4 research outputs found

    Nouvelle approche analytique pour l'apprentissage du quantron

    Get PDF
    RÉSUMÉ : Le quantron est un neurone artificiel inspiré d’un modèle stochastique de la diffusion synaptique. Ce type de neurone biologiquement réaliste a le potentiel d’améliorer les capacités de classification des réseaux de neurones utilisés en reconnaissance de formes. Cependant, le quantron présente des difficultés pour l’implémentation d’un algorithme d’apprentissage efficace. Ceci est dû à la présence de discontinuités dans la fonction de réponse qui caractérise l’émission ou l’absence d’émission de neurotransmetteurs en réaction à la stimulation des synapses d’entrée. Ces discontinuités nuisent à l’apprentissage par modification itérative des paramètres du neurone. Ainsi, nous adoptons une approche analytique pour contourner ces difficultés et développer de nouveaux algorithmes d’apprentissage pour entraîner un quantron ou un réseau de quantrons. D’abord, nous nous intéressons au maximum de la fonction représentant le potentiel électrique du quantron, appelée fonction d’activation. Par comparaison à un seuil d’excitabilité, ce maximum détermine l’état d’activité du quantron, qui est alors utilisé comme classificateur. En utilisant des potentiels post-synaptiques ayant un profil rectangulaire, nous obtenons une approximation du maximum en substituant des fonctions quadratiques aux signaux provenant des synapses d’entrée. Avec cette approximation analytique, nous démontrons expérimentalement la possibilité d’entraîner le quantron en minimisant une surface d’erreur par descente du gradient. De plus, pour certains problèmes, nous observons une amélioration des résultats d’un algorithme de recherche directe. Ensuite, en utilisant une configuration particulière du quantron, nous trouvons une forme analytique simple pour la fonction d’activation dans le cas où les potentiels post-synaptiques possèdent un profil rectangulaire ou en rampe. Cette expression permet de lier les paramètres du quantron aux caractéristiques géométriques de sa frontière de décision. En se basant sur ces résultats, nous développons deux algorithmes d’apprentissage distincts, l’un procédant par l’analyse des configurations de la frontière de décision, et l’autre par l’inversion directe d’un système d’équations. Ces algorithmes permettent une résolution efficace de problèmes de classification pour lesquels le quantron admet une représentation sans erreur. Enfin, nous portons attention au problème de l’apprentissage d’un réseau de quantrons. Dans le cas de potentiels post-synaptique avec un potentiel triangulaire, nous proposons une approximation analytique du temps où s’active le quantron, qui est déterminé par le premier instant où la fonction d’activation atteint le seuil d’excitabilité. L’expression mathématique résultante, utilisée comme valeur de réponse du neurone, permet d’adapter l’algorithme de rétropropagation de l’erreur au réseau. Nous montrons qu’il devient alors possible d’entraîner des neurones qui autrement resteraient inactifs lors de l’apprentissage. De plus, nous illustrons la capacité des réseaux de quantrons à résoudre certains problèmes de classification en nécessitant moins de paramètres que des réseaux de neurones impulsionnels ou des réseaux de perceptrons. Les trois aspects du quantron étudiés dans cette thèse mènent à des algorithmes qui se distinguent des approches antérieures utilisées pour l’apprentissage des réseaux de neurones impulsionnels. En effet, notre approche analytique permet d’éviter les discontinuités qui perturbent le processus d’apprentissage grâce au lissage résultant de l’approximation analytique du maximum de la fonction d’activation et du temps d’activation. De plus, l’analyse géométrique de la frontière de décision est rendue possible par l’expression analytique de la fonction d’activation. Le résultat le plus probant est la tentative fructueuse de résolution du problème associé à l’entraînement des neurones inactifs, appelé problème des neurones silencieux. Par notre approche analytique de l’apprentissage du quantron, nous proposons donc des algorithmes originaux et innovateurs qui contribuent à une meilleure compréhension de l’apprentissage dans les réseaux de neurones biologiquement réalistes.---------- ABSTRACT : The quantron is an artificial neuron inspired by a stochastic model of synaptic diffusion. This type of biologically realistic neuron can improve the classification capacity of neural networks used in pattern recognition. However, the implementation of an efficient learning algorithm for the quantron proves to be challenging. This is due to the presence of discontinuities in the output function which characterizes the emission of neurotransmitters, or lack thereof, as a reaction to the stimulus applied to synaptic inputs. These discontinuities disrupt the iterative training of the neuron’s parameters. Thus, in this work, we follow an analytical approach to avoid these difficulties and develop new learning algorithms adapted to the quantron and to networks of quantrons. First, we study the maximum of the function representing the electrical potential of the quantron, called the activation function. By comparing this function to an excitability threshold, this maximum determines the activity state of the neuron, which can be used as a classifier. Using post-synaptic potentials with a rectangular profile, we obtain an analytical approximation of the maximum by substituting quadratic functions for the signals stemming from the synaptic inputs. With this analytical approximation, we provide an experimental demonstration of the quantron being trained by minimizing an error surface via gradient search. Also, for certain problems, we observe an improvement of the results obtained by using a direct search algorithm. Second, using a specific configuration of the quantron, we find a simple analytical form for the activation function when the post-synaptic potentials have a rectangular or ramp profile. This expression links the parameters of the quantron to the geometrical characteristics of its decision boundary. Building upon these results, we obtain two distinct learning algorithms, one proceeding by analyzing the configurations of the decision boundary, and the other by solving directly a system of equations. These algorithms are able to solve efficiently classification problems for which the quantron admits an errorless representation. Third, we focus on the problem of training a network of quantrons. For post-synaptic potentials having a triangular profile, we propose an analytical approximation of the time when the quantron’s activation function reaches the excitability threshold. The resulting mathematical expression, used as the neuron’s output, enables the adaptation of the error backpropagation algorithm to the network. We show that it is then possible to modify the parameters of neurons which would otherwise remain inactive during training. Furthermore, we show that networks of quantrons can solve particular classification problems using fewer parameters than networks of spiking neurons or networks of perceptrons. The three aspects of the quantron studied in this thesis yield algorithms which differ from previous attempts to train spiking neural networks. Indeed, we avoid the discontinuities that disturb the training process due to the smoothing effect of the analytical approximation of the activation function’s maximum and of the activation time. Also, the geometrical analysis of the decision boundary is made possible by the analytical expression of the activation function. The most important result is the successful attempt to solve the problem of training inactive neurons, called the silent neuron problem. By following an analytical approach in the study of the quantron, we propose original and innovative algorithms which contribute to a better understanding of the learning process in networks of biologically realistic neurons

    Unconventional programming: non-programmable systems

    Get PDF
    Die Forschung aus dem Bereich der unkonventionellen und natürlichen Informationsverarbeitungssysteme verspricht kontrollierbare Rechenprozesse in ungewöhnlichen Medien zu realisieren, zum Beispiel auf der molekularen Ebene oder in Bakterienkolonien. Vielversprechende Eigenschaften dieser Systeme sind das nichtlineare Verhalten und der hohe Verknüpfungsgrad der beteiligten Komponenten in Analogie zu Neuronen im Gehirn. Da aber Programmierung meist auf Prinzipien wie Modularisierung, Kapselung und Vorhersagbarkeit beruht sind diese Systeme oft schwer- bzw. unprogrammierbar. Im Gegensatz zu vielen Arbeiten über unkonventionelle Rechensysteme soll in dieser Arbeit aber nicht hauptsächlich nach neuen rechnenden Systemen und Anwendungen dieser gesucht werden. Stattdessen konzentriert sich diese Dissertation auf unkonventionelle Programmieransätze, die sowohl für unkonventionelle Computer als auch für herkommliche digitale Rechner neue Perspektiven eröffnen sollen. Hauptsächlich in Bezug auf ein Modell künstlicher chemischer Neuronen werden Ansätze für unkonventionelle Programmierverfahren, basierend auf Evolutionären Algorithmen, Informationstheorie und Selbstorganisation bis hin zur Selbstassemblierung untersucht. Ein spezielles Augenmerk liegt dabei auf dem Problem der Symbolkodierung: Oft gibt es mehrere oder sogar unendlich viele Möglichkeiten, Informationen in den Zuständen eines komplexen dynamischen Systems zu kodieren. In Neuronalen Netzen gibt es unter anderem die Spikefrequenz aber auch Populationskodes. In Abhängigkeit von den weiteren Eigenschaften des Systems, beispielsweise von der Informationsverarbeitungsaufgabe und dem gewünschten Eingabe-Ausgabeverhalten dürften sich verschiedene Kodierungen als unterschiedlich nützlich erweisen. Daher werden hier Methoden betrachtet um die verschiedene Symbolkodierungmethoden zu evaluieren, zu analysieren und um nach neuen, geeigneten Kodierungen zu suchen.Unconventional and natural computing research offers controlled information modification processes in uncommon media, for example on the molecular scale or in bacteria colonies. Promising aspects of such systems are often the non-linear behavior and the high connectivity of the involved information processing components in analogy to neurons in the nervous system. Unfortunately, such properties make the system behavior hard to understand, hard to predict and thus also hard to program with common engineering principles like modularization and composition, leading to the term of non-programmable systems. In contrast to many unconventional computing works that are often focused on finding novel computing substrates and potential applications, unconventional programming approaches for such systems are the theme of this thesis: How can new programming concepts open up new perspectives for unconventional but hopefully also for traditional, digital computing systems? Mostly based on a model of artificial wet chemical neurons, different unconventional programming approaches from evolutionary algorithms, information theory, self-organization and self-assembly are explored. A particular emphasis is given on the problem of symbol encodings: Often there are multiple or even an unlimited number of possibilities to encode information in the phase space of dynamical systems, e.g. spike frequencies or population coding in neural networks. But different encodings will probably be differently useful, dependent on the system properties, the information transformation task and the desired connectivity to other systems. Hence methods are investigated that can evaluate, analyse as well as identify suitable symbol encoding schemes
    corecore