477 research outputs found

    Identities in the Algebra of Partial Maps

    Get PDF
    We consider the identities of a variety of semigroup-related algebras modelling the algebra of partial maps. We show that the identities are intimately related to a weak semigroup deductive system and we show that the equational theory is decidable. We do this by giving a term rewriting system for the variety. We then show that this variety has many subvarieties whose equational theory interprets the full uniform word problem for semigroups and consequently are undecidable. As a corollary it is shown that the equational theory of Clifford semigroups whose natural order is a semilattice is undecidable

    The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case

    Full text link
    The constraint satisfaction probem (CSP) is a well-acknowledged framework in which many combinatorial search problems can be naturally formulated. The CSP may be viewed as the problem of deciding the truth of a logical sentence consisting of a conjunction of constraints, in front of which all variables are existentially quantified. The quantified constraint satisfaction problem (QCSP) is the generalization of the CSP where universal quantification is permitted in addition to existential quantification. The general intractability of these problems has motivated research studying the complexity of these problems under a restricted constraint language, which is a set of relations that can be used to express constraints. This paper introduces collapsibility, a technique for deriving positive complexity results on the QCSP. In particular, this technique allows one to show that, for a particular constraint language, the QCSP reduces to the CSP. We show that collapsibility applies to three known tractable cases of the QCSP that were originally studied using disparate proof techniques in different decades: Quantified 2-SAT (Aspvall, Plass, and Tarjan 1979), Quantified Horn-SAT (Karpinski, Kleine B\"{u}ning, and Schmitt 1987), and Quantified Affine-SAT (Creignou, Khanna, and Sudan 2001). This reconciles and reveals common structure among these cases, which are describable by constraint languages over a two-element domain. In addition to unifying these known tractable cases, we study constraint languages over domains of larger size

    Semidistributive Inverse Semigroups, II

    Get PDF
    The description by Johnston-Thom and the second author of the inverse semigroups S for which the lattice LJ(S) of full inverse subsemigroups of S is join semidistributive is used to describe those for which (a) the lattice L(S) of all inverse subsemigroups or (b) the lattice lo(S) of convex inverse subsemigroups have that property. In contrast with the methods used by the authors to investigate lower semimodularity, the methods are based on decompositions via GS, the union of the subgroups of the semigroup (which is necessarily cryptic)

    Maximal admissible faces and asymptotic bounds for the normal surface solution space

    Get PDF
    The enumeration of normal surfaces is a key bottleneck in computational three-dimensional topology. The underlying procedure is the enumeration of admissible vertices of a high-dimensional polytope, where admissibility is a powerful but non-linear and non-convex constraint. The main results of this paper are significant improvements upon the best known asymptotic bounds on the number of admissible vertices, using polytopes in both the standard normal surface coordinate system and the streamlined quadrilateral coordinate system. To achieve these results we examine the layout of admissible points within these polytopes. We show that these points correspond to well-behaved substructures of the face lattice, and we study properties of the corresponding "admissible faces". Key lemmata include upper bounds on the number of maximal admissible faces of each dimension, and a bijection between the maximal admissible faces in the two coordinate systems mentioned above.Comment: 31 pages, 10 figures, 2 tables; v2: minor revisions (to appear in Journal of Combinatorial Theory A

    On Varieties of Automata Enriched with an Algebraic Structure (Extended Abstract)

    Full text link
    Eilenberg correspondence, based on the concept of syntactic monoids, relates varieties of regular languages with pseudovarieties of finite monoids. Various modifications of this correspondence related more general classes of regular languages with classes of more complex algebraic objects. Such generalized varieties also have natural counterparts formed by classes of finite automata equipped with a certain additional algebraic structure. In this survey, we overview several variants of such varieties of enriched automata.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Dualities and dual pairs in Heyting algebras

    Get PDF
    We extract the abstract core of finite homomorphism dualities using the techniques of Heyting algebras and (combinatorial) categories.Comment: 17 pages; v2: minor correction
    corecore