14,782 research outputs found

    Quantum interactive proofs and the complexity of separability testing

    Get PDF
    We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof complexity class (including BQP, QMA, QMA(2), and QSZK), there corresponds a natural separability testing problem that is complete for that class. Of particular interest is the fact that the problem of determining whether an isometry can be made to produce a separable state is either QMA-complete or QMA(2)-complete, depending upon whether the distance between quantum states is measured by the one-way LOCC norm or the trace norm. We obtain strong hardness results by proving that for each n-qubit maximally entangled state there exists a fixed one-way LOCC measurement that distinguishes it from any separable state with error probability that decays exponentially in n.Comment: v2: 43 pages, 5 figures, completely rewritten and in Theory of Computing (ToC) journal forma

    Two-message quantum interactive proofs and the quantum separability problem

    Full text link
    Suppose that a polynomial-time mixed-state quantum circuit, described as a sequence of local unitary interactions followed by a partial trace, generates a quantum state shared between two parties. One might then wonder, does this quantum circuit produce a state that is separable or entangled? Here, we give evidence that it is computationally hard to decide the answer to this question, even if one has access to the power of quantum computation. We begin by exhibiting a two-message quantum interactive proof system that can decide the answer to a promise version of the question. We then prove that the promise problem is hard for the class of promise problems with "quantum statistical zero knowledge" (QSZK) proof systems by demonstrating a polynomial-time Karp reduction from the QSZK-complete promise problem "quantum state distinguishability" to our quantum separability problem. By exploiting Knill's efficient encoding of a matrix description of a state into a description of a circuit to generate the state, we can show that our promise problem is NP-hard with respect to Cook reductions. Thus, the quantum separability problem (as phrased above) constitutes the first nontrivial promise problem decidable by a two-message quantum interactive proof system while being hard for both NP and QSZK. We also consider a variant of the problem, in which a given polynomial-time mixed-state quantum circuit accepts a quantum state as input, and the question is to decide if there is an input to this circuit which makes its output separable across some bipartite cut. We prove that this problem is a complete promise problem for the class QIP of problems decidable by quantum interactive proof systems. Finally, we show that a two-message quantum interactive proof system can also decide a multipartite generalization of the quantum separability problem.Comment: 34 pages, 6 figures; v2: technical improvements and new result for the multipartite quantum separability problem; v3: minor changes to address referee comments, accepted for presentation at the 2013 IEEE Conference on Computational Complexity; v4: changed problem names; v5: updated references and added a paragraph to the conclusion to connect with prior work on separability testin

    Combinatorial laplacians and positivity under partial transpose

    Full text link
    Density matrices of graphs are combinatorial laplacians normalized to have trace one (Braunstein \emph{et al.} \emph{Phys. Rev. A,} \textbf{73}:1, 012320 (2006)). If the vertices of a graph are arranged as an array, then its density matrix carries a block structure with respect to which properties such as separability can be considered. We prove that the so-called degree-criterion, which was conjectured to be necessary and sufficient for separability of density matrices of graphs, is equivalent to the PPT-criterion. As such it is not sufficient for testing the separability of density matrices of graphs (we provide an explicit example). Nonetheless, we prove the sufficiency when one of the array dimensions has length two (for an alternative proof see Wu, \emph{Phys. Lett. A}\textbf{351} (2006), no. 1-2, 18--22). Finally we derive a rational upper bound on the concurrence of density matrices of graphs and show that this bound is exact for graphs on four vertices.Comment: 19 pages, 7 eps figures, final version accepted for publication in Math. Struct. in Comp. Sc

    Testing product states, quantum Merlin-Arthur games and tensor optimisation

    Full text link
    We give a test that can distinguish efficiently between product states of n quantum systems and states which are far from product. If applied to a state psi whose maximum overlap with a product state is 1-epsilon, the test passes with probability 1-Theta(epsilon), regardless of n or the local dimensions of the individual systems. The test uses two copies of psi. We prove correctness of this test as a special case of a more general result regarding stability of maximum output purity of the depolarising channel. A key application of the test is to quantum Merlin-Arthur games with multiple Merlins, where we obtain several structural results that had been previously conjectured, including the fact that efficient soundness amplification is possible and that two Merlins can simulate many Merlins: QMA(k)=QMA(2) for k>=2. Building on a previous result of Aaronson et al, this implies that there is an efficient quantum algorithm to verify 3-SAT with constant soundness, given two unentangled proofs of O(sqrt(n) polylog(n)) qubits. We also show how QMA(2) with log-sized proofs is equivalent to a large number of problems, some related to quantum information (such as testing separability of mixed states) as well as problems without any apparent connection to quantum mechanics (such as computing injective tensor norms of 3-index tensors). As a consequence, we obtain many hardness-of-approximation results, as well as potential algorithmic applications of methods for approximating QMA(2) acceptance probabilities. Finally, our test can also be used to construct an efficient test for determining whether a unitary operator is a tensor product, which is a generalisation of classical linearity testing.Comment: 44 pages, 1 figure, 7 appendices; v6: added references, rearranged sections, added discussion of connections to classical CS. Final version to appear in J of the AC

    Perfect Test of Entanglement for Two-level Systems

    Full text link
    A 3-setting Bell-type inequality enforced by the indeterminacy relation of complementary local observables is proposed as an experimental test of the 2-qubit entanglement. The proposed inequality has an advantage of being a sufficient and necessary criterion of the separability. Therefore any entangled 2-qubit state cannot escape the detection by this kind of tests. It turns out that the orientation of the local testing observables plays a crucial role in our perfect detection of the entanglement.Comment: 4 pages, RevTe

    Distinguishing separable and entangled states

    Get PDF
    We show how to design families of operational criteria that distinguish entangled from separable quantum states. The simplest of these tests corresponds to the well-known Peres-Horodecki positive partial transpose (PPT) criterion, and the more complicated tests are strictly stronger. The new criteria are tractable due to powerful computational and theoretical methods for the class of convex optimization problems known as semidefinite programs. We successfully applied the results to many low-dimensional states from the literature where the PPT test fails. As a byproduct of the criteria, we provide an explicit construction of the corresponding entanglement witnesses.Comment: 4 pages, Latex2e. Expanded discussion of numerical procedures. Accepted for publication in Physical Review Letter
    corecore