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Semidistributive Inverse Semigroups, II 

 

Kyeong Hee Cheong and Peter R. Jones 

 

Abstract 

The description by Johnston-Thom and the second author of the inverse 

semigroups S for which the lattice ࣦࣤሺSሻ of full inverse subsemigroups of S is join 

semidistributive is used to describe those for which (a) the lattice ࣦሺSሻ of all inverse 

subsemigroups or (b) the lattice ℓሺSሻ of convex inverse subsemigroups have that 

property. In contrast with the methods used by the authors to investigate lower 

semimodularity, the methods are based on decompositions via GS, the union of the 

subgroups of the semigroup (which is necessarily cryptic). 

 

This article is a continuation both of [8], by Johnston-Thom and the second author, on 

inverse semigroups ܵ for which the lattice ࣦࣤሺܵሻ of full inverse subsemigroups of ܵ is either 

meet or join semidistributive, and [5], by the authors, on inverse semigroups ܵ for which either 

the lattice ࣦሺܵሻ of all inverse subsemigroups of ܵ or the lattice ℓ݋ሺܵሻ of all convex inverse 

subsemigroups of ܵ is lower semimodular. 

As remarked in [5], for most common lattice-theoretic properties, including upper 

semimodularity and meet semidistributivity—and thus modularity and distributivity—the 

imposition of the property on either ࣦሺܵሻ or ℓ݋ሺܵሻ restricts the underlying semilattice of 

idempotents ܧௌ  to such an extent that only inverse semigroups of little interest remain. However, 

there are some exceptions. It is known that for semilattices in general, lower semimodularity and 

join semidistributivity of these lattices each correspond to some interesting and nontrivial classes 

of semilattices.  

In the cited article, the authors described the inverse semigroups for which either of the 

cited lattices is lower semimodular, by means of an analysis of the role of ܧௌ  in decomposing 

ࣦሺܵሻ (resp., ℓ݋ሺܵሻ) into a subdirect product of ࣦሺܧௌሻ (resp., ℓ݋ሺܧௌሻ) and ࣦࣤሺܵሻ. This approach 

works only in part when applied to join semidistributivity. However, we show in this article that the 

convex inverse subsemigroup ܩௌ, comprising the union of its subgroups, plays a quite 

analogous role. (We should remark that ܩௌ  is not in general an inverse subsemigroup at all, but 

join semidistributivity implies that this is indeed so.) 

For ࣦሺܵሻ, we show in Theorem 5.2 that join semidistributivity implies that ܩௌ  is a neutral 
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element in the lattice ࣦሺܵሻ, decomposing it into a subdirect product of the interval sublattices 

ࣦሺܩௌሻ and ሾܩௌ, ܵሿ ≅ ࣦࣤሺܵ/࣢ሻ. Conversely, if these two lattices are join semidistributive and a 

further simple condition is satisfied, then ࣦሺܵሻ again has that property. Given our prior results on 

lattices of full inverse subsemigroups, this essentially reduces the general study to that of Clifford 

semigroups. Rather surprisingly, that study turns out to be quite nontrivial. 

For ℓ݋ሺܵሻ, ܩௌ  need not be neutral and so there is no such decomposition. Nevertheless, 

the entirely analogous necessary and sufficient conditions hold (see Corollary 5.5). The proof 

proceeds via an alternative set of conditions, found in Theorem 5.4. In contrast to the situation for 

ࣦሺܵሻ, Clifford semigroups behave very amenably: ℓ݋ሺܵሻ is join semidistributive if and only if ܧௌ  

is a tree and each subgroup is locally cyclic. 

Finally, it is shown that ܩௌ  provides an alternative decomposition of the lattices ࣦሺܵሻ and 

ℓ݋ሺܵሻ in the case of lower semimodularity (cf. the use of ܧௌ  in [5]). 

 

1. Preliminaries 

We use [6] as a general reference on lattice theory. A lattice is join semidistributive if 

whenever ܽ ∨ ܾ ൌ ܽ ∨ ܿ, then ܽ ∨ ܾ ൌ ܽ ∨ ሺܾ ∧ ܿሻ. Meet semidistributivity is defined dually. Each 

is preserved by sublattices and direct products; each is clearly a consequence of distributivity. 

The following terms are useful in the analysis of lattice decompositions (see [6]). An 

element ܽ of a lattice ܮ is distributive in ܮ if ܽ ∨ ሺܾ ∧ ܿሻ ൌ ሺܽ ∨ ܾሻ ∧ ሺܽ ∨ ܿሻ. If ܮ is a complete 

lattice then ܽ is completely distributive if the binary meets may be replaced by arbitrary ones. 

Define dual distributivity and complete dual distributivity in the obvious way. The element ܽ 

separates ܮ if ܽ ∧ ܾ ൌ ܽ ∧ ܿ and ܽ ∨ ܾ ൌ ܽ ∨ ܿ together imply ܾ ൌ ܿ. It is neutral if it is 

distributive, dually distributive and separating. Clearly, ܽ is neutral if and only if the map 

ݔ → ሺݔ ∧ ܽ, ݔ ∨ ܽሻ embeds ܮ in the (subdirect) product of the principal ideal ܽ↓ and the 

principal filter ܽ↑. 

Next we present brief background on ℓ݋ሺܵሻ and refer the reader to [5] (or to [3] and [4]) 

for more details. The natural partial order on an inverse semigroup is defined by ܽ ൑ ܾ if ܽ ൌ ܾ݁ 

for some ݁ ∈  ௌ. We use [11] as the general reference on inverse semigroups, where manyܧ

properties of the natural partial order may be found, for instance. 

An inverse subsemigroup of ܵ is convex (with respect to this order) if whenever it 

contains ܽ and ܾ, with ܽ ൑ ܾ, then it contains the interval ሾܽ, ܾሿ ൌ ሼc ∈ ܵ: ܽ ൑ ܿ ൑ ܾሽ. The 

convex inverse subsemigroups of ܵ form a complete lattice, ℓ݋ሺܵሻ, with the empty 

subsemigroup as its least element. The lattice of all inverse subsemigroups of ܵ is denoted 
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ࣦሺܵሻ. If ܺ ⊆ ܵ, we denote the inverse subsemigroup that it generates by 〈ܺ〉 and the convex 

inverse subsemigroup that it generates by 〈〈ܺ〉〉. If ܺ ൌ ሼݔଵ, ,ଶݔ … ,  ௡ሽ we may instead writeݔ

,ଵݔ〉 ,ଶݔ … , ,ଵݔ〉〉 ௡〉 andݔ ,ଶݔ … , ,ܷ ௡〉〉, respectively. Ifݔ ܸ ∈ ℓ݋ሺܵሻ, we denote their join in ࣦሺܵሻ by 

ܷ ∨ ܸ and their join in ℓ݋ሺܵሻ by ܷ ⋄ ܸ ൌ 〈〈ܷ ∨ ܸ〉〉. 

A subset ܺ of ܵ is an order ideal if ܺ ↓	⊆ ܺ, where ܺ ↓	ൌ ሼܽ ∈ ܵ: ܽ ൑  for some ݔ

	ݔ ∈ 	ܺሽ (and if ܺ ൌ ሼݔሽ, we may write ݔ ↓). Clearly, if an inverse subsemigroup is also an order 

ideal, then it is convex. The following result will find frequent application. 

 

Result 1.1 ([3, Proposition 2.2]). For any inverse subsemigroup ܷ of an inverse semigroup, 

〈〈ܷ〉〉 is the union of the intervals ሾܽ, ܾሿ, ܽ, ܾ ∈ ܷ, ܽ ൑ ܾ. Hence ܧ〈〈௎〉〉 ൌ  .〈〈௎ܧ〉〉

 

For any inverse semigroup ܵ, its semilattice ܧௌ  of idempotents is an order ideal and so 

belongs to ℓ݋ሺܵሻ. Hence the lattice ℓ݋ሺܧௌሻ ൌ ሾ∅,  ሺܵሻ. An inverse݋ௌሿ is an ideal in the lattice ℓܧ

subsemigroup is full if it contains ܧௌ. Each such subsemigroup is therefore also an order ideal. 

Thus, in a complementary fashion, the full inverse subsemigroups of ܵ form the filter ሾܧௌ, ܵሿ in 

the lattice ℓ݋ሺܵሻ. Notice that for any ܣ ∈ ࣦࣤሺܵሻ and ܤ ∈ ℓ݋ሺܵሻ, ܣ ⋄ ܤ ൌ ܣ ∨ ܣ since ,ܤ ∨  is ܤ

again full. 

Note that since any group is unordered under the natural partial order, its convex inverse 

subsemigroups comprise its subgroups together with its empty subsemigroup, which acts as an 

adjoined zero. 

An inverse semigroup is combinatorial (also termed aperiodic) if Green’s relation ࣢ is 

the identity relation, equivalently, each of its subgroups is trivial. We call a subgroup isolated if it 

comprises an entire ࣞ-class, and thus an entire ࣤ-class. An inverse semigroup ܵ is ܧ-unitary if 

ܽ ൒ ݁ ∈ ௌܧ  implies ܽ ∈  .ௌܧ

The ࣤ-classes of any semigroup are partially ordered by setting ܬ௔ ൑ ௕ܬ  if ܽ ∈ ܵଵܾܵଵ. 

With each ࣤ-class ܬ of an inverse semigroup ܵ is associated its principal factor ܲܨሺܬሻ, which is 

either a 0-simple semigroup or, in case ܬ is the minimum ideal (the kernel of ܵ), a simple 

semigroup. See [11]. 

A 0-simple semigroup is completely 0-simple if every nonzero idempotent is minimal 

among such idempotents. The completely 0-simple inverse semigroups are the Brandt 

semigroups. Denote by ܤ௡  the combinatorial Brandt semigroup with ݊ nonzero idempotents. 

It is well known (and easily verified) that ܧ஻  is a chain, is combinatorial and E-unitary, 

and its maximum group quotient is infinite cyclic. 
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The strong semilattice construction will be required in the sequel. Let ܻ be a semilattice, 

ሼܵఈሽఈ∈௒  a family of disjoint semigroups and ൛߶ఈ,ఉ: ܵఈ → ఉܵൟఈஹఉ a transitive family of 

homomorphisms (“structure mappings”) such that ߶ఈ,ఈ ൌ 1ௌഀ for each ߙ. Then ⋃ሼܵఈሽఈ∈௒ is a 

semigroup under the multiplication ݏఈݏఉ ൌ ൫ݏఈ߶ఈ,ఈఉ൯൫ݏఉ߶ఉ,ఈఉ൯, ఈݏ ∈ ܵఈ, ఉݏ ∈ ఉܵ. 

 

2. Subsemilattices and Full Inverse Subsemigroups 

We review the relevant properties of the key building blocks common to both ࣦሺܵሻ and 

ℓ݋ሺܵሻ.  

 

2.1. Subsemilattices 

Proposition 2.1. Let E be a semilattice. Then: 

(1) ℓ݋ሺܧሻ is join semidistributive if and only if ܧ is a tree, that is, ݁ ↓ is a chain for each of its 

elements ݁;  

(2) ࣦሺܧሻ is join semidistributive if and only if for any infinite ascending chain ݁଴ ൏ ݁ଵ ൏	൉൉൉	in E, if 

for each ݅ ൒ 0 there exists ௜݂ ∈ ,ܧ ௜݂ ് ݁௜ such that ݁௜ ൌ ݁௜ାଵ ௜݂, then ݁଴ ൌ ଵ݂ ൉൉൉ ௞݂ for some 

݇ ൐ 0; 

(3) If ܧ is a chain, then ࣦሺܧሻ is distributive and hence join semidistributive; 

(4) There exists a semilattice ܻ that is not a chain, but for which ࣦሺܻሻ is join semidistributive. 

 

Proof.  (1) This was proved by Adaricheva [1]. 

 

(2) To prove necessity, suppose ݁଴, ݁ଵ, … , ଴݂, ଵ݂, … are as stated. Let ܣ ൌ ሼ݁଴, ݁ଶ, ݁ସ, … ሽ, 

ܤ ൌ ሼ݁ଵ, ݁ଷ, ݁ହ, … ሽ, ܥ ൌ ሼ ଴݂, ଵ݂, … ሽ. From the equations ݁௜ ൌ ݁௜ାଵ ௜݂ it is clear that ܣ ∨ ܥ ൌ ܤ ∨  .ܥ

But ܣ ∩ ܤ ൌ ∅ and ܣ ∨ ܥ ്  .so join semidistributivity fails ,ܥ

Conversely, suppose ࣦሺܧሻ is not join semidistributive. Then there exist subsemilattices 

,ܣ ,ܤ ܣ such that ܥ ∨ ܥ ൌ ܤ ∨ ܥ ് ሺܣ ∩ ሻܤ ∨ Thus there exists ݁଴ .ܥ ∈ such that ݁଴ ܣ ∈ ܤ ∨  ܥ

but ݁଴ ∉ ሺܣ ∩ ሻܤ ∨ whence there exist ݁ଵ ,ܥ ∈ ܤ െ ,ܣ ଴݂ ∈ such that ݁଴ ,ܥ ൌ ݁ଵ ଴݂. Now there exist 

݁ଶ ∈ ܣ െ ,ܤ ଵ݂ ∈ such that ݁ଵ ,ܥ 	ൌ ݁ଶ ଵ݂. Iterating this argument yields sequences ݁଴, ݁ଵ, … and 

଴݂, ଵ݂, … satisfying the hypotheses in the proposition. But since ݁଴ ∉ ,ܥ ݁଴ ് ଵ݂ … ௞݂ for any ݇ ൐ 0. 

(3) In a chain, any subset is a subsemilattice. 

(4) Let Y be the poset that is the disjoint union of the countably infinite sets ሼ݁଴, ݁ଵ, … ሽ 

and ሼ ଴݂, ଵ݂, … ሽ, where ݁௜ ൑ ௝݁ if and only if ݁௜ ൑ ௝݂, and if and only if ݅ ൑ ݆. Clearly, ݁଴ ൏ ݁ଵ ൏ ⋯, 

and it is easily verified that for all ݔ௜ ∈ ሼ݁௜, ௜݂ሽ, ௝ݕ ∈ ൛ ௝݁, ௝݂ൟ, ௝ݕ௜ݔ ൌ ݁୫୧୬ሺ௜,௝ሻ. Testing the criterion in 
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(2), the only infinite ascending chains have the form ݁௜బ ൏ ݁௜భ ൏	൉൉൉, where ݅଴ ൏ ݅ଵ ൏ ⋯; and then, 

other than ݁௜ೕ  itself, only ݃ ൌ ௜݂ೕ  satisfies the equation ݁௜ೕ ൌ ݁௜ೕశభ݃. Now ݁௜బ ൌ ௜݂బ ௜݂భ and so the 

criterion is satisfied. □ 

In contrast to the situation for ࣦࣤሺܵሻ, where meet semidistributivity is again equivalent to 

distributivity [8], examination of the three-element nonchain semilattice ܧ reveals that ࣦሺܧሻ is 

not meet semidistributive. So meet distributivity implies that ܧ is a chain. The same example 

shows that the same is true in the case of ℓ݋ሺܧሻ. In fact, in that case the chain can have at most 

two elements [2, Theorem 2.1]. 

 

2.2. The Lattice of Full Inverse Subsemigroups 

Result 2.2 ([8]). Let ܵ be an inverse semigroup. Then ࣦࣤሺܵሻ is join semidistributive if and only 

if it is distributive. 

 The inverse semigroups whose lattice of full inverse subsemigroups is distributive were 

determined in [10], proceeding as follows. (It should be noted that the definition of principal 

factors used in the article [10] varied slightly from the standard one introduced in §1.) 

 

Result 2.3 ([9]). Let S be an inverse semigroup. Then ࣦࣤሺܵሻ is isomorphic to a subdirect 

product of the lattices of full inverse subsemigroups of its principal factors. 

The focus may therefore be shifted to the simple and 0-simple cases. It is a classical 

result (see [12, Theorem 1.2.3]) that the subgroup lattice of a group is distributive if and only if 

the group is locally cyclic, that is, every finitely generated subgroup is cyclic. Clearly, such a 

group is abelian. It is apparently well known that a locally cyclic group is isomorphic either to a 

subgroup of Q, if torsion-free, or to a subgroup of Q/Z, if periodic (the mixed case being 

impossible). 

In the following, an isolated subgroup is one that comprises an entire ࣞ-class. We say 

that ܧௌ  is archimedean in S if for any element ܽ of ܵ such that ܽܽିଵ ൐ ܽିଵܽ, and for any 

idempotent ݂ of ܵ, ܽି௡ܽ௡ ൑ ݂ for some positive integer ݊. 

 

Result 2.4 ([10]).  Let ܵ be an inverse semigroup. 

1) If S is completely 0-simple (but not a 0-group), then ࣦࣤሺܵሻ is distributive if and only if ܵ ≅  .ଶܤ

2) If S is 0-simple, but not completely 0-simple, and ࣦࣤሺܵሻ is distributive, then ܵ has no zero 

divisors and ࣦࣤሺܵሻ ≅ ࣦࣤሺܵ െ 0ሻ, where ܵ െ 0 is simple. 

3) If S is simple (but not a group), then ࣦࣤሺܵሻ is distributive if and only if: 
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(a) ࣦሺܪሻ is locally cyclic for every isolated subgroup ܪ of ܵ; 

(b) Every nontrivial subgroup of ܵ is isolated; 

(c) ܧௌ  is archimedean in ܵ and ܵ is E-unitary (equivalently, the poset ܧ஽  is a chain for 

any ࣞ-class ܦ of ܵ). 

 

The bicyclic semigroup is an example of a (bisimple) inverse semigroup whose lattice of 

full inverse semigroups is distributive. 

 

3. Decompositions Based on ࡿࡱ 

In this section, we review the results of [5] relevant to this article. Throughout the sequel, 

S will be an inverse semigroup. 

 

Result 3.1. If ݔ ൌ ݁ଵܽଵ …݁௡ܽ௡ for some ݁ଵ, … , ݁௡ ∈ ,௦ܧ ܽଵ, … , ܽ௡ ∈ ܵ, then ݔ ൑ ܽଵ 	 ൉൉൉ ܽ௡. Hence 

ௌܧ ∨ 	ܣ ൌ ௌܧ ∪ ܣ ↓ for any ܣ ∈ ࣦሺܵሻ. The subsemigroup ܧௌ  separates ࣦሺܵሻ and, therefore, also 

separates ℓ݋ሺܵሻ. 

 

Result 3.2. The following are equivalent: 

ௌܧ (1)  is distributive in ࣦሺܵሻ, that is, ܧௌ ∨ ሺܣ ∩ ሻܤ ൌ ሺܧௌ ∨ ሻܣ ∩ ሺܧௌ ∨ ,ܣ ሻ for allܤ ܤ ∈ ࣦሺܵሻ; 

(2) For all ܽ ∈ ܵ, ܽ ↓⊆ ௌܧ ∪ 〈ܽ〉; 

(3) For every ܣ ∈ ࣦሺܵሻ, ௌܧ ∨ ܣ ൌ ௌܧ ∪  .ܣ

 

Denote by (1C) to (3C) the analogous statements with respect to ℓ݋ሺܵሻ. Then they are 

also equivalent. 

 

Result 3.3. The following are equivalent: 

ௌܧ (΄1)  is dually distributive in ࣦሺܵሻ, that is, ܧ஺∨஻ ൌ ஺ܧ ∨ ஻ܧ  for all ܣ, ܤ ∈ ࣦሺܵሻ;  

(2΄) For all ܽ ∈ ܵ, ܽ ↓⊆ ௌܩ ∪ 〈ܽ〉; 

(3΄) For all ܣ ∈ ࣦሺܵሻ, ௌܧ ∨ ܣ ⊆ ௌܩ ∪  .ܣ

 

Denote by (1C΄) to (3C΄) the analogous statements with respect to ℓ݋ሺܵሻ.If ܧௌ  is a tree, then 

they are also equivalent. In fact the implications (2C΄) ⇔	(3C΄) ⇔ (1C΄) hold in any inverse 

semigroup. 
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For the purposes of this article, the hypothesis that ܧௌ  be a tree in the second part of the 

proposition is not restrictive. The three results above combine to yield the following result. 

 

Result 3.4. For any inverse semigroup ܵ, neutrality of ܧௌ  in ࣦሺܵሻ (resp., ℓ݋ሺܵሻ) is equivalent to 

property (2) (resp., (2C)) of Result 3.2, in which case the lattice is a subdirect product of ࣦࣤሺܵሻ 

with ࣦሺܧௌሻ (resp., ℓ݋ሺܧௌሻ). 

 

4. Decompositions via ࡿࡳ 

In the next section it will be shown that if ࣦሺܵሻ is join semidistributive, then ܵ satisfies 

(2΄), and analogously for ℓ݋ሺܵሻ. As the first result of this section indicates, in either case ܵ is 

cryptic, that is, ࣢ is a congruence, and so ܩௌ  , the union of the subgroups of ܵ, is a convex 

inverse subsemigroup of ܵ. 

The first purpose of this section is to develop criteria for ܩௌ, paralleling those for ܧௌ  , 

aimed at investigating neutrality of ܩௌ in the respective lattices, with the aim of reducing the 

general study to the restricted cases of Clifford semigroups and of combinatorial inverse 

semigroups. This aim will be accomplished in the case of join semidistributivity of ࣦሺܵሻ, where 

decompositions based on ܧௌ  do not in general exist. While the new decomposition does not hold 

for join semidistributivity of ℓ݋ሺܵሻ, many of the results in this section will nevertheless be 

applicable. Thus the second purpose of this section is to provide an in-depth investigation along 

the lines of that for ܧௌ, with a view to application in future research on these topics. 

 

Proposition 4.1. An inverse semigroup ܵ is cryptic if and only if (a) ܩௌ  is an (inverse) 

subsemigroup of ܵ, and if and only if (b) ܩௌ is an order ideal of ܵ. In that event, ܵ/࣢ is 

combinatorial. 

Hence any inverse semigroup satisfying (2C΄) (and thus any satisfying (2΄)) is cryptic. 

 

Proof. We include a proof of the equivalence of crypticity with (a) for completeness. Suppose 

ௌܩ ∈ ࣦሺܵሻ and let ܽ, ܾ, ݔ ∈ ܵ, with ܽ࣢ܾ. Then since ࣦ is a right congruence, ܽݔܾࣦݔ, so that 

ሺܽݔሻሺܾݔሻିଵ 	∈ ܴ௔௫ ∩ ሻିଵݔሻሺܾݔሺ௕௫ሻషభ. Now ሺܽܮ ൌ ଵܾିଵିݔݔܽ ൌ ሺܽିݔݔଵܽିଵሻሺܾܽିଵሻ, where 

ଵܽିଵିݔݔܽ 	∈ ௌܧ  and ܾܽିଵ ∈ ሻିଵݔሻሺܾݔHence ሺܽ .࣢ܾܽ ௌ, sinceܩ ∈ ௘ܪ  for some ݁ ∈  ௌ. Thusܧ

ܽ Conversely, if ܵ is cryptic, suppose .ݔܾ࣬ݔܽ ,ሻିଵ, that isݔሺܾࣦ݁࣬ݔܽ ∈ ,௘ܪ ܾ ∈  ௙, whereܪ

݁, ݂ ∈ ࣢݂ܾ݁ܽ ௌ. Thenܧ ∈  .ௌܧ

That (b) follows from (a) is clear, since if ܽ ∈ ܽ ௌ andܩ ൒ ܾ, then ܾ ൌ ݁ܽ for some 
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݁ ∈ ௌܧ ⊆ ܽ ௌ. Conversely, suppose ܵ satisfies (b), and letܩ ∈ ܾ ௘ andܪ ∈ ,݁ ௙, whereܪ ݂ ∈  .ௌܧ

Then ݂ܽ ൑ ܽ and ܾ݁ ൑ ܾ, so ݂ܽ, ܾ݁ ∈ ௌܩ  and in fact since ݂ࣦ݂ܾܽ݁࣬݁, ݂ܽ, ܾ݁ ∈  ௘௙. Sinceܪ

ܾܽ ൌ ሺܽ݁ሻሺ݂ܾሻ ൌ ሺ݂ܽሻሺܾ݁ሻ, ܾܽ ∈ ࣢௘௙ ⊆  .ௌ. Hence ܵ satisfies (a)ܩ

That ܵ/࣢ is combinatorial is also well known and easily verified. Finally, if ܵ satisfies 

(2C'), then for all ܽ ∈ ,ௌܩ ܽ ↓∈ ௌܩ ,ௌ, that isܩ  is an order ideal. So ܵ is cryptic. □ 

We now expand on the general properties of cryptic inverse semigroups proved in 

Proposition 4.1. For a subset ܣ of ܵ, ࣢ܣ will denote either the subset of ܵ comprising the 

union of the ࣢-classes ܪ௔, ܽ ∈  where the ,࣢/ܵ in the quotient semigroup ܣ or the image of ,ܣ

appropriate choice should be clear from the context. An equation such as ࣢ܣ ൌ  has the ࣢ܤ

same meaning in either context. 

Let ߟ denote the complete ∨-homomorphism of ࣦሺܵሻ upon ࣦሺܵ/࣢ሻ that is induced by 

the quotient homomorphism ܵ → ܵ/࣢. Since any homomorphism of inverse semigroups 

respects the natural partial order, ߟ restricts to a complete ◊-homomorphism of ℓ݋ሺܵሻ upon 

ℓ݋ሺܵ/࣢ሻ. Clearly, ܩௌߟ ൌ ,ௌܩmaps ሾ ߟ so ,࣢/ௌܧ ܵሿ upon ࣦࣤሺܧௌ/࣢ሻ, ࣦሺܩௌሻ upon ࣦሺܧௌ/࣢ሻ, and 

further restricts to an isomorphism of ࣦሺܧௌሻ upon ࣦ൫ܧௌ/࣢൯. 

The following lemma will find repeated use. The first part of the proposition that follows it 

is an analogue of Result 3.1. 

 

Lemma 4.2. In any inverse semigroup ܵ, if ࣢ܽݔ, then ݔ ൌ ሺିܽݔଵሻܽ, where ିܽݔଵ ∈  ௔௔షభ. Thusܪ	

if ܣ ∈ ࣦሺܵሻ, ࣢ܣ ൌ ሺܧ஺࣢ሻܣ ⊆ ∋ For any .ܣௌܩ ࣦሺܵሻ, ܣ ൌ ܣ ↓	∩  .࣢ܣ

 

Proof. The first two statements are easily verified. To prove the last one, suppose ݔ ൑ ܽ ∈  and ܣ

࣢ܾݔ ∈ ݔ Then .ܣ ൌ ଵܽିݔݔ ൌ ܾܾିଵܽ ∈  .ܣ

 

Proposition 4.3. For any cryptic inverse semigroup ܵ and any ܣ ∈ ࣦሺܵሻ,  

ௌܩ ∨ ܣ ൌ ௌܩ ∪ ሺܣ ↓ሻ࣢ ൌ ଵܣௌܩ ൌ  ௌܩଵܣ

Since ܩௌ is full, ܩௌ ∨ ௌܩ is an order ideal of ܵ and ܣ ⋄ ܣ ൌ ௌܩ ∨  .ܣ

The restriction of the join-homomorphism ߟ to the filter ሾܩௌ, ܵሿ of ࣦࣤሺܵሻ is a complete 

isomorphism upon ࣦࣤሺܵ/࣢ሻ. 

 

Proof. Let ܣ ∈ ࣦሺܵሻ and ݔ ∈ ௌܩ ∨ ݔ If .ܣ ∉ ݔ ௌ, thenܩ ൌ ݃଴ܽଵ …݃௡ିଵܽ௡݃௡, where each ݃௜ ∈  ,௘೔ܪ

for some ݁௜ ∈ ௌ, and each ܽ௜ܧ ∈ ࣢݁଴ܽଵݔ So .ܣ …݁௡ିଵܽ௡݁௡ ൑ ܽଵ …ܽ௡ ∈  applying the first ,ܣ
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statement of Result 3.1. Therefore, ܩௌ ∨ ܣ ⊆ ௌܩ 	∪ ሺܣ ↓ሻ࣢. To obtain the reverse inclusion, apply 

the second statement of Lemma 4.2 to ܣ ↓: ሺܣ ↓ሻ࣢ ⊆ ܣௌܩ ↓ൌ ܣௌܧௌܩ ൌ  In fact we have also .ܣௌܩ

shown that ܩௌ ∨ ܣ ൌ  .ଵ, and the dual equation is proven similarlyܣௌܩ

As noted above, ߟ maps ሾܩௌ, ܵሿ onto ࣦࣤሺܵ/࣢ሻ. Now by Lemma 4.2, if ܩௌ ⊆  then ,ܣ

࣢ܣ ൌ  □ .obviously is injective and preserves intersections ߟ and so ,ܣ

 

By Proposition 4.1, (2C΄) (and thus (2΄)) implies crypticity. The next proposition delineates 

the consequences of these properties that are in addition to crypticity. However, we state it in 

terms of the equivalent properties (3C΄) and (3΄). (The omitted properties (4C΄) and (4΄) arose in 

[5] but are not required here.) 

 

Proposition 4.4. For a cryptic inverse semigroup ܵ, the following are equivalent to the property 

(3΄): 

(5΄) ܵ/࣢ satisfies (3); 

(6΄) For all A∈(S), ܩௌ ∨ ܣ ൌ ௌܩ ∪  .(cf. Proposition 4.3) ࣢ܣ

 

In that event ࣦሺܵ/࣢ሻ is isomorphic to a subdirect product of ࣦሺܧௌ/࣢ሻ and ࣦࣤሺܵ/࣢ሻ, and thus 

of ࣦሺܧௌሻ and ሾܩௌ, ܵሿ. 

The entirely analogous statements hold with respect to ℓ݋ሺܵሻ. 

 

Proof. (3΄) ⇒	(5΄). Let ܤ ∈ ሺܵ/࣢ሻ and denote by ܣ the complete pre-image of ܤ in ܵ. Then 

࣢/ௌܧ ∨ ܤ ൌ ሺܧௌ ∨ ߟሻܣ ⊆ ሺܩௌ ∪ ߟሻܣ ൌ ࣢/ௌܧ ∪  .ܤ

(5΄) ⇒	(6΄). Suppose ܵ/࣢ satisfies (3). Let ܣ ∈ ࣦሺܵሻ. Now ሺܩௌ ∨ ߟሻܣ ൌ ࣢/ௌܧ ∨ ࣢ܣ ൌ

࣢/ௌܧ ∪ ௌܩ ,In ܵ, therefore .࣢/ܵ in ࣢ܣ ∨ ܣ ⊆ ௌܩ ∪  .࣢ܣ

(6΄) ⇒	(3΄). Let ܣ ∈ ࣦሺܵሻ. Applying Result 3.1 in conjunction with (6΄) and the final 

statement of Lemma 4.2, we obtain  

ௌܧ ∨ ܣ ൌ ሺܧௌ ∨ ሻܣ ∩ ሺܩௌ ∨ ሻܣ ൌ ሺܧௌ ∪ ܣ ↓ሻ ∩ ሺܩௌ ∪ ࣢ሻܣ ⊆ ௌܩ ∪ ሺܣ ↓	∩ ࣢ሻܣ ൌ ௌܩ ∪ 	ܣ

The final statements for ࣦሺܵሻ follow from Result 3.4 and the final statement of 

Proposition 4.3.  

The proof in the context of ℓ݋ሺܵሻ is essentially identical. □ 

 

From Result 2.4 it follows that in order for ࣦࣤሺܵሻ to satisfy any of the lattice-theoretic 

properties considered therein, any nontrivial subgroup of ܵ must be isolated; equivalently, any 
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nontrivial ࣢-class must be a subgroup. This property is not a consequence of (2΄) since any 

completely 0-simple inverse semigroup satisfies the latter property. 

 

Lemma 4.5. Suppose ܪ is an isolated subgroup of an inverse semigroup ܵ and ܽ ∈  If .ܪ

ܽ ൌ ଵݔ 	 ൉൉൉ ,ଵݔ ௡, for someݔ … , ௡ݔ ∈ ܵ, then ܽ	 ൌ ሺ݁ݔଵሻ ൉൉൉ ሺ݁ݔ௡ሻ, where ݁ is the idempotent in ܪ 

and each ݁ݔ௜ ∈  .ܪ

 

Proof. By the classical result of Hall [7], whenever any equation ܽ ൌ ଵݔ ൉൉൉  ௡ holds in a regularݔ

semigroup, then ܽ ൌ ଵݔ̅ ൉൉൉ ௜ݔ̅ ,݅ ௡, where for eachݔ̅ ൑  is an entire ܪ ௜ࣞܽ. Sinceݔ̅ ௜, andݔ

ࣞ-class, each ̅ݔ௜ ∈  .௜ݔ݁ ௘ and so equalsܪ

 

The square brackets in (S4), (S5), and (S7) of the next proposition indicate alternative 

readings, which are proven to be equivalent. (Join distributivity implies complete join distributivity 

due to the finitariness of the operations.) 

 

Proposition 4.6. The following are equivalent for a cryptic inverse semigroup ܵ: 

 

(S1) Every nontrivial subgroup of ܵ is isolated; 

(S2) ࣢ܣ ൌ ஺࣢ܧ ∪ ܣ for any ܣ ∈ ࣦሺܵሻ; 

(S3) ܩௌ ∨ ܣ ൌ ௌܩ ∪ ܣ ↓ for all ܣ ∈ ࣦሺܵሻ (cf. Proposition 4.3); 

(S4) ܩௌ is [completely] distributive within ࣦࣤሺܵሻ; 

(S5) The map ߟ: ࣦሺܵሻ → ࣦሺܵ/࣢ሻ is a (complete) homomorphism; 

(S6) ܩௌ  is dually distributive within ࣦࣤሺܵሻ; 

(S7) ܩௌ  separates ࣦሺܵሻ ሾℓ݋ሺܵሻሿ. 

 

Together, (S4), (S6), and (S7) imply that ܩௌ  is a neutral element of ࣦࣤሺܵሻ. 

 

Proof. (S1) ⇒	(S2). This is clear from the triviality of ࣢-classes that are not subgroups. 

 

(S2) ⇒	(S3). Let ܣ ∈ ࣦሺܵሻ. By Proposition 4.3, ܩௌ ∨ ܣ ൌ ௌܩ ∪ ሺܣ ↓ሻ࣢. By (S2), ሺܣ ↓ሻ࣢ ⊆

ௌܩ ∪ ܣ ↓. 

 

(S3) ⇒	(S4). Any full inverse subsemigroup is an order ideal, so (S3) implies that for any 

ܣ ∈ ࣦࣤሺܵሻ, ܩௌ ∨ ܣ ൌ ௌܩ ∪  .from which complete distributivity is clear ,ܣ
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(S4) ⇒	(S5). Let ሼܣ௜ሽ௜∈ூ be a family of inverse subsemigroups of ܵ, and suppose 

࣢ݔ ∈ ⋂ ௜∈ூߟ௜ܣ , that is, for each ݅ ∈ ࣢ܽ௜ for some ܽ௜ݔ ,ܫ ∈ ଵିݔݔ ௜. Putܣ ൌ ݁. Now if ݔ ∈ ࣢௘, 

then ݁ ൌ ܽ௜ܽ௜
ିଵ ∈ ࣢ݔ ௜ for all ݅, so thatܣ ∈ ሺ⋂ ௜௜∈ூܣ ሻߟ. So suppose otherwise. By Lemma 4.2, 

ݔ ∈ ௌܩ ∨ ⋂ ሺܧௌ ∨ ௜ሻ௜∈ூܣ ൌ ௌܩ ∪ ሺ⋂ ሺܧௌ ∨ ௜ሻ௜∈ூܣ ሻ࣢, the last equality holding by Proposition 4.3, in the 

same fashion as in the previous paragraph. 

Hence ݕ࣢ݔ, where since ݕ ∉ ݕ ,ௌܧ ∈ ௜ܣ ↓ for each ݅, applying Result 3.1. But ࣢ܽݕ௜  for 

each ݅, so by the final statement of Lemma 4.2, ݕ ∈ ௜ܣ  for each ݅. So again ࣢ݔ ∈ ሺ⋂ ௜௜∈ூܣ ሻߟ. 

This yields one of the necessary containments, and the other is clear. 

 

(S5) ⇒	(S1). Suppose ܽ࣢ܾ in ܵ and ܽ, ܾ ∉ ܣ ௌ. Putܩ ൌ ܤ ,〈ܽ〉 ൌ 〈ܾ〉 (and refer to §1 

for properties of monogenic inverse semigroups needed in the remainder of the proof). Since 

ܽ࣢ ൌ ܾ࣢ and ࣢ is a congruence, ߟܣ ൌ ߟܤ ൌ ሺܣ ∩  .the last equality following from (S5) ,ߟሻܤ

Thus the intersection of ܣ ∩ ௔ܪ with ܤ ൌ |௔ܪ| ௕ is nontrivial. Butܪ ൌ 1 in ܣ and |ܪ௕| ൌ 1 in 

ܽ Hence .ܤ ൌ ܾ. 

 

Remark. Only the finitary version of (S5) was required in the last step. Since the finitary version 

of (S4) ⇒	(S5) clearly holds, the alternative versions of those two properties have now also been 

proven equivalent. 

 

(S1) ⇒	(S6). Let ܣ, ܤ ∈ ࣦࣤሺܵሻ, and let ܪ be subgroup of ܵ. Applying Lemma 4.5, we 

obtain ܪ ∩ ሺܣ ∨ ሻܤ ൌ ሺܪ ∩ ሻܣ ∨ ሺܪ ∩ ௌܩ ሻ, from which the equationܤ ∩ ሺܣ ∨ ሻܤ ൌ ሺܩௌ ∩ ሻܣ ∨

ሺܩௌ ∩  .ሻ is an immediate consequenceܤ

 

(S6) ⇒	(S1). Suppose that ܽ࣢ܾ in ܵ, and again put ܣ ൌ ௌܧ ∨ ܤ ,〈ܽ〉 ൌ ௌܧ ∨	 〈ܾ〉. By 

Lemma 4.2, ݃ ൌ ܾܽିଵ ∈ ݁ ௘, whereܪ ൌ ܽܽିଵ ൌ ܾܾିଵ.If ݃ ൌ ݁, then ܽ ൌ ܾ, so assume otherwise. 

Now ݃ ∈ ௌܩ ∩ ሺܣ ∨ ሻܤ ൌ ሺܩௌ ∩ ሻܣ ∨ ሺܩௌ ∩ ݃ ሻ, applying (S6). Soܤ ൌ ଶݔଵݔ ൉൉൉ ௡ݔ ൌ ሺ݁ݔଵሻݔଶ 	 ൉൉൉  ,௡ݔ

where each term may be assumed to be a nonidempotent in ሺܩௌ ∩ ሻܣ ∪ ሺܩௌ ∩  ሻ and, withoutܤ

loss of generality, ݁ݔଵ ∈ ଵݔ݁ ଵ࣬݁ and soݔ݁ say. Note that ,ܣ ∈ ଵݔ݁ ௘. Nowܪ ∈ 〈ܽ〉 and this time 

a contradiction is reached, since |ܪ௘| ൌ 1 in 〈ܽ〉. 

 

(S3) ⇒	(S7). We shall prove that (S3) implies ܩௌ  separates ࣦሺܵሻ. Let ܣ, ܤ ∈ ࣦሺܵሻ and 

suppose ܩௌ ∨ ܣ ൌ ௌܩ ∨ ௌܩ and ܤ ∩ ܣ ൌ ௌܩ ∩  From the second equation it follows that .ܤ
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஺ܧ ൌ ܽ ஻. Letܧ ∈ ܽ Clearly, if .ܣ ∈ ܽ ௌ, thenܩ ∈ ܽ ,Otherwise, by (S3) .ܤ ∈ ܤ ↓. But then 

ܽ ൌ ሺܽܽିଵሻܾ ∈ ܾ for some ,ܤ ∈  .ܤ

 

(S7) ⇒	(S1). We shall prove this implication under the assumption that ܩௌ  separates 

ℓ݋ሺܵሻ. Then these last two implications prove the equivalence of the alternative readings. 

 

Suppose ܽ࣢ܾ in ܵ and ܽ, ܾ ∉ ௌܩ ,ௌ. Once moreܩ ∨ 〈ܽ〉 ൌ ௌܩ ∨ 〈ܾ〉, and so ܩௌ ∨ 〈〈ܽ〉〉 ൌ

ௌܩ ∨ 〈〈ܾ〉〉. Next we need to analyze further the nontrivial subgroups of 〈〈ܽ〉〉. Suppose ݃ ∈ ௘ܪ െ

ሼ݁ሽ, ݁ ∈ ݃ ௌ, andܧ ∈ 〈〈ܽ〉〉. Then ܽଵ ൑ ݃ ൑ ܽଶ ൑ ܽ௞, for some ܽଵ, ܽଶ ∈ 〈ܽ〉 and nonzero integer ݇. 

Thus ܽଵܽଵ
ିଵ ൑ ݁ ൑ 	ܽ௞ܽି௞. But for every integer ݊, ݃௡ ∈ ݁ ௘, and soܪ ൑ ܽ௞௡ܽି௞௡. Recalling from 

§1 the description of the idempotents of 〈ܽ〉, it follows that ݁ ൑ ݂ for all ݂ ∈  ,In particular .〈௔〉ܧ

݁ ൑ ܽଵܽଵ
ିଵ and so equality holds. Thus ݃ ൌ ܽଵ ∈ 〈ܽ〉. We have shown that ܩௌ ∩ 〈〈ܽ〉〉 ൌ

ሺܩௌ ∩ 〈ܽ〉ሻ ∪ 〈〈௔〉〉ܧ Note that .〈〈௔〉〉ܧ ൌ  .by Result 1.1 ,〈〈〈௔〉ܧ〉〉

There are two cases to consider. First, if no power of a lies in GS , then 〈ܽ〉 is 

combinatorial (again, see §1) and ܩௌ ∩ 〈〈ܽ〉〉 ൌ  Since ܵ is cryptic, ܽ௡࣢ܾ௡ for every .〈〈〈௔〉ܧ〉〉

integer ݊, and so the corresponding equation also holds for 〈〈ܾ〉〉. In fact any idempotent of 〈ܽ〉 

is ࣢-related to, and thus equal to, the corresponding idempotent of 〈ܾ〉, so that ܧ〈௔〉 ൌ  .〈௕〉ܧ

Hence ܩௌ ∩ 〈〈ܽ〉〉 ൌ ௌܩ ∩ 〈〈ܾ〉〉. So (S7) implies that 〈〈ܽ〉〉 ൌ 〈〈ܾ〉〉. 

If ܽ௡ ∈ ݂ ,௙, sayܪ ∈  ௙, the kernel of 〈ܽ〉, the only potentiallyܭ ௙ containsܪ ௌ, thenܧ

nontrivial subgroup of 〈ܽ〉, and so ܩௌ ∩ 〈〈ܽ〉〉 ⊆ ௙ܪ ∪ ܣ Let .〈〈〈௔〉ܧ〉〉 ൌ 〈〈ܽ〉〉 ∪ ݔ ௙. Ifܪ ∈ 〈〈ܽ〉〉, then 

ݔ ൑ ܽ, for some ܽ ∈ ݔ݂ and so ,ܣ ൌ ݂ܽ	 ∈ ௙ܪݔ ௙. Nowܭ	 ൌ ݔ௙ܪ ൌ ܣ ௙ and soܪ ∈ ࣦሺܵሻ. If 

ݔ ∈ ݕ ,〈〈ܽ〉〉 ∈ ݔ ௙ andܪ ൒ ऊ ൒ for some ऊ ݕ ∈ ܵ, then since ݕ ൌ ݔ݂ ∈ 〈〈ܽ〉〉, ऊ ∈  Thus .ܣ

ܣ ∈ ℓ݋ሺܵሻ. 

Again, by crypticity, ܾ௡ ∈  ௙ and so the corresponding inclusion also holds for 〈〈ܾ〉〉. Putܪ

ܤ ൌ 〈〈ܾ〉〉 ∪ ௙ܪ ∈ ℓ݋ሺܵሻ. Now ܩௌ ∩ ܣ ൌ ௙ܪ ∪ ௌܩ whence ,ܤ and similarly for 〈〈〈௔〉ܧ〉〉 ∩ ܣ ൌ ௌܩ ∩  .ܤ

From ܽ࣢ܾ, we still have that ܩௌ ∨ ܣ ൌ ௌܩ ∨ ܣ so (S7) implies that ,ܤ ൌ ,ܽ Again, since .ܤ ܾ ∉  ,௙ܪ

〈〈ܽ〉〉 ൌ 〈〈ܾ〉〉. 

In either case, then, ܽ ൑ ܾ௞ and ܾ ൑ ܽℓ, for some nonzero integers ݇, ℓ. But by [5, 

Lemma 1.4], ܽ is maximal in the partial order on 〈ܽ〉 and thus on 〈〈ܽ〉〉, so ܽ ൌ ܾ௞. Since ܪ௕ is 

not a subgroup, this can only occur if ݇ ൌ 1, that is, ܽ ൌ ܾ. 

 

Proposition 4.7. The following are equivalent for a cryptic inverse semigroup ܵ:  

(G1) ܩௌ  is distributive in ࣦሺܵሻ, that is, ܩௌ ∨ ሺܣ ∩ ሻܤ ൌ ሺܩௌ ∨ ሻܣ 	∩ 	ሺܩௌ ∨ ,ܣ for all	ሻܤ ܤ ∈ ሺܵሻ; 
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(G2) ܵ satisfies (2΄) and every nontrivial subgroup of ܵ is isolated; 

(G3) For all ܣ ∈ ࣦሺܵሻ, ܩௌ ∨ ܣ ൌ ௌܩ ∪  .ܣ

 

The entirely analogous statements (GC1)–(GC3) hold with respect to ℓ݋ሺܵሻ, substituting 

(2C΄) for (2΄). 

 

Proof. That (G1) implies that every nontrivial subgroup is isolated is a consequence of the 

implication (S5) ⇒ (S1) in Proposition 4.6. Similarly, (G1) implies that ߟ: ࣦሺܵሻ 	→ 	ࣦሺܵ/࣢ሻ is a 

(surjective) lattice homomorphism. As a consequence, distributivity of ܩௌ in ࣦሺܵሻ implies 

distributivity of ܧௌ/࣢ in ࣦሺܵ/࣢ሻ. Applying Result 3.2 to ܵ/࣢, that semigroup satisfies (2); then 

Proposition 4.4 yields (2΄) for ܵ. 

To prove (G2) ⇒ (G3), apply Propositions 4.4 and 4.6 to ܩௌ ∨ ܣ ൌ ௌܩ ∪ ሺܣ ↓ሻ࣢. The 

implication (G3) ⇒ (G1) is clear. 

In the context of ℓ݋ሺܵሻ, the arguments proceed similarly, using (2C) in place of (2) in 

ܵ/࣢. □ 

Note that distributivity of ܩௌ does not imply distributivity of ܧௌ for either lattice, as can be 

seen by considering Clifford semigroups, where (2C΄) (and therefore (2΄)) always holds but (2C) 

(equivalently, (2) in this context) holds only if the structure mappings are trivial. 

 

Proposition 4.8. For a cryptic inverse semigroup ܵ, the following are equivalent: 

(G1΄) ܩௌ  is dually distributive in ࣦሺܵሻ; 

(G2΄) (i) ܧௌ  is dually distributive in ࣦሺܵሻ (that is, ܵ satisfies (2΄)) and (ii) every  

nontrivial subgroup of ܵ is isolated (that is, ܵ satisfies (S1)); 

and the following are equivalent: 

(GC1΄) ܩௌ  is dually distributive in ℓ݋ሺܵሻ; 

(GC2΄) (i) ܧௌ  is dually distributive in ℓ݋ሺܵሻ, (ii) ܵ satisfies (S1), and (iii) ܩௌ ∩ ܣ ↓ൌ ሺܩௌ ∩ ሻܣ ↓ for 

all ܣ ∈ ℓ݋ሺܵሻ. 

 

Proof. Suppose first that ܩௌ is dually distributive in ࣦሺܵሻ. Then the map ܣ → ௌܩ ∩  is a ܣ

homomorphism of ࣦሺܵሻ upon ࣦሺܩௌሻ. But ܩௌ  is a Clifford semigroup and so (2΄) is satisfied that 

is, the map ܤ → ௌܧ ∩  ,ௌሻ. The composite map is thereforeܩis also a homomorphism on ࣦሺ ܤ

also a homomorphism, so (G2΄)(i) is satisfied. The proof in the case of ℓ݋ሺܵሻ is essentially the 
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same. 

Now whether ܩௌ  is dually distributive in ࣦሺܵሻ or in ℓ݋ሺܵሻ, it is then dually distributive in 

ࣦࣤሺܵሻ and the implication (S6) ⇒	(S1) of Proposition 4.6 applies. 

Turning to (GC2΄)(iii), we observe that dual distributivity of ܩௌ in ℓ݋ሺܵሻ immediately 

yields ܩௌ ∩ ሺܧௌ ∨ ሻܣ ൌ ௌܧ ∨ ሺܩௌ ∩ ܣ ሻ, for anyܣ ∈ ℓ݋ሺܵሻ. But satisfaction of this equation is 

equivalent to (GC2΄)(iii). For by Result 3.1, the equation may be rewritten as ܧௌ ∪ ሺܩௌ ∩ ܣ ↓ሻ ൌ

ௌܧ ∪ ሺܩௌ 	∩ ሻܣ ↓, and clearly ܧௌ ∩ ሺܩௌ ∩ ܣ ↓ሻ ൌ ௌܧ ∩ ሺܩௌ ∩ ሻܣ ↓ always holds. Then the separating 

property of ܧௌ  is applied. 

Clearly, the same proof shows that the analogous property (G2΄)(iii) holds for ࣦሺܵሻ. 

However, in the case of ࣦሺܵሻ, the property already follows from (2΄), as follows. Let ܣ ∈ ࣦሺܵሻ, 

݃ ∈ ௌܩ  and ݃ ൑ ܽ ∈ ݁ say. Put ,ܣ ൌ ݃݃ିଵ. Since ݁ ൌ ݃ିଶ݃ଶ ൑ ܽିଶܽଶ, ݃ ൑ ܽିଶܽଷ. By [5, 

Proposition 3.6], (2΄) for 〈ܽ〉 implies that ܽଷ belongs to a subgroup. That subgroup also 

contains ܽିଶܽଷ, so ݃ ∈ ሺܩௌ ∩ ሻܣ ↓. (The example in the remark that follows this proof 

demonstrates that (GC2΄)(iii) does not follow from the other hypotheses.) 

To prove the converse, we first consider ࣦሺܵሻ, assuming ܧௌ  is dually distributive and (S1) 

holds. We use the fact that ܧௌ  separates ࣦሺܵሻ. Let ܣ, ܤ ∈ ࣦሺܵሻ. Dual distributivity of ܧௌ  

immediately yields that ܧௌ ∩ ሺܩௌ ∩ ሺܣ ∨ ሻሻܤ ൌ ௌܧ ∩ ሺሺܩௌ ∩ ሻܣ ∨ ሺܩௌ ∩  ሻሻ. To obtain theܤ

corresponding equation for joins, we first apply the alternative formulation of (G2΄)(iii) that was 

proved above, then dual distributivity of ܩௌ  in ࣦࣤሺܵሻ (using Proposition 4.6)) and then the 

alternative formulation of (G2΄)(iii) once more, to obtain  

ௌܧ ∨ ൫ܩௌ ∩ ሺܣ ∨ ሻ൯ܤ ൌ ௌܩ ∩ ሺܧௌ ∨ ܣ ∨ 	ሻܤ

ൌ ൫ܩௌ ∩ ሺܧௌ ∨ ሻ൯ܣ ∨ ൫ܩௌ ∩ ሺܧௌ ∨ 	ሻ൯ܤ

ൌ ௌܧ ∨ ሺܩௌ ∩ ሻܣ ∨ ௌܧ ∨ ሺܩௌ ∩ 	ሻܤ

ൌ ௌܧ ∨ ൫ሺܩௌ ∩ ሻܣ ∨ ሺܩௌ ∩  ሻ൯ܤ

The proof for ℓ݋ሺܵሻ is entirely analogous. □ 

Unlike the situation for ࣦሺܵሻ, we cannot in general replace the property that ܧௌ  be dually 

distributive in ℓ݋ሺܵሻ by (2C΄), for that cannot be done in the combinatorial case, the other two 

conditions in (GC2΄) being degenerate there. 

 

Example 4.9. The conditions (G2΄)(i) and (ii)—equivalently (2΄) and (S1)—are independent, as 

are (GC2΄)(i)–(iii). In particular, there exists an inverse semigroup ܶ such that ்ܧ  is a chain, the 

lattice ࣦࣤሺܶሻ is distributive, and ܶ satisfies (GC2΄)(i) and (ii) but not (GC2΄)(iii). 
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Proof. Firstly, dual distributivity of ܧௌ  in either ࣦሺܵሻ or ℓ݋ሺܵሻ does not follow from (S1), or from 

(S1) and (GC2΄)(iii), respectively, since if ܵ is combinatorial, then the latter conditions are 

satisfied automatically, whereas the former are not. 

Secondly, (S1) does not follow from either dual distributivity of ܧௌ  in ࣦሺܵሻ, or from dual 

distributivity of ܧௌ  in ℓ݋ሺܵሻ in conjunction with (GC2΄)(iii), since if ܵ is an arbitrary completely 

0-simple inverse semigroup then, as noted following Result 3.4, ܵ satisfies (2΄) and (2C΄) (and 

so ܧௌ  is dually distributive in ℓ݋ሺܵሻ), but ܵ may have a nontrivial subgroup that is not isolated; 

and if ܣ ∈ ℓ݋ሺܵሻ, then unless ܣ ⊆ ܣ contains 0 and so ܣ ,ௌܩ ൌ ܣ ↓, so that ܵ also satisfies 

(GC2΄)(iii). 

Now we construct an example satisfying the last statement of the remark, showing that 

(GC2΄)(iii) does not follow from (GC2΄)(i) and (ii). First, we refer the reader to §1 for the definition 

and properties of the bicyclic semigroup, and for the strong semilattice construction. Let ܻ be 

the two-element semilattice 1 ൐ 0, and let ܶ be the strong semilattice ܻ of a bicyclic semigroup 

ଵܶ ൌ 〈ܾ〉 and a nontrivial cyclic group ଴ܶ ൌ 〈݃〉, where the structure map ଵܶ → ଴ܶ is the 

homomorphism that extends the map ܾ → ݃. Clearly ்ܧ ൌ ܧ
భ்
଴  and is therefore a chain. 

As noted following Result 2.4, ࣦࣤሺ ଵܶሻ is distributive. The principal factors of ܶ are just 

ଵܶ
଴ and ଴ܶ, so by Result 2.3, ࣦࣤሺܶሻ is distributive. Hence (or direct) ܶ satisfies (S1). 

By Result 3.3, to show (GC2΄(i)), it suffices to show (2C΄). Suppose ܽ ൐ ܾ in ܶ. Since 

଴ܶ ⊂ ܾ ௌ, we only need consider the case thatܩ ∈ ଵܶ. But by [5, Proposition 3.7], ଴ܶ satisfies (2C) 

and therefore ܾ ∈ ௌܧ ∪ 〈〈ܽ〉〉, as required. 

Finally, since ݃ ൑ ܾ, ݃ ∈ ்ܩ ∩ ଵܶ ↓, whereas ்ܩ ∩ ଵܶ ൌ ܧ
భ்
, since ଵܶ is combinatorial, so 

ሺ்ܩ ∩ ଵܶሻ ↓	ൌ  □ .ܶ Hence (GC2΄)(iii) fails in .்ܧ

 

Combining Propositions 4.6–4.8, and noting the penultimate statement of Proposition 4.6, 

yields the following analogue of Result 3.4. 

 

Theorem 4.10. Let ܵ be a cryptic inverse semigroup. In ࣦሺܵሻ, ܩௌ is neutral if and only if ܵ 

satisfies (2΄) (that is, ܽ ↓	⊆ ௌܩ ∪ 〈ܽ〉 for all ܽ ∈ ܵ) and every nontrivial subgroup of ܵ is isolated.  

In ℓ݋ሺܵሻ, ܩௌ  is neutral if and only if ܵ satisfies (2C΄), every nontrivial subgroup of ܵ is 

isolated, and ܩௌ ∩ ܣ ↓	ൌ ሺܩௌ ∩ ሻܣ ↓ for all ܣ ∈ ℓ݋ሺܵሻ. In particular, ܩௌ  is neutral in ℓ݋ሺܵሻ if ܵ 

satisfies (2C) and every nontrivial subgroup is isolated. 

 

Proof. In regard to ℓ݋ሺܵሻ, recall in the context of Proposition 4.8 that (2C΄) is a sufficient 
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condition for ܧௌ  to be dually distributive. To prove the last statement, note that the alternative 

formulation ܩௌ ∩ ሺܧௌ ∨ ሻܣ ൌ ௌܧ ∨ ሺܩௌ ∩  ሻ of (2C΄)(iii), found in the proof of Proposition 4.8, is anܣ

immediate consequence of distributivity of ܧௌ in ℓ݋ሺܵሻ, that is, of (2C). □ 

 

5. Join Semidistributivity 

In this section we apply the techniques of the previous section to join semidistributivity. 

The key is the following proposition. 

 

Proposition 5.1. If ࣦሺܵሻ is join semidistributive, then ܵ satisfies (21). If ℓ݋ሺܵሻ is join 

semidistributive, then ܵ satisfies (2C΄). 

 

Proof. First suppose ࣦሺܵሻ is join semidistributive and that ܽ, ܾ ∈ ܵ, ܽ ൐ ܾ, ܾ ∉  ௌ. Nowܧ

ܾ ൌ ܾܾିଵܽ, so ܾିଵܾ ൌ ܽିଵሺܾܾିଵሻܽ ∈ 〈ܽ〉 ∨ ሼܾܾିଵሽ. By symmetry, ܾܾିଵ ∈ 〈ܽ〉 ∨ ሼܾିଵܾሽ. So 

〈ܽ〉 ∨ ሼܾܾିଵሽ ൌ 〈ܽ〉 ∨ ሼܾିଵܾሽ and join semidistributivity implies that 〈ܽ〉 ∨ ሼܾܾିଵሽ ൌ 〈ܽ〉 ∨

ሺሼܾܾିଵሽ ∩ ሼܾିଵܾሽሻ. Thus if ܾ ∉ 〈ܽ〉, ሼܾܾିଵሽ ∩ ሼܾିଵܾሽ ് ∅, that is, ܾܾିଵ ൌ ܾିଵܾ. Thus (2΄) holds. 

Next suppose ℓ݋ሺܵሻ is join semidistributive. The proof is similar, but more involved. 

Again, suppose ܽ ൐ ܾ, ܾ ∉ 〈〈ܽ〉〉 ௌ. Note thatܧ ⋄ ሾܾܾିଵ, ܽܽିଵሿ contains ܾ ൌ ሺܾܾିଵሻܽ and, 

therefore, contains ܾିଵܾଶ. Similarly, since ܾିଵܾଶ ൑ ܾ ൏ ܽ, 〈〈ܽ〉〉 ⋄ 〈〈ܾିଵܾଶ〉〉 contains ܾ and, 

therefore, by convexity, ሾܾܾିଵ, ܽܽିଵሿ. Hence 〈〈ܽ〉〉 ⋄ ሾܾܾିଵ, ܽܽିଵሿ ൌ 〈〈ܽ〉〉 ⋄ 〈〈ܾିଵܾଶ〉〉 and so, by 

join semidistributivity, each equals 〈〈ܽ〉〉 ⋄ ሺሾܾܾିଵ, ܽܽିଵሿ ∩ 〈〈ܾିଵܾଶ〉〉ሻ. If ܾ ∉ 〈〈ܽ〉〉, then 

ሾܾܾିଵ, ܽܽିଵሿ ∩ 〈〈ܾିଵܾଶ〉〉 ് ∅. In that event, there is an idempotent ݁, say, such that ܾܾିଵ ൑ ݁ 

and either ݁ ൑ ሺܾିଵܾଶሻሺܾିଵܾଶሻିଵ ൌ ሺܾܾିଵሻሺܾିଵܾሻ or ݁ ൑ ሺܾିଵܾଶሻିଵሺܾିଵܾଶሻ ൌ ܾିଶܾଶ. In either 

case, ܾܾିଵ 	൑ ܾିଵܾ. Since ܽିଵ ൐ ܾିଵ, a (left-right) dual argument yields ܾିଵܾ ൑ ܾܾିଵ. Thus 

(2C΄) holds. □ 

 

In the case of the lattice ࣦሺܵሻ, we thereby obtain from Theorem 4.10 the following simple 

decomposition and the corresponding criteria for join semidistributivity. 

 

Theorem 5.2. The lattice ࣦሺܵሻ is join semidistributive if and only if ࣦሺܩௌሻ is join semidistributive, 

ࣦࣤሺܵ/࣢ሻ is distributive, the nontrivial subgroups of ܵ are isolated (property (S1)) and ܵ 

satisfies (2΄): if ܽ ൐ ܾ in ܵ, then ܾ ∈ ௌܩ ∪ 〈ܽ〉. In that case, ࣦሺܵሻ is a subdirect product of those 

two sublattices. 
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Proof. Recall from Proposition 4.3 that ሾܩௌ, ܵሿ ≅ ࣦࣤሺܵ/࣢ሻ. The combination of Results 2.2 and 

2.4 yields (S1) and Proposition 5.1 yields (2΄). Conversely, the last two criteria imply by Theorem 

4.10 (applying Proposition 4.1) that ܩௌ  is neutral. Since join semidistributivity is preserved by 

products and sublattices, ࣦሺܵሻ inherits that property. □ 

 

Although not readily apparent from this theorem, the property (2΄) severely restricts the 

principal factors in the associated semigroups, for according to [5, Proposition 3.6], for a 

monogenic inverse semigroup 〈ܿ〉, (2΄) and (2) are each equivalent to the property that ܿଷ 

belongs to a subgroup of 〈ܿ〉. Hence the principal factors of semigroups satisfying (2΄) must be 

completely 0-simple (or a group if the semigroup has a kernel). From distributivity of ࣦࣤሺܵሻ it 

then follows that any such principal factor must be isomorphic to ܤଶ, the combinatorial Brandt 

semigroup with two nonzero idempotents, or else a 0-group (or a group if a kernel exists). 

As a side effect, the statement of (2΄) may be refined in a manner similar to the 

refinement of (2) obtained in [5, Theorem 4.9]. 

In combination, the above results essentially reduce the study of join semidistributivity in 

ࣦሺܵሻ to the case of Clifford semigroups (inverse semigroups that are unions of groups). This 

situation turns out to be surprisingly complex, and we defer it until after we treat the general 

situation for ℓ݋ሺܵሻ. Before proceeding, we prove a useful lemma. 

 

Lemma 5.3. The lattice ࣦሺܵሻ is join semidistributive if and only if (i) ࣦሺܧௌሻ is join 

semidistributive, (ii) ܵ satisfies (2΄) and (iii) ܣ ∨ ܥ ൌ ܤ ∨ ܣ implies ܥ ∨ ܥ ൌ ሺܣ ∩ ሻܤ ∨  ܣ for all ܥ

ܤ ∈ ࣦሺܵሻ, ܥ ∈ ࣦࣤሺܵሻ.  

The entirely analogous statement holds for ℓ݋ሺܵሻ. 

 

Proof. Necessity is clear from Proposition 5.1. 

To prove the converse in the case of (S), let ܥ ,ܤ ,ܣ ∈ ࣦሺܵሻ and assume ܣ ∨ ܥ ൌ ܤ ∨  .ܥ

We use the fact that ܧௌ  separates ࣦሺܵሻ. On the one hand, ܣ ∨ ሺܧௌ ∨ ሻܥ ൌ ܤ ∨ ሺܧௌ ∨  ሻ so, byܥ

(iii), ܧௌ ∨ ሺܣ ∨ ሻܥ ൌ ௌܧ ∨ ሺܣ ∩ ሻܤ ∨ ஺ܧ ,On the other hand, by (2΄) .ܥ ∨ ஼ܧ ൌ ஺∨஼ܧ ൌ ஻∨஼ܧ ൌ ஻ܧ ∨

஺ܧ ,ௌሻ and then (2΄)ܧ஼, so by join semidistributivity of ࣦሺܧ ∨ ஼ܧ ൌ ஺∩஻ܧ ∨ ஼ܧ ൌ  .ሺ஺∩஻ሻ∨஼ܧ

The argument for ℓ݋ሺܵሻ is essentially identical. □ 

 

Unlike the situation for ࣦሺܵሻ, ܩௌ need not be neutral when ℓ݋ሺܵሻ is join semidistributive 

(see Remark 5.7 below). Without the corresponding decomposition, our proof of sufficiency in 

Theorem 5.4 is necessarily less elegant. Somewhat remarkably, the direct analogues of the 
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criteria for join semidistributivity in Theorem 5.2 nevertheless hold, as is shown in the corollary to 

the next theorem. 

 

Theorem 5.4. The lattice ℓ݋ሺܵሻ is join semidistributive if and only if ܧௌ is a tree, ࣦࣤሺܵሻ is 

distributive and ܵ satisfies (2C΄): if ܽ ∈ ܵ, then 	ܽ ↓⊆ ௌܩ 	∪ 〈〈ܽ〉〉. Under this hypothesis, (2C΄) 

reduces to the following condition: whenever ݁ ൐ ݂ in ܧௌ ௘ܬ ,  ∈ ࣦሺܵሻ, and ܬ௙ ൏ ݂ܽ ௘, thenܬ ∈  ௙ܪ

for all ܽ ∈  .௘ܬ

 

Proof. Necessity of the three conditions follows from Results 2.1, 2.4, and Proposition 5.1, 

respectively. 

Conversely, suppose ܵ satisfies the stated conditions. Then ℓ݋ሺܧௌሻ is join 

semidistributive, every nontrivial subgroup of ܵ is isolated, by Result 2.4, and ܵ is cryptic by 

Proposition 4.1. Hence ܩௌ ∈ ,ௌܩሺܵሻ and the filter ሾ݋ܥ ܵሿ of ࣦࣤሺܵሻ is join semidistributive (in fact, 

distributive). Further, by Proposition 4.7, ܩௌ ∨ ܣ ൌ ௌܩ ∨ ܣ ൌ ௌܩ ∪ ܣ for all ܣ ∈ ℓ݋ሺܵሻ and ܩௌ  is 

distributive in ℓ݋ሺܵሻ. 

We apply the previous lemma. Suppose ܥ ,ܤ ,ܣ ∈ ℓ݋ሺܵሻ, with ܥ full and ܣ ⋄ ܥ ൌ ܤ ⋄  ,ܥ

that is, ܣ ∨ ܥ ൌ ܤ ∨ ௌܩNow ሺ .ܥ ∨ ሻܣ ∨ ሺܩௌ ∨ ሻܥ ൌ ሺܩௌ ∨ ሻܤ ∨ ሺܩௌ ∨  ሻ, so by join semidistributivityܥ

of ሾܩௌܵሿ, ሺܩௌ ∨ ሻܣ ∨ ሺܩௌ ∨ ሻܥ ൌ ൫ሺܩௌ ∨ ሻܣ ∩ ሺܩௌ ∨ ሻ൯ܤ ∨ ሺܩௌ ∨ ሻܥ ൌ ൫ܩௌ ∨ ሺܣ ∩ ሻ൯ܤ ∨ ሺܩௌ ∨  .ሻܥ

Hence ܩௌ ∨ ሺܣ ∨ ሻܥ ൌ ௌܩ ∨ ൫ሺܣ ∩ ሻܤ ∨ ௌܩ ൯. Since each of the joins withܥ  is in fact just the union 

with ܩௌ, it follows that for any ܽ ∉ ܽ ௌ, ifܩ ∈ ܽ then ,ܣ ∈ ሺܣ ∩ ሻܤ ∨  .ܥ

Suppose ℓ݋ሺܵሻ is not join semidistributive. Then there exist ܥ ,ܤ ,ܣ ∈ ℓ݋ሺܵሻ, with ܥ full, 

such that ܣ ∨ ܥ ൌ ܤ ∨ ܥ ് ሺܣ ∩ ሻܤ ∨ Thus there exists ܽ଴ .ܥ ∈ such that ܽ଴ ܣ ∉ ሺܣ ∩ ሻܤ ∨  By .ܥ

the previous paragraph, ܽ଴ ∈ ௌ, that is, ܽ଴ܩ ∈ ଴ܪ ൌ ௘బ, for some ݁଴ܪ ∈  .஺ܧ

The argument in this paragraph and the next is also valid in ࣦሺܵሻ and will be applied in 

the proof of Proposition 5.8. Now ܽ଴ ∈ ܤ ∨ and ܽ଴ ܥ ∉ ܤ ∪ so ܽ଴ ,ܥ ൌ ܾଵܿଵ ൉൉൉ ܾ௡ܿ௡, for some 

ܾ௜ ∈ ଵ, ܿ௜ܤ ∈  ଴ is isolated, Lemma 4.5ܪ Since .ܥ and ܤ ଵ, with at least one term in each ofܥ

may be applied to obtain ܽ଴ ൌ ሺ݁଴ܾଵሻሺ݁଴ܿଵሻ ൉൉൉ ሺ݁଴ܾ௡ሻሺ݁଴ܿ௡ሻ, where each term in the product lies 

in ܪ଴. Further, ܪ଴ is locally cyclic (whence abelian), and ݁଴ ∈ so in fact ܽ଴ ,ܥ ൌ ሺ݁଴ܽଵሻܿ଴, for 

some ܽଵ ∈ and ܿ଴ ܤ ∈ ܥ ∩ ଴ሻ, ܽ଴ܪ଴. By distributivity of ࣦሺܪ ∈ ሺܣ ∩ 〈݁଴ܽଵ〉ሻ ∨ ሺܣ ∩ 〈ܿ଴〉ሻ ⊆

ሺܣ ∩ 〈݁଴ܽଵ〉ሻ ∨ Therefore, ݁଴ .ܥ ∉ for otherwise ݁଴ܽଵ ,ܤ ∈  and the assumption on ܽ଴ is ,ܤ

contradicted. 

To summarize, ܽ଴ ∈ ଴ܪ ൌ ௘బ, where ݁଴ܪ ∈ ሺܧ஺ ∩ ஼ሻܧ െ ஻; ܽ଴ܧ ∈ ଴ܽ ,ܣ ∉ ሺܣ ∩ ሻܤ ∨  ;ܥ

ܽ଴ ൌ ሺ݁଴ܽଵሻܿ଴, where ܽଵ ∈ ଵܽ ,ܤ ∉ ሺܣ ∩ ሻܤ ∨ and ܿ଴ ,ܥ ∈ ଴ܪ ∩  .ܥ



 

 

19  Cheong, Jones 

Now we may iterate the argument. Thus ܽଵ ∈ ଵܪ ൌ ௘భ, for some ݁ଵܪ ∈ ሺܧ஻ ∩ ஼ሻܧ െ  ,஺ܧ

݁ଵ ൐ ݁଴; and ܽଵ ൌ ሺ݁ଵܽଶሻܿଵ, where ܽଶ ∈ ଶܪ ൌ ௘మ, for some ݁ଶܪ ∈ ஺, ݁ଶܧ ൐ ݁ଵ, and ܿଵ ∈ ଵܪ ∩  .ܥ

But by convexity of ܣ, ݁଴, ݁ଶ ∈ together yield the contradiction ݁ଵ ܣ ∈  Thus no element ܽ଴ .ܣ

exists as originally assumed and ℓ݋ሺܵሻ is join semidistributive. 

The statement in the second paragraph was proven in [5, Lemma 4.4]. □ 

 

Corollary 5.5. Join semidistributivity of ℓ݋ሺܵሻ is equivalent to each of the following: 

(i) ܵ is cryptic, every nontrivial subgroup is isolated and is locally cyclic, and ℓ݋ሺܵ/࣢ሻ is 

join semidistributive; 

(ii) (cf. Theorem 5.2) ℓ݋ሺܩௌሻ is join semidistributive, ℓ݋ሺܵ/࣢ሻ is distributive, every 

nontrivial subgroup of ܵ is isolated, and ܵ satisfies (2C΄). 

 

For a Clifford semigroup ܵ, ℓ݋ሺܵሻ is join semidistributive if and only if ܧௌ  is a tree and 

each subgroup is locally cyclic. 

 

Proof. The last statement is simply a specialization of the theorem. 

For the other statements, all the necessary conditions follow direct from the hypothesis or 

as a result of the theorem, with the exception of join semidistributivity of ℓ݋ሺܵ/࣢ሻ. To 

demonstrate this last conclusion, note from Proposition 4.4 that ܵ/࣢ satisfies (2C) and so 

ℓ݋ሺܵ/࣢ሻ is a subdirect product of ࣦࣤሺܵ/࣢ሻ and ℓ݋ሺܧௌ/࣢ሻ. But by Proposition 4.3, ࣦࣤሺܵ/࣢ሻ ≅

ሾܩௌ, ܵሿ; and ܧௌ/࣢ ≅  .ௌܧ

To prove the converse in the first case, it follows from join semidistributivity of ℓ݋ሺܵ/࣢ሻ 

that ܵ/࣢ satisfies (2C΄) and, therefore, since it is combinatorial, (2C). By Proposition 4.4, ܵ 

satisfies (2C΄). By Proposition 4.6, ܩௌ is neutral in ࣦࣤሺܵሻ; ሾܩௌ, ܵሿ ≅ ࣦࣤሺܵ/࣢ሻ and is therefore, 

distributive; ሾܧௌ, ௌሿܩ ൌ ࣦࣤሺܩௌሻ is a subdirect product of the subgroup lattices of its maximal 

subgroups, by Result 2.3, and so is distributive. Hence ࣦࣤሺܵሻ is distributive. Finally, ܧௌ ≅  ࣢/ௌܧ

and so is a tree. Thus the sufficient conditions in the theorem are satisfied. 

To prove the converse in the second case, we may apply the subdirect decomposition of 

ℓ݋ሺܵ/࣢ሻ stated in the first paragraph of the proof. All that needs to be additionally noted is that 

ℓ݋ሺܧௌሻ is a sublattice of ℓ݋ሺܩௌሻ. □ 

From the last statement of the corollary it follows that, even in the case of Clifford 

semigroups, join semidistributivity of ℓ݋ሺܵሻ does not in general imply neutrality of ܧௌ in the 

lattice, which by Result 3.4 is equivalent, in this situation, to constancy of all structure mappings 
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(in terms of the strong semilattice decomposition cited in §1). 

In a real sense, the second part of Theorem 5.4 reduces the question to the combinatorial 

case. Especially since in contrast with Clifford semigroups, in this case ܧௌ  is neutral in ℓ݋ሺܵሻ, 

providing a nice decomposition, it is worth stating it separately. 

 

Corollary 5.6. If ܵ is combinatorial, then ℓ݋ሺܵሻ is join semidistributive if and only if ܧௌ  is a tree, 

ࣦࣤሺܵሻ is distributive, and ܵ satisfies (2C): ܽ ↓	⊆ ௌܧ ∪ 〈〈ܽ〉〉 for all ܽ ∈ ܵ. 

In that event, ℓ݋ሺܵሻ is a subdirect product of ℓ݋ሺܧௌሻ and the lattices ࣦࣤሺܲሻ, running 

over the principal factors ܲ of ܵ. 

 

Proof. The first statement is the specialization of the first statement of the theorem, incorporating 

the results of Section 2. The second relies the fact that (2C) implies that ܧௌ  is neutral in ℓ݋ሺܵሻ, 

according to Result 3.4. □ 

 

Further elaboration of the structure of such semigroups proceeds similarly to that 

following Theorem 4.5 in [5]. We conclude our discussion of ℓ݋ሺܵሻ with an example. 

 

Example 5.7. For the semigroup ܶ constructed in Remark 4.9, ℓ݋ሺܶሻ is join semidistributive 

but ்ܩ  is not neutral. 

 

Proof. This is clear from the properties of ܶ that were stated there, applying Theorem 5.4. □ 

 

5.1. खሺࡿሻ for Clifford Semigroups 

In sharp contrast to the situation for ℓ݋ሺܵሻ, we shall see that even though (2΄) 

automatically holds in every Clifford semigroup, it is not true that ࣦሺܵሻ is join semidistributive if 

and only if the same is true for ࣦሺܧௌሻ and the maximal subgroups are locally cyclic. It is well 

known that every Clifford semigroup ܵ is (isomorphic to) the strong semilattice ܧௌ  of its maximal 

subgroups ܪ௘, ݁ ∈ ݂ ௌ. Forܧ ൒ ݁, the structure map ܪ௙ → ௘ܪ  is given by ݔ ↦  .ݔ݁

The combination of Propositions 5.8, 5.10, and 5.11 with Proposition 2.1 determines the 

Clifford semigroups for which the lattice of all inverse subsemigroups is join semidistributive. 

 

Proposition 5.8. Let ܵ be a Clifford semigroup. Then ࣦሺܵሻ is join semidistributive if and only if: 

(a) ࣦሺܧௌሻ is join semidistributive (as described in Proposition 2.1); 
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(b) Each subgroup is locally cyclic; 

(c) If an infinite sequence ݁଴ ൏ ݁ଵ ൏	൉൉൉ ݁௡ 	 ൉൉൉	 of idempotents of ܵ exists and ܽ଴, ܽଵ, … ܽ௡, … is a 

sequence of members of the associated subgroups ܪ௜ ൌ ௘೔, then ܽ଴ܪ ∈ 〈ܽ௜଴
ିଵܽ଴ ∶ ݅ ൒ 1〉. 

Here ܽ௜଴ denotes the image of ܽ௜ in ܪ଴ under the structure map ߶௜଴: ௜ܪ →  .଴ܪ

 

Proof. Condition (b) is equivalent to join semidistributivity of ࣦࣤሺܵሻ, by §2.2. To prove that (c) is 

necessary, suppose such a sequence is given. Let ܣ ൌ ሼܽଶ௜ ∶ ݅ ൒ 0ሽ, ܤ ൌ ሼܽଶ௜ାଵ ∶ ݅ ൒ 0ሽ and 

ܥ ൌ 〈ܽ௜
ିଵܽ௔ିଵ: ݅ ൒ 1〉. Note that ܽ௜

ିଵܽ௜ିଵ ∈ ݅ ௜ିଵ. Now for allܪ ൒ 0, ܽ௜ିଵ ൌ ܽ௜൫ܽ௜
ିଵܽ௜ିଵ൯, so 

ܣ ∨ ܥ ൌ ܤ ∨ ܣ But .ܥ ∩ ܤ ൌ ∅, so join semidistributivity of ࣦሺܵሻ implies that ܣ ⊂  ,In particular .ܥ

ܽ଴ ∈ Since ݁଴൫ܽ௜ .ܥ
ିଵܽ௜ିଵ൯ ൌ ൫ܽ௜

ିଵ∅௜଴൯൫ܽ௜ିଵ∅௜ିଵ,଴൯, then in the notation of (c), ܽ଴ ∈ 〈ܽ௜଴
ିଵܽ௜ିଵ,଴ ∶

݅ ൒ 1〉. But ܽ௜଴
ିଵܽ௜ିଵ,଴ ൌ ൫ܽ௜଴

ିଵܽ଴൯൫ܽ௜ିଵ,଴
ିଵ ܽ଴൯

ିଵ
 and ܽ଴଴ ൌ ܽ଴, so ܽ଴ ∈ 〈ܽ௜଴

ିଵܽ଴ ∶ ݅ ൒ 1〉, as required. 

To prove the converse, we apply Lemma 5.3 and the fifth and sixth paragraphs of the 

proof of Theorem 5.4. If ࣦሺܵሻ is not join semidistributive, there exist ܥ ,ܤ ,ܣ ∈ ࣦሺܵሻ, ܥ full, 

such that ܣ ∨ ܥ ൌ ܤ ∨ ܥ ് ሺܣ ∩ ሻܤ ∨  and since ܵ is a union of its maximal subgroups, there ;ܥ

again exists ܽ଴ ∈ ଴ܪ ൌ ௘బ, say, where ݁଴ܪ ∈ ሺܧ஺ ∩ ஼ሻܧ െ ஻; ܽ଴ܧ ∈ ଴ܽ ,ܣ ∉ ሺܣ ∩ ሻܤ ∨  ;ܥ

ܽ଴ ൌ ሺ݁଴ܽଵሻܿ଴ ൌ ܽଵܿ଴, where ܽଵ ∈ ଵܽ ,ܤ ∉ ሺܣ ∩ ሻܤ ∨ and ܿ଴ ܥ ∈ ଴ܪ ∩ Observe that ܿ଴ .ܥ ൌ

ሺ݁଴ܽଵሻିଵܽ଴ ൌ ܽଵ
ିଵܽ଴. 

Iterating this argument yields sequences as in (c) with ܽ௜ିଵ ൌ ሺ݁௜ିଵܽ௜ሻܿ௜ିଵ ൌ ܽ௜ܿ௜ିଵ and 

ܿ௜ିଵ ൌ ܽ௜
ିଵܽ௜ିଵ ∈ ݅ for each ,ܥ ൒ 1. Observe that ܽ௜଴

ିଵܽ଴ ൌ ܽ௜
ିଵܽ଴ ൌ ܽ௜

ିଵ݁௜ିଵ݁௜ିଶ ∙∙∙ ݁ଵܽ଴ ൌ

൫ܽ௜
ିଵܽ௜ିଵ൯൫ܽ௜ିଵ

ଵ ܽ௜ିଶ൯ ∙∙∙ ሺܽଵ
ିଵܽ଴ሻ ∈ Then the consequence of (c), that ܽ଴ .ܥ ∈ 〈ܽ௜଴

ିଵܽ଴ ∶ ݅ ൒ 1〉, 

yields the contradiction ܽ଴ ∈  □ .ܥ

 

It is clear from this proposition that the remaining focus need only be on ܰ-chains of 

groups, by which we mean Clifford semigroups over the semilattice ܰ ൌ ሼ0 ൏ 1 ൏ 2 ∙∙∙ሽ. In the 

sequel, we shall take as the default that ܵ is the semilattice of groups ܣ௜, having identity 

element ݁௜, with structure mappings ߶௝௜ ∶ ௝ܣ → ݆ ,௜ܣ ൒ ݅ ൒ 0. It is useful to abbreviate ܣ௝߶௝௜ to 

 .௝௜ܣ

A necessary structural condition for ࣦሺܵሻ to be join semidistributive is provided by the 

following. Remark 5.12 demonstrates that it is not in general sufficient. 

 

Corollary 5.9. Let ܵ be an ܰ-chain of (locally cyclic) groups, as above. If ࣦሺܵሻ is join 

semidistributive, then ⋂ ௝௜௝ஹ௜ܣ ൌ ሼ݁௜ሽ, for all ݅ ൒ 0. Hence there exists an ܰ-chain ܵ of groups 
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for which ࣦሺܧௌሻ and ࣦࣣሺܵሻ are each distributive, but ࣦሺܵሻ is not join semidistributive. 

 

Proof. Clearly, it suffices to prove the first statement for ݅ ൌ 0. Suppose the conclusion is false, 

and let ܽ଴ be a nonidentity element in the intersection. Then for each ݆ ൒ 1, there exists ௝ܽ ∈ ௝ܣ  

such that ௝ܽ଴ ൌ ܽ଴, in the notation of Proposition 5.8. Clearly, criterion (c) of that proposition is 

not met. 

To prove the second, let ܵ be the ܰ-chain of groups ܰ ൈ  is the cyclic group ܩ where ,ܩ

ሼ1, ܽሽ. Each structure map is a bijection, so the necessary condition is not satisfied. □ 

 

For a given sequence of idempotents, criterion (c) depends only on the subgroup ܪ଴ and 

the structural mappings ߶௜଴, that is, in any given ܰ-chain of groups we may focus on the 

subgroup ܣ଴. We consider the two possibilities for ܣ଴, starting with the periodic one. 

Recall from §2.2 that a locally cyclic group is periodic if and only if it is (isomorphic to) a 

subgroup of ܈/ۿ. For ܽ ∈  let ,݌ denote by തܽ its image in the quotient group. For any prime ,ۿ

 .݌ consisting of those numbers whose denominator is a power of ۿ ௣ be the subgroup ofܩ

Then ܩ௣തതത is a quasi-cyclic ݌-group (݌-Prüfer group). 

 

Proposition 5.10. Let ܵ be an ܰ-chain of groups, as above. If ܣ଴ is periodic, then criterion (c) 

of Proposition 5.8 is met if and only if ⋂ ௡଴௡ஹ଴ܣ 	ൌ ሼ݁଴ሽ. 

If ܣ଴ is finite cyclic or is quasicyclic, this is the case if and only if ܣ௡଴ ൌ ሼ݁଴ሽ for some 

݊ ൐ 0. In general, that need not be so. 

 

Proof. We represent ܣ଴ as a subgroup of ܈/ۿ, as above, so ݁଴ ൌ 0. Necessity was proven 

above. Conversely, assume that ⋂ ௡଴௡ஹ଴ܣ 	ൌ ሼ0ሽ. For any given prime ܩ ,݌௣തതത satisfies the 

descending chain condition on subgroups so, for all sufficiently large ݊, the terms of the 

sequence ܣ௡଴ are disjoint from ܩ௣തതത, that is, ݌ does not divide the denominator of any fraction in 

 by repeating this ,ݐ ௡଴ (when expressed in lowest terms). Hence, given any positive integerܣ

argument for all the prime divisors of ݐ, there exists ܰ ൐ 0 such that for all ݇/ℓ ∈  ,ே଴ܣ

expressed as rationals in lowest terms, ሺݐ, ℓሻ ൌ 1. 

Now choose a sequence ܽ଴, ܽଵ, …. and represent ܽ଴ as ݐ/ݏതതതത and each ܽ௜଴ as ݇ప/ℓపതതതതതതത. 

Choose ܰ as above. Working first in ۿ, ℓேሺ݇ே/ℓே െ ሻݐ/ݏ ൌ ݇ே െ ℓேݐ/ݏ and, choosing integers 

ܽ, ܾ such that ܽℓே ൅ ݐܾ ൌ 1, ܽℓேሺ݇ே/ℓே െ ሻݐ/ݏ ൌ ܽ݇ே െ ܽℓேݐ/ݏ ൌ ܽ݇ே െ ሺ1 െ ݐ/ݏሻݐܾ ൌ ܽ݇ே ൅

ݏܾ െ therefore, ܽ଴ ,܈/ۿ In .ݐ/ݏ ൌ െܽℓேሺܽே଴ െ ܽ଴ሻ ∈ 〈ܽே଴ െ ܽ଴〉, so (c) is satisfied. 
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That ܣ௡଴ ൌ ሼ0ሽ for some ݊ in cyclic and quasicyclic cases is immediate from the 

Descending Chain Condition (DCC) on subgroups. To demonstrate that this is not always so, let 

଴ܣ ൌ ݊  be a listing of the primes in ascending order, and for each	௡ሻ௡ஹଵ݌let ሺ ,܈/ۿ ൒ 1, let ܣ௡  

be the image in ܈/ۿ of the subgroup ሼ݇/ℓ ∈ ۿ ∶ ,ଵ݌ ,ଶ݌ … ,  ௡ିଵ via theܣ ௡ inܣ ௡|ℓሽ. Embed݌

inclusion mapping. Then ⋂ ௡଴௡ஹ଴ܣ ൌ ሼ0ሽ but no ܣ௡଴ ൌ ሼ0ሽ. □ 

Again recall from §2.2 that a locally cyclic group is torsion-free if and only if it is 

(isomorphic to) a subgroup of ۿ. We assume such a representation in the next result. 

 

Proposition 5.11. Let ܵ be an ܰ-chain of groups, as above. If ܣ଴ is torsion-free, then criterion 

(c) of Proposition 5.8 is met if and only either (i) ܣ௡଴ ൌ ሼ0ሽ for some ݊ ൐ 0 or (ii) for every 

positive integer ݀, there exists ݊ ൐ 0 such that ݀ divides the index |ܣ଴ ∩ ܈ ∶ ௡଴ܣ ∩  .|܈

 

Proof. To prove necessity, suppose no ܣ௡଴ is ሼ0ሽ. Then no ܣ௡଴ ∩ ⋂ is ሼ0ሽ and so ܈ ሺܣ௡଴ ∩௡ஹ଴

ሻ܈ ൌ ሼ0ሽ, by Corollary 5.9. Put ܣ௡଴ ∩ ܈ ൌ ܾ௡܈, where each ܾ௡ ൌ ଴ܣ| ∩ :܈ ௡଴ܣ ∩  Note that .|܈

ܾ௡|ܾ௡ାଵ for each ݊. Let ݀ be any positive integer and put ܽ଴ ൌ max௡ஹଵ 	gcdሺ݀, ܾ௡ሻ. From the 

divisibility property of the sequence ሺܾ௡ሻ௡ஹଵ it follows that gcdሺ݀, ܾ௡ሻ|ܽ଴ for all ݊. Hence each 

linear congruence ܾ௡ݔ ≡ ܽ଴	ሺmod	݀ሻ has a solution ݔ௡. Now ܾ௡ݔ௡ ∈ ௡଴ܣ ∩  and so there ,܈

exists ܽ௡ ∈ ௡ such that ܽ௡଴ܣ ൌ ܾ௡ݔ௡. Thus ݀	|	ܽ௡଴ െ ܽ଴ for each ݊. By criterion (c), ܽ଴ ∈

〈ܽ௡଴ െ ܽ଴〉, so ݀	|	ܽ଴ and, therefore, ݀ ൌ ܽ଴. Thus ݀ ൌ gcdሺ݀, ܾ௡ሻ for some ݊, that is, ݀	|	ܾ௡, as 

required. 

Conversely, choose a sequence ܽ௡ as in (c). In case (i), the outcome is clear. In case (ii), 

we first suppose that ܽ଴ ∈ Let ܽ௡଴ .܈ ൌ ݇௡/ℓ௡, for ݊ ൒ 1, written in lowest terms with ݇௡ ൒ 1. 

Then for each ݊ ൒ 1, ݇௡ ∈ ௡଴ܣ ∩ By (ii), there exists ݊ such that ݇௡ .܈ ൐ 1, so that ݇௡ െ ܽ଴ℓ௡ ്

0. Again by (ii), there exists ݉ such that ݇௡ െ ܽ଴ℓ௡	|	݇௠. It follows that ሺ݇௡ െ ܽ଴ℓ௡, ݇௠ െ

ܽ଴ℓ௠ሻ	|	ܽ଴. (Since ሺ݇௠, ℓ௠ሻ ൌ 1, ሺ݇௠, ݇௠ െ ܽ଴ℓ௠ሻ ൌ ሺ݇௠, ܽ଴ℓ௠ሻ	|	ܽ଴.) Hence there exist ܽ, ܾ ∈  ܈

such that ܽ଴ ൌ ܽሺ݇௡ െ ܽ଴ℓ௡ሻ ൅ ܾሺ݇௠ െ ܽ଴ℓ௠ሻ ൌ ܽℓ௡ሺܽ௡଴ െ ܽ଴ሻ ൅ ܾℓ௠ሺܽ௠଴ െ ܽ଴ሻ ∈ 〈ܽ௜଴ െ ܽ଴〉, as 

required for (c). 

In case ܽ଴ ൌ ݐ/ݏ ∉ ,଴ܽݐ apply the above argument to the sequence ,܈ ,ଵܽݐ …. Thus 

଴ܽݐ ∈ ௜଴ܽݐ〉 െ  □ .gives the required inclusion once more ݐ ଴〉 and dividing byܽݐ

 

Example 5.12. The necessary condition found in Corollary 5.9 is not sufficient. Case (ii) in 

Corollary 5.11 is not vacuous. 
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Proof. In each example, ܣ௡ ൌ ௡,௡ିଵ߶ݔ for all ݊. For the first one, let ܈ ൌ ݔ ,ݔ3 ∈  ௡, so thatܣ

଴ܣ| ∶ |௡଴ܣ ൌ 3௡ for each ݊ ൒ 1. Now ⋂ ௡଴௡ஹ଴ܣ ൌ ሼ0ሽ but (ii) of the last corollary fails to hold. For 

the second one, let ݔ߶௡,௡ିଵ ൌ ሺ݊	 ൅ 1ሻݔ ,ݔ ∈ ଴ܣ| ௡, so thatܣ ∶ |௡଴ܣ ൌ ሺ݊	 ൅ 1ሻ! for each ݊ ൒ 1. 

Clearly, the resulting semigroup ܵ satisfies (ii) of the last corollary, and so ࣦሺܵሻ is join 

semidistributive. □ 

 

6. Lower Semimodularity Revisited 

A lattice ܮ is lower semimodular if, whenever ܽ ∨ ܾ ≻ ܽ in ܮ, then ܾ ≻ ܽ ∧ ܾ. This 

property is preserved by interval sublattices, subdirect products, and complete lattice morphisms 

[13, Theorem 1.7.6]. In [5, Theorem 4.2], neutrality of ܧௌ  was used to obtain decompositions of 

ࣦሺܵሻ and ℓ݋ሺܵሻ in the case that the respective lattice was lower semimodular. Now we use 

neutrality of ܩௌ to exhibit an alternative set of necessary and sufficient conditions for lower 

semimodularity, along with alternative decompositions. 

 

Corollary 6.1. If ࣦሺܵሻ is lower semimodular, then ܵ is cryptic and ܩௌ  is a neutral element of 

ࣦሺܵሻ. Hence ࣦሺܵሻ is a subdirect product of the lower semimodular lattices ࣦሺܩௌሻ and ࣦࣤሺܵ/࣢ሻ, 

where ܩௌ  is a Clifford semigroup and ܵ/࣢ is combinatorial. Moreover, ࣦሺܩௌሻ is itself a 

subdirect product of ࣦሺܧௌሻ and ࣦࣤሺܩௌሻ. 

The entirely analogous statement holds for ℓ݋ሺܵሻ. 

 

Proof. The first statement (similarly, its analogue for ℓ݋ሺܵሻ) is immediate from Theorem 4.10, 

when combined with [5, Proposition 4.1], Result 3.2, and Propositions 4.3 and 4.7. The second is 

an application of [5, Theorem 4.2]. □ 
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