Conditions for polynomials to have an unusually small number of roots. " Conditions for polynomials to have an unusually structured set of roots, e.g., containing a large linear space. Our applications include: * Explicit constructions of randomness extractors with logarithmic seed and vanishing "entropy loss". " Limit laws for first-order logic augmented with the parity quantifier on random graphs (extending the classical 0-1 law). " Explicit dispersers for affine sources of imperfect randomness with sublinear entropy.by Swastik Kopparty.Ph.D

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    New affine-invariant codes from lifting

    Full text link

    Multipartite Quantum States and their Marginals

    Full text link
    Subsystems of composite quantum systems are described by reduced density matrices, or quantum marginals. Important physical properties often do not depend on the whole wave function but rather only on the marginals. Not every collection of reduced density matrices can arise as the marginals of a quantum state. Instead, there are profound compatibility conditions -- such as Pauli's exclusion principle or the monogamy of quantum entanglement -- which fundamentally influence the physics of many-body quantum systems and the structure of quantum information. The aim of this thesis is a systematic and rigorous study of the general relation between multipartite quantum states, i.e., states of quantum systems that are composed of several subsystems, and their marginals. In the first part, we focus on the one-body marginals of multipartite quantum states; in the second part, we study general quantum marginals from the perspective of entropy.Comment: PhD thesis, ETH Zurich. The first part contains material from arXiv:1208.0365, arXiv:1204.0741, and arXiv:1204.4379. The second part is based on arXiv:1302.6990 and arXiv:1210.046
    • 

    corecore