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Semidistributive Inverse Semigroups, II 

 

Kyeong Hee Cheong and Peter R. Jones 

 

Abstract 

The description by Johnston-Thom and the second author of the inverse 

semigroups S for which the lattice S  of full inverse subsemigroups of S is join 

semidistributive is used to describe those for which (a) the lattice S  of all inverse 

subsemigroups or (b) the lattice ℓ S  of convex inverse subsemigroups have that 

property. In contrast with the methods used by the authors to investigate lower 

semimodularity, the methods are based on decompositions via GS, the union of the 

subgroups of the semigroup (which is necessarily cryptic). 

 

This article is a continuation both of [8], by Johnston-Thom and the second author, on 

inverse semigroups  for which the lattice  of full inverse subsemigroups of  is either 

meet or join semidistributive, and [5], by the authors, on inverse semigroups  for which either 

the lattice  of all inverse subsemigroups of  or the lattice ℓ  of all convex inverse 

subsemigroups of  is lower semimodular. 

As remarked in [5], for most common lattice-theoretic properties, including upper 

semimodularity and meet semidistributivity—and thus modularity and distributivity—the 

imposition of the property on either  or ℓ  restricts the underlying semilattice of 

idempotents  to such an extent that only inverse semigroups of little interest remain. However, 

there are some exceptions. It is known that for semilattices in general, lower semimodularity and 

join semidistributivity of these lattices each correspond to some interesting and nontrivial classes 

of semilattices.  

In the cited article, the authors described the inverse semigroups for which either of the 

cited lattices is lower semimodular, by means of an analysis of the role of  in decomposing 

 (resp., ℓ ) into a subdirect product of  (resp., ℓ ) and . This approach 

works only in part when applied to join semidistributivity. However, we show in this article that the 

convex inverse subsemigroup , comprising the union of its subgroups, plays a quite 

analogous role. (We should remark that  is not in general an inverse subsemigroup at all, but 

join semidistributivity implies that this is indeed so.) 

For , we show in Theorem 5.2 that join semidistributivity implies that  is a neutral 
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element in the lattice , decomposing it into a subdirect product of the interval sublattices 

 and , ≅ / . Conversely, if these two lattices are join semidistributive and a 

further simple condition is satisfied, then  again has that property. Given our prior results on 

lattices of full inverse subsemigroups, this essentially reduces the general study to that of Clifford 

semigroups. Rather surprisingly, that study turns out to be quite nontrivial. 

For ℓ ,  need not be neutral and so there is no such decomposition. Nevertheless, 

the entirely analogous necessary and sufficient conditions hold (see Corollary 5.5). The proof 

proceeds via an alternative set of conditions, found in Theorem 5.4. In contrast to the situation for 

, Clifford semigroups behave very amenably: ℓ  is join semidistributive if and only if  

is a tree and each subgroup is locally cyclic. 

Finally, it is shown that  provides an alternative decomposition of the lattices  and 

ℓ  in the case of lower semimodularity (cf. the use of  in [5]). 

 

1. Preliminaries 

We use [6] as a general reference on lattice theory. A lattice is join semidistributive if 

whenever ∨ ∨ , then ∨ ∨ ∧ . Meet semidistributivity is defined dually. Each 

is preserved by sublattices and direct products; each is clearly a consequence of distributivity. 

The following terms are useful in the analysis of lattice decompositions (see [6]). An 

element  of a lattice  is distributive in  if ∨ ∧ ∨ ∧ ∨ . If  is a complete 

lattice then  is completely distributive if the binary meets may be replaced by arbitrary ones. 

Define dual distributivity and complete dual distributivity in the obvious way. The element  

separates  if ∧ ∧  and ∨ ∨  together imply . It is neutral if it is 

distributive, dually distributive and separating. Clearly,  is neutral if and only if the map 

→ ∧ , ∨  embeds  in the (subdirect) product of the principal ideal ↓ and the 

principal filter ↑. 

Next we present brief background on ℓ  and refer the reader to [5] (or to [3] and [4]) 

for more details. The natural partial order on an inverse semigroup is defined by  if  

for some ∈ . We use [11] as the general reference on inverse semigroups, where many 

properties of the natural partial order may be found, for instance. 

An inverse subsemigroup of  is convex (with respect to this order) if whenever it 

contains  and , with , then it contains the interval , c ∈ : . The 

convex inverse subsemigroups of  form a complete lattice, ℓ , with the empty 

subsemigroup as its least element. The lattice of all inverse subsemigroups of  is denoted 
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. If ⊆ , we denote the inverse subsemigroup that it generates by 〈 〉 and the convex 

inverse subsemigroup that it generates by 〈〈 〉〉. If , , … ,  we may instead write 

〈 , , … , 〉 and 〈〈 , , … , 〉〉, respectively. If , ∈ ℓ , we denote their join in  by 

∨  and their join in ℓ  by ⋄ 〈〈 ∨ 〉〉. 

A subset  of  is an order ideal if ↓	⊆ , where ↓	 ∈ :  for some 

	 ∈ 	  (and if , we may write ↓). Clearly, if an inverse subsemigroup is also an order 

ideal, then it is convex. The following result will find frequent application. 

 

Result 1.1 ([3, Proposition 2.2]). For any inverse subsemigroup  of an inverse semigroup, 

〈〈 〉〉 is the union of the intervals , , , ∈ , . Hence 〈〈 〉〉 〈〈 〉〉. 

 

For any inverse semigroup , its semilattice  of idempotents is an order ideal and so 

belongs to ℓ . Hence the lattice ℓ ∅,  is an ideal in the lattice ℓ . An inverse 

subsemigroup is full if it contains . Each such subsemigroup is therefore also an order ideal. 

Thus, in a complementary fashion, the full inverse subsemigroups of  form the filter ,  in 

the lattice ℓ . Notice that for any ∈  and ∈ ℓ , ⋄ ∨ , since ∨  is 

again full. 

Note that since any group is unordered under the natural partial order, its convex inverse 

subsemigroups comprise its subgroups together with its empty subsemigroup, which acts as an 

adjoined zero. 

An inverse semigroup is combinatorial (also termed aperiodic) if Green’s relation  is 

the identity relation, equivalently, each of its subgroups is trivial. We call a subgroup isolated if it 

comprises an entire -class, and thus an entire -class. An inverse semigroup  is -unitary if 

∈  implies ∈ . 

The -classes of any semigroup are partially ordered by setting  if ∈ . 

With each -class  of an inverse semigroup  is associated its principal factor , which is 

either a 0-simple semigroup or, in case  is the minimum ideal (the kernel of ), a simple 

semigroup. See [11]. 

A 0-simple semigroup is completely 0-simple if every nonzero idempotent is minimal 

among such idempotents. The completely 0-simple inverse semigroups are the Brandt 

semigroups. Denote by  the combinatorial Brandt semigroup with  nonzero idempotents. 

It is well known (and easily verified) that  is a chain, is combinatorial and E-unitary, 

and its maximum group quotient is infinite cyclic. 
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The strong semilattice construction will be required in the sequel. Let  be a semilattice, 

∈  a family of disjoint semigroups and , : →  a transitive family of 

homomorphisms (“structure mappings”) such that , 1  for each . Then ⋃ ∈  is a 

semigroup under the multiplication , , , ∈ , ∈ . 

 

2. Subsemilattices and Full Inverse Subsemigroups 

We review the relevant properties of the key building blocks common to both  and 

ℓ .  

 

2.1. Subsemilattices 

Proposition 2.1. Let E be a semilattice. Then: 

(1) ℓ  is join semidistributive if and only if  is a tree, that is, ↓ is a chain for each of its 

elements ;  

(2)  is join semidistributive if and only if for any infinite ascending chain 	 	in E, if 

for each 0 there exists ∈ ,  such that , then  for some 

0; 

(3) If  is a chain, then  is distributive and hence join semidistributive; 

(4) There exists a semilattice  that is not a chain, but for which  is join semidistributive. 

 

Proof.  (1) This was proved by Adaricheva [1]. 

 

(2) To prove necessity, suppose , , … , , , … are as stated. Let , , , … , 

, , , … , , , … . From the equations  it is clear that ∨ ∨ . 

But ∩ ∅ and ∨ , so join semidistributivity fails. 

Conversely, suppose  is not join semidistributive. Then there exist subsemilattices 

, ,  such that ∨ ∨ ∩ ∨ . Thus there exists ∈  such that ∈ ∨  

but ∉ ∩ ∨ , whence there exist ∈ , ∈ , such that . Now there exist 

∈ , ∈ , such that 	 . Iterating this argument yields sequences , , … and 

, , … satisfying the hypotheses in the proposition. But since ∉ , …  for any 0. 

(3) In a chain, any subset is a subsemilattice. 

(4) Let Y be the poset that is the disjoint union of the countably infinite sets , , …  

and , , … , where  if and only if , and if and only if . Clearly, ⋯, 

and it is easily verified that for all ∈ , , ∈ , , , . Testing the criterion in 
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(2), the only infinite ascending chains have the form 	 , where ⋯; and then, 

other than  itself, only  satisfies the equation . Now  and so the 

criterion is satisfied. □ 

In contrast to the situation for , where meet semidistributivity is again equivalent to 

distributivity [8], examination of the three-element nonchain semilattice  reveals that  is 

not meet semidistributive. So meet distributivity implies that  is a chain. The same example 

shows that the same is true in the case of ℓ . In fact, in that case the chain can have at most 

two elements [2, Theorem 2.1]. 

 

2.2. The Lattice of Full Inverse Subsemigroups 

Result 2.2 ([8]). Let  be an inverse semigroup. Then  is join semidistributive if and only 

if it is distributive. 

 The inverse semigroups whose lattice of full inverse subsemigroups is distributive were 

determined in [10], proceeding as follows. (It should be noted that the definition of principal 

factors used in the article [10] varied slightly from the standard one introduced in §1.) 

 

Result 2.3 ([9]). Let S be an inverse semigroup. Then  is isomorphic to a subdirect 

product of the lattices of full inverse subsemigroups of its principal factors. 

The focus may therefore be shifted to the simple and 0-simple cases. It is a classical 

result (see [12, Theorem 1.2.3]) that the subgroup lattice of a group is distributive if and only if 

the group is locally cyclic, that is, every finitely generated subgroup is cyclic. Clearly, such a 

group is abelian. It is apparently well known that a locally cyclic group is isomorphic either to a 

subgroup of Q, if torsion-free, or to a subgroup of Q/Z, if periodic (the mixed case being 

impossible). 

In the following, an isolated subgroup is one that comprises an entire -class. We say 

that  is archimedean in S if for any element  of  such that , and for any 

idempotent  of ,  for some positive integer . 

 

Result 2.4 ([10]).  Let  be an inverse semigroup. 

1) If S is completely 0-simple (but not a 0-group), then  is distributive if and only if ≅ . 

2) If S is 0-simple, but not completely 0-simple, and  is distributive, then  has no zero 

divisors and ≅ 0 , where 0 is simple. 

3) If S is simple (but not a group), then  is distributive if and only if: 
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(a)  is locally cyclic for every isolated subgroup  of ; 

(b) Every nontrivial subgroup of  is isolated; 

(c)  is archimedean in  and  is E-unitary (equivalently, the poset  is a chain for 

any -class  of ). 

 

The bicyclic semigroup is an example of a (bisimple) inverse semigroup whose lattice of 

full inverse semigroups is distributive. 

 

3. Decompositions Based on  

In this section, we review the results of [5] relevant to this article. Throughout the sequel, 

S will be an inverse semigroup. 

 

Result 3.1. If …  for some , … , ∈ , , … , ∈ , then 	 . Hence 

∨ 	 ∪ ↓ for any ∈ . The subsemigroup  separates  and, therefore, also 

separates ℓ . 

 

Result 3.2. The following are equivalent: 

(1)  is distributive in , that is, ∨ ∩ ∨ ∩ ∨  for all , ∈ ; 

(2) For all ∈ , ↓⊆ ∪ 〈 〉; 

(3) For every ∈ , ∨ ∪ . 

 

Denote by (1C) to (3C) the analogous statements with respect to ℓ . Then they are 

also equivalent. 

 

Result 3.3. The following are equivalent: 

(1΄)  is dually distributive in , that is, ∨ ∨  for all , ∈ ;  

(2΄) For all ∈ , ↓⊆ ∪ 〈 〉; 

(3΄) For all ∈ , ∨ ⊆ ∪ . 

 

Denote by (1C΄) to (3C΄) the analogous statements with respect to ℓ .If  is a tree, then 

they are also equivalent. In fact the implications (2C΄) ⇔	(3C΄) ⇔ (1C΄) hold in any inverse 

semigroup. 
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For the purposes of this article, the hypothesis that  be a tree in the second part of the 

proposition is not restrictive. The three results above combine to yield the following result. 

 

Result 3.4. For any inverse semigroup , neutrality of  in  (resp., ℓ ) is equivalent to 

property (2) (resp., (2C)) of Result 3.2, in which case the lattice is a subdirect product of  

with  (resp., ℓ ). 

 

4. Decompositions via  

In the next section it will be shown that if  is join semidistributive, then  satisfies 

(2΄), and analogously for ℓ . As the first result of this section indicates, in either case  is 

cryptic, that is,  is a congruence, and so  , the union of the subgroups of , is a convex 

inverse subsemigroup of . 

The first purpose of this section is to develop criteria for , paralleling those for  , 

aimed at investigating neutrality of  in the respective lattices, with the aim of reducing the 

general study to the restricted cases of Clifford semigroups and of combinatorial inverse 

semigroups. This aim will be accomplished in the case of join semidistributivity of , where 

decompositions based on  do not in general exist. While the new decomposition does not hold 

for join semidistributivity of ℓ , many of the results in this section will nevertheless be 

applicable. Thus the second purpose of this section is to provide an in-depth investigation along 

the lines of that for , with a view to application in future research on these topics. 

 

Proposition 4.1. An inverse semigroup  is cryptic if and only if (a)  is an (inverse) 

subsemigroup of , and if and only if (b)  is an order ideal of . In that event, /  is 

combinatorial. 

Hence any inverse semigroup satisfying (2C΄) (and thus any satisfying (2΄)) is cryptic. 

 

Proof. We include a proof of the equivalence of crypticity with (a) for completeness. Suppose 

∈  and let , , ∈ , with . Then since  is a right congruence, , so that 

	 ∈ ∩ . Now , where 

	 ∈  and ∈ , since . Hence ∈  for some ∈ . Thus 

, that is, . Conversely, if  is cryptic, suppose ∈ , ∈ , where 

, ∈ . Then ∈ . 

That (b) follows from (a) is clear, since if ∈  and , then  for some 
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∈ ⊆ . Conversely, suppose  satisfies (b), and let ∈  and ∈ , where , ∈ . 

Then  and , so , ∈  and in fact since , , ∈ . Since 

, ∈ ⊆ . Hence  satisfies (a). 

That /  is combinatorial is also well known and easily verified. Finally, if  satisfies 

(2C'), then for all ∈ , ↓∈ , that is,  is an order ideal. So  is cryptic. □ 

We now expand on the general properties of cryptic inverse semigroups proved in 

Proposition 4.1. For a subset  of ,  will denote either the subset of  comprising the 

union of the -classes , ∈ , or the image of  in the quotient semigroup / , where the 

appropriate choice should be clear from the context. An equation such as  has the 

same meaning in either context. 

Let  denote the complete ∨-homomorphism of  upon /  that is induced by 

the quotient homomorphism → / . Since any homomorphism of inverse semigroups 

respects the natural partial order,  restricts to a complete ◊-homomorphism of ℓ  upon 

ℓ / . Clearly, / , so  maps ,  upon / ,  upon / , and 

further restricts to an isomorphism of  upon / . 

The following lemma will find repeated use. The first part of the proposition that follows it 

is an analogue of Result 3.1. 

 

Lemma 4.2. In any inverse semigroup , if , then , where ∈ 	 . Thus 

if ∈ , ⊆ . For any ∈ , ↓	∩ . 

 

Proof. The first two statements are easily verified. To prove the last one, suppose ∈  and 

∈ . Then ∈ . 

 

Proposition 4.3. For any cryptic inverse semigroup  and any ∈ ,  

∨ ∪ ↓  

Since  is full, ∨  is an order ideal of  and ⋄ ∨ . 

The restriction of the join-homomorphism  to the filter ,  of  is a complete 

isomorphism upon / . 

 

Proof. Let ∈  and ∈ ∨ . If ∉ , then … , where each ∈ , 

for some ∈ , and each ∈ . So … … ∈ , applying the first 
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statement of Result 3.1. Therefore, ∨ ⊆ 	∪ ↓ . To obtain the reverse inclusion, apply 

the second statement of Lemma 4.2 to ↓: ↓ ⊆ ↓ . In fact we have also 

shown that ∨ , and the dual equation is proven similarly. 

As noted above,  maps ,  onto / . Now by Lemma 4.2, if ⊆ , then 

, and so  obviously is injective and preserves intersections. □ 

 

By Proposition 4.1, (2C΄) (and thus (2΄)) implies crypticity. The next proposition delineates 

the consequences of these properties that are in addition to crypticity. However, we state it in 

terms of the equivalent properties (3C΄) and (3΄). (The omitted properties (4C΄) and (4΄) arose in 

[5] but are not required here.) 

 

Proposition 4.4. For a cryptic inverse semigroup , the following are equivalent to the property 

(3΄): 

(5΄) /  satisfies (3); 

(6΄) For all A∈(S), ∨ ∪  (cf. Proposition 4.3). 

 

In that event /  is isomorphic to a subdirect product of /  and / , and thus 

of  and , . 

The entirely analogous statements hold with respect to ℓ . 

 

Proof. (3΄) ⇒	(5΄). Let ∈ /  and denote by  the complete pre-image of  in . Then 

/ ∨ ∨ ⊆ ∪ / ∪ . 

(5΄) ⇒	(6΄). Suppose /  satisfies (3). Let ∈ . Now ∨ / ∨

/ ∪  in / . In , therefore, ∨ ⊆ ∪ . 

(6΄) ⇒	(3΄). Let ∈ . Applying Result 3.1 in conjunction with (6΄) and the final 

statement of Lemma 4.2, we obtain  

∨ ∨ ∩ ∨ ∪ ↓ ∩ ∪ ⊆ ∪ ↓	∩ ∪ 	

The final statements for  follow from Result 3.4 and the final statement of 

Proposition 4.3.  

The proof in the context of ℓ  is essentially identical. □ 

 

From Result 2.4 it follows that in order for  to satisfy any of the lattice-theoretic 

properties considered therein, any nontrivial subgroup of  must be isolated; equivalently, any 
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nontrivial -class must be a subgroup. This property is not a consequence of (2΄) since any 

completely 0-simple inverse semigroup satisfies the latter property. 

 

Lemma 4.5. Suppose  is an isolated subgroup of an inverse semigroup  and ∈ . If 

	 , for some , … , ∈ , then 	 , where  is the idempotent in  

and each ∈ . 

 

Proof. By the classical result of Hall [7], whenever any equation  holds in a regular 

semigroup, then ̅ ̅ , where for each , ̅ , and ̅ . Since  is an entire 

-class, each ̅ ∈  and so equals . 

 

The square brackets in (S4), (S5), and (S7) of the next proposition indicate alternative 

readings, which are proven to be equivalent. (Join distributivity implies complete join distributivity 

due to the finitariness of the operations.) 

 

Proposition 4.6. The following are equivalent for a cryptic inverse semigroup : 

 

(S1) Every nontrivial subgroup of  is isolated; 

(S2) ∪  for any ∈ ; 

(S3) ∨ ∪ ↓ for all ∈  (cf. Proposition 4.3); 

(S4)  is [completely] distributive within ; 

(S5) The map : → /  is a (complete) homomorphism; 

(S6)  is dually distributive within ; 

(S7)  separates  ℓ . 

 

Together, (S4), (S6), and (S7) imply that  is a neutral element of . 

 

Proof. (S1) ⇒	(S2). This is clear from the triviality of -classes that are not subgroups. 

 

(S2) ⇒	(S3). Let ∈ . By Proposition 4.3, ∨ ∪ ↓ . By (S2), ↓ ⊆

∪ ↓. 

 

(S3) ⇒	(S4). Any full inverse subsemigroup is an order ideal, so (S3) implies that for any 

∈ , ∨ ∪ , from which complete distributivity is clear. 
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(S4) ⇒	(S5). Let ∈  be a family of inverse subsemigroups of , and suppose 

∈ ⋂ ∈ , that is, for each ∈ ,  for some ∈ . Put . Now if ∈ , 

then ∈  for all , so that ∈ ⋂ ∈ . So suppose otherwise. By Lemma 4.2, 

∈ ∨ ⋂ ∨∈ ∪ ⋂ ∨∈ , the last equality holding by Proposition 4.3, in the 

same fashion as in the previous paragraph. 

Hence , where since ∉ , ∈ ↓ for each , applying Result 3.1. But  for 

each , so by the final statement of Lemma 4.2, ∈  for each . So again ∈ ⋂ ∈ . 

This yields one of the necessary containments, and the other is clear. 

 

(S5) ⇒	(S1). Suppose  in  and , ∉ . Put 〈 〉, 〈 〉 (and refer to §1 

for properties of monogenic inverse semigroups needed in the remainder of the proof). Since 

 and  is a congruence, ∩ , the last equality following from (S5). 

Thus the intersection of ∩  with  is nontrivial. But | | 1 in  and | | 1 in 

. Hence . 

 

Remark. Only the finitary version of (S5) was required in the last step. Since the finitary version 

of (S4) ⇒	(S5) clearly holds, the alternative versions of those two properties have now also been 

proven equivalent. 

 

(S1) ⇒	(S6). Let , ∈ , and let  be subgroup of . Applying Lemma 4.5, we 

obtain ∩ ∨ ∩ ∨ ∩ , from which the equation ∩ ∨ ∩ ∨

∩  is an immediate consequence. 

 

(S6) ⇒	(S1). Suppose that  in , and again put ∨ 〈 〉, ∨	〈 〉. By 

Lemma 4.2, ∈ , where .If , then , so assume otherwise. 

Now ∈ ∩ ∨ ∩ ∨ ∩ , applying (S6). So 	 , 

where each term may be assumed to be a nonidempotent in ∩ ∪ ∩  and, without 

loss of generality, ∈ , say. Note that  and so ∈ . Now ∈ 〈 〉 and this time 

a contradiction is reached, since | | 1 in 〈 〉. 

 

(S3) ⇒	(S7). We shall prove that (S3) implies  separates . Let , ∈  and 

suppose ∨ ∨  and ∩ ∩ . From the second equation it follows that 
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. Let ∈ . Clearly, if ∈ , then ∈ . Otherwise, by (S3), ∈ ↓. But then 

∈ , for some ∈ . 

 

(S7) ⇒	(S1). We shall prove this implication under the assumption that  separates 

ℓ . Then these last two implications prove the equivalence of the alternative readings. 

 

Suppose  in  and , ∉ . Once more, ∨ 〈 〉 ∨ 〈 〉, and so ∨ 〈〈 〉〉

∨ 〈〈 〉〉. Next we need to analyze further the nontrivial subgroups of 〈〈 〉〉. Suppose ∈

, ∈ , and ∈ 〈〈 〉〉. Then , for some , ∈ 〈 〉 and nonzero integer . 

Thus 	 . But for every integer , ∈ , and so . Recalling from 

§1 the description of the idempotents of 〈 〉, it follows that  for all ∈ 〈 〉. In particular, 

 and so equality holds. Thus ∈ 〈 〉. We have shown that ∩ 〈〈 〉〉

∩ 〈 〉 ∪ 〈〈 〉〉. Note that 〈〈 〉〉 〈〈 〈 〉〉〉, by Result 1.1. 

There are two cases to consider. First, if no power of a lies in GS , then 〈 〉 is 

combinatorial (again, see §1) and ∩ 〈〈 〉〉 〈〈 〈 〉〉〉. Since  is cryptic,  for every 

integer , and so the corresponding equation also holds for 〈〈 〉〉. In fact any idempotent of 〈 〉 

is -related to, and thus equal to, the corresponding idempotent of 〈 〉, so that 〈 〉 〈 〉. 

Hence ∩ 〈〈 〉〉 ∩ 〈〈 〉〉. So (S7) implies that 〈〈 〉〉 〈〈 〉〉. 

If ∈ , say, ∈ , then  contains , the kernel of 〈 〉, the only potentially 

nontrivial subgroup of 〈 〉, and so ∩ 〈〈 〉〉 ⊆ ∪ 〈〈 〈 〉〉〉. Let 〈〈 〉〉 ∪ . If ∈ 〈〈 〉〉, then 

, for some ∈ , and so 	 ∈ 	 . Now  and so ∈ . If 

∈ 〈〈 〉〉, ∈  and  for some ∈ , then since ∈ 〈〈 〉〉, ∈ . Thus 

∈ ℓ . 

Again, by crypticity, ∈  and so the corresponding inclusion also holds for 〈〈 〉〉. Put 

〈〈 〉〉 ∪ ∈ ℓ . Now ∩ ∪ 〈〈 〈 〉〉〉 and similarly for , whence ∩ ∩ . 

From , we still have that ∨ ∨ , so (S7) implies that . Again, since , ∉ , 

〈〈 〉〉 〈〈 〉〉. 

In either case, then,  and ℓ, for some nonzero integers , ℓ. But by [5, 

Lemma 1.4],  is maximal in the partial order on 〈 〉 and thus on 〈〈 〉〉, so . Since  is 

not a subgroup, this can only occur if 1, that is, . 

 

Proposition 4.7. The following are equivalent for a cryptic inverse semigroup :  

(G1)  is distributive in , that is, ∨ ∩ ∨ 	∩ 	 ∨ 	for all , ∈ ; 
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(G2)  satisfies (2΄) and every nontrivial subgroup of  is isolated; 

(G3) For all ∈ , ∨ ∪ . 

 

The entirely analogous statements (GC1)–(GC3) hold with respect to ℓ , substituting 

(2C΄) for (2΄). 

 

Proof. That (G1) implies that every nontrivial subgroup is isolated is a consequence of the 

implication (S5) ⇒ (S1) in Proposition 4.6. Similarly, (G1) implies that : 	→ 	 /  is a 

(surjective) lattice homomorphism. As a consequence, distributivity of  in  implies 

distributivity of /  in / . Applying Result 3.2 to / , that semigroup satisfies (2); then 

Proposition 4.4 yields (2΄) for . 

To prove (G2) ⇒ (G3), apply Propositions 4.4 and 4.6 to ∨ ∪ ↓ . The 

implication (G3) ⇒ (G1) is clear. 

In the context of ℓ , the arguments proceed similarly, using (2C) in place of (2) in 

/ . □ 

Note that distributivity of  does not imply distributivity of  for either lattice, as can be 

seen by considering Clifford semigroups, where (2C΄) (and therefore (2΄)) always holds but (2C) 

(equivalently, (2) in this context) holds only if the structure mappings are trivial. 

 

Proposition 4.8. For a cryptic inverse semigroup , the following are equivalent: 

(G1΄)  is dually distributive in ; 

(G2΄) (i)  is dually distributive in  (that is,  satisfies (2΄)) and (ii) every  

nontrivial subgroup of  is isolated (that is,  satisfies (S1)); 

and the following are equivalent: 

(GC1΄)  is dually distributive in ℓ ; 

(GC2΄) (i)  is dually distributive in ℓ , (ii)  satisfies (S1), and (iii) ∩ ↓ ∩ ↓ for 

all ∈ ℓ . 

 

Proof. Suppose first that  is dually distributive in . Then the map → ∩  is a 

homomorphism of  upon . But  is a Clifford semigroup and so (2΄) is satisfied that 

is, the map → ∩  is also a homomorphism on . The composite map is therefore, 

also a homomorphism, so (G2΄)(i) is satisfied. The proof in the case of ℓ  is essentially the 
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same. 

Now whether  is dually distributive in  or in ℓ , it is then dually distributive in 

 and the implication (S6) ⇒	(S1) of Proposition 4.6 applies. 

Turning to (GC2΄)(iii), we observe that dual distributivity of  in ℓ  immediately 

yields ∩ ∨ ∨ ∩ , for any ∈ ℓ . But satisfaction of this equation is 

equivalent to (GC2΄)(iii). For by Result 3.1, the equation may be rewritten as ∪ ∩ ↓

∪ 	∩ ↓, and clearly ∩ ∩ ↓ ∩ ∩ ↓ always holds. Then the separating 

property of  is applied. 

Clearly, the same proof shows that the analogous property (G2΄)(iii) holds for . 

However, in the case of , the property already follows from (2΄), as follows. Let ∈ , 

∈  and ∈ , say. Put . Since , . By [5, 

Proposition 3.6], (2΄) for 〈 〉 implies that  belongs to a subgroup. That subgroup also 

contains , so ∈ ∩ ↓. (The example in the remark that follows this proof 

demonstrates that (GC2΄)(iii) does not follow from the other hypotheses.) 

To prove the converse, we first consider , assuming  is dually distributive and (S1) 

holds. We use the fact that  separates . Let , ∈ . Dual distributivity of  

immediately yields that ∩ ∩ ∨ ∩ ∩ ∨ ∩ . To obtain the 

corresponding equation for joins, we first apply the alternative formulation of (G2΄)(iii) that was 

proved above, then dual distributivity of  in  (using Proposition 4.6)) and then the 

alternative formulation of (G2΄)(iii) once more, to obtain  

∨ ∩ ∨ ∩ ∨ ∨ 	

∩ ∨ ∨ ∩ ∨ 	

∨ ∩ ∨ ∨ ∩ 	

∨ ∩ ∨ ∩  

The proof for ℓ  is entirely analogous. □ 

Unlike the situation for , we cannot in general replace the property that  be dually 

distributive in ℓ  by (2C΄), for that cannot be done in the combinatorial case, the other two 

conditions in (GC2΄) being degenerate there. 

 

Example 4.9. The conditions (G2΄)(i) and (ii)—equivalently (2΄) and (S1)—are independent, as 

are (GC2΄)(i)–(iii). In particular, there exists an inverse semigroup  such that  is a chain, the 

lattice  is distributive, and  satisfies (GC2΄)(i) and (ii) but not (GC2΄)(iii). 
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Proof. Firstly, dual distributivity of  in either  or ℓ  does not follow from (S1), or from 

(S1) and (GC2΄)(iii), respectively, since if  is combinatorial, then the latter conditions are 

satisfied automatically, whereas the former are not. 

Secondly, (S1) does not follow from either dual distributivity of  in , or from dual 

distributivity of  in ℓ  in conjunction with (GC2΄)(iii), since if  is an arbitrary completely 

0-simple inverse semigroup then, as noted following Result 3.4,  satisfies (2΄) and (2C΄) (and 

so  is dually distributive in ℓ ), but  may have a nontrivial subgroup that is not isolated; 

and if ∈ ℓ , then unless ⊆ ,  contains 0 and so ↓, so that  also satisfies 

(GC2΄)(iii). 

Now we construct an example satisfying the last statement of the remark, showing that 

(GC2΄)(iii) does not follow from (GC2΄)(i) and (ii). First, we refer the reader to §1 for the definition 

and properties of the bicyclic semigroup, and for the strong semilattice construction. Let  be 

the two-element semilattice 1 0, and let  be the strong semilattice  of a bicyclic semigroup 

〈 〉 and a nontrivial cyclic group 〈 〉, where the structure map →  is the 

homomorphism that extends the map → . Clearly  and is therefore a chain. 

As noted following Result 2.4,  is distributive. The principal factors of  are just 

 and , so by Result 2.3,  is distributive. Hence (or direct)  satisfies (S1). 

By Result 3.3, to show (GC2΄(i)), it suffices to show (2C΄). Suppose  in . Since 

⊂ , we only need consider the case that ∈ . But by [5, Proposition 3.7],  satisfies (2C) 

and therefore ∈ ∪ 〈〈 〉〉, as required. 

Finally, since , ∈ ∩ ↓, whereas ∩ , since  is combinatorial, so 

∩ ↓	 . Hence (GC2΄)(iii) fails in . □ 

 

Combining Propositions 4.6–4.8, and noting the penultimate statement of Proposition 4.6, 

yields the following analogue of Result 3.4. 

 

Theorem 4.10. Let  be a cryptic inverse semigroup. In ,  is neutral if and only if  

satisfies (2΄) (that is, ↓	⊆ ∪ 〈 〉 for all ∈ ) and every nontrivial subgroup of  is isolated.  

In ℓ ,  is neutral if and only if  satisfies (2C΄), every nontrivial subgroup of  is 

isolated, and ∩ ↓	 ∩ ↓ for all ∈ ℓ . In particular,  is neutral in ℓ  if  

satisfies (2C) and every nontrivial subgroup is isolated. 

 

Proof. In regard to ℓ , recall in the context of Proposition 4.8 that (2C΄) is a sufficient 
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condition for  to be dually distributive. To prove the last statement, note that the alternative 

formulation ∩ ∨ ∨ ∩  of (2C΄)(iii), found in the proof of Proposition 4.8, is an 

immediate consequence of distributivity of  in ℓ , that is, of (2C). □ 

 

5. Join Semidistributivity 

In this section we apply the techniques of the previous section to join semidistributivity. 

The key is the following proposition. 

 

Proposition 5.1. If  is join semidistributive, then  satisfies (21). If ℓ  is join 

semidistributive, then  satisfies (2C΄). 

 

Proof. First suppose  is join semidistributive and that , ∈ , , ∉ . Now 

, so ∈ 〈 〉 ∨ . By symmetry, ∈ 〈 〉 ∨ . So 

〈 〉 ∨ 〈 〉 ∨  and join semidistributivity implies that 〈 〉 ∨ 〈 〉 ∨

∩ . Thus if ∉ 〈 〉, ∩ ∅, that is, . Thus (2΄) holds. 

Next suppose ℓ  is join semidistributive. The proof is similar, but more involved. 

Again, suppose , ∉ . Note that 〈〈 〉〉 ⋄ ,  contains  and, 

therefore, contains . Similarly, since , 〈〈 〉〉 ⋄ 〈〈 〉〉 contains  and, 

therefore, by convexity, , . Hence 〈〈 〉〉 ⋄ , 〈〈 〉〉 ⋄ 〈〈 〉〉 and so, by 

join semidistributivity, each equals 〈〈 〉〉 ⋄ , ∩ 〈〈 〉〉 . If ∉ 〈〈 〉〉, then 

, ∩ 〈〈 〉〉 ∅. In that event, there is an idempotent , say, such that  

and either  or . In either 

case, 	 . Since , a (left-right) dual argument yields . Thus 

(2C΄) holds. □ 

 

In the case of the lattice , we thereby obtain from Theorem 4.10 the following simple 

decomposition and the corresponding criteria for join semidistributivity. 

 

Theorem 5.2. The lattice  is join semidistributive if and only if  is join semidistributive, 

/  is distributive, the nontrivial subgroups of  are isolated (property (S1)) and  

satisfies (2΄): if  in , then ∈ ∪ 〈 〉. In that case,  is a subdirect product of those 

two sublattices. 
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Proof. Recall from Proposition 4.3 that , ≅ / . The combination of Results 2.2 and 

2.4 yields (S1) and Proposition 5.1 yields (2΄). Conversely, the last two criteria imply by Theorem 

4.10 (applying Proposition 4.1) that  is neutral. Since join semidistributivity is preserved by 

products and sublattices,  inherits that property. □ 

 

Although not readily apparent from this theorem, the property (2΄) severely restricts the 

principal factors in the associated semigroups, for according to [5, Proposition 3.6], for a 

monogenic inverse semigroup 〈 〉, (2΄) and (2) are each equivalent to the property that  

belongs to a subgroup of 〈 〉. Hence the principal factors of semigroups satisfying (2΄) must be 

completely 0-simple (or a group if the semigroup has a kernel). From distributivity of  it 

then follows that any such principal factor must be isomorphic to , the combinatorial Brandt 

semigroup with two nonzero idempotents, or else a 0-group (or a group if a kernel exists). 

As a side effect, the statement of (2΄) may be refined in a manner similar to the 

refinement of (2) obtained in [5, Theorem 4.9]. 

In combination, the above results essentially reduce the study of join semidistributivity in 

 to the case of Clifford semigroups (inverse semigroups that are unions of groups). This 

situation turns out to be surprisingly complex, and we defer it until after we treat the general 

situation for ℓ . Before proceeding, we prove a useful lemma. 

 

Lemma 5.3. The lattice  is join semidistributive if and only if (i)  is join 

semidistributive, (ii)  satisfies (2΄) and (iii) ∨ ∨  implies ∨ ∩ ∨  for all  

∈ , ∈ .  

The entirely analogous statement holds for ℓ . 

 

Proof. Necessity is clear from Proposition 5.1. 

To prove the converse in the case of (S), let , , ∈  and assume ∨ ∨ . 

We use the fact that  separates . On the one hand, ∨ ∨ ∨ ∨  so, by 

(iii), ∨ ∨ ∨ ∩ ∨ . On the other hand, by (2΄), ∨ ∨ ∨ ∨

, so by join semidistributivity of  and then (2΄), ∨ ∩ ∨ ∩ ∨ . 

The argument for ℓ  is essentially identical. □ 

 

Unlike the situation for ,  need not be neutral when ℓ  is join semidistributive 

(see Remark 5.7 below). Without the corresponding decomposition, our proof of sufficiency in 

Theorem 5.4 is necessarily less elegant. Somewhat remarkably, the direct analogues of the 



 

 

18  Cheong, Jones 

criteria for join semidistributivity in Theorem 5.2 nevertheless hold, as is shown in the corollary to 

the next theorem. 

 

Theorem 5.4. The lattice ℓ  is join semidistributive if and only if  is a tree,  is 

distributive and  satisfies (2C΄): if ∈ , then 	 ↓⊆ 	∪ 〈〈 〉〉. Under this hypothesis, (2C΄) 

reduces to the following condition: whenever  in  , ∈ , and , then ∈  

for all ∈ . 

 

Proof. Necessity of the three conditions follows from Results 2.1, 2.4, and Proposition 5.1, 

respectively. 

Conversely, suppose  satisfies the stated conditions. Then ℓ  is join 

semidistributive, every nontrivial subgroup of  is isolated, by Result 2.4, and  is cryptic by 

Proposition 4.1. Hence ∈  and the filter ,  of  is join semidistributive (in fact, 

distributive). Further, by Proposition 4.7, ∨ ∨ ∪  for all ∈ ℓ  and  is 

distributive in ℓ . 

We apply the previous lemma. Suppose , , ∈ ℓ , with  full and ⋄ ⋄ , 

that is, ∨ ∨ . Now ∨ ∨ ∨ ∨ ∨ ∨ , so by join semidistributivity 

of , ∨ ∨ ∨ ∨ ∩ ∨ ∨ ∨ ∨ ∩ ∨ ∨ . 

Hence ∨ ∨ ∨ ∩ ∨ . Since each of the joins with  is in fact just the union 

with , it follows that for any ∉ , if ∈ , then ∈ ∩ ∨ . 

Suppose ℓ  is not join semidistributive. Then there exist , , ∈ ℓ , with  full, 

such that ∨ ∨ ∩ ∨ . Thus there exists ∈  such that ∉ ∩ ∨ . By 

the previous paragraph, ∈ , that is, ∈ , for some ∈ . 

The argument in this paragraph and the next is also valid in  and will be applied in 

the proof of Proposition 5.8. Now ∈ ∨  and ∉ ∪ , so , for some 

∈ , ∈ , with at least one term in each of  and . Since  is isolated, Lemma 4.5 

may be applied to obtain , where each term in the product lies 

in . Further,  is locally cyclic (whence abelian), and ∈ , so in fact , for 

some ∈  and ∈ ∩ . By distributivity of , ∈ ∩ 〈 〉 ∨ ∩ 〈 〉 ⊆

∩ 〈 〉 ∨ . Therefore, ∉ , for otherwise ∈ , and the assumption on  is 

contradicted. 

To summarize, ∈ , where ∈ ∩ ; ∈ , ∉ ∩ ∨ ; 

, where ∈ , ∉ ∩ ∨ , and ∈ ∩ . 
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Now we may iterate the argument. Thus ∈ , for some ∈ ∩ , 

; and , where ∈ , for some ∈ , , and ∈ ∩ . 

But by convexity of , , ∈  together yield the contradiction ∈ . Thus no element  

exists as originally assumed and ℓ  is join semidistributive. 

The statement in the second paragraph was proven in [5, Lemma 4.4]. □ 

 

Corollary 5.5. Join semidistributivity of ℓ  is equivalent to each of the following: 

(i)  is cryptic, every nontrivial subgroup is isolated and is locally cyclic, and ℓ /  is 

join semidistributive; 

(ii) (cf. Theorem 5.2) ℓ  is join semidistributive, ℓ /  is distributive, every 

nontrivial subgroup of  is isolated, and  satisfies (2C΄). 

 

For a Clifford semigroup , ℓ  is join semidistributive if and only if  is a tree and 

each subgroup is locally cyclic. 

 

Proof. The last statement is simply a specialization of the theorem. 

For the other statements, all the necessary conditions follow direct from the hypothesis or 

as a result of the theorem, with the exception of join semidistributivity of ℓ / . To 

demonstrate this last conclusion, note from Proposition 4.4 that /  satisfies (2C) and so 

ℓ /  is a subdirect product of /  and ℓ / . But by Proposition 4.3, / ≅

, ; and / ≅ . 

To prove the converse in the first case, it follows from join semidistributivity of ℓ /  

that /  satisfies (2C΄) and, therefore, since it is combinatorial, (2C). By Proposition 4.4,  

satisfies (2C΄). By Proposition 4.6,  is neutral in ; , ≅ /  and is therefore, 

distributive; ,  is a subdirect product of the subgroup lattices of its maximal 

subgroups, by Result 2.3, and so is distributive. Hence  is distributive. Finally, ≅ /  

and so is a tree. Thus the sufficient conditions in the theorem are satisfied. 

To prove the converse in the second case, we may apply the subdirect decomposition of 

ℓ /  stated in the first paragraph of the proof. All that needs to be additionally noted is that 

ℓ  is a sublattice of ℓ . □ 

From the last statement of the corollary it follows that, even in the case of Clifford 

semigroups, join semidistributivity of ℓ  does not in general imply neutrality of  in the 

lattice, which by Result 3.4 is equivalent, in this situation, to constancy of all structure mappings 



 

 

20  Cheong, Jones 

(in terms of the strong semilattice decomposition cited in §1). 

In a real sense, the second part of Theorem 5.4 reduces the question to the combinatorial 

case. Especially since in contrast with Clifford semigroups, in this case  is neutral in ℓ , 

providing a nice decomposition, it is worth stating it separately. 

 

Corollary 5.6. If  is combinatorial, then ℓ  is join semidistributive if and only if  is a tree, 

 is distributive, and  satisfies (2C): ↓	⊆ ∪ 〈〈 〉〉 for all ∈ . 

In that event, ℓ  is a subdirect product of ℓ  and the lattices , running 

over the principal factors  of . 

 

Proof. The first statement is the specialization of the first statement of the theorem, incorporating 

the results of Section 2. The second relies the fact that (2C) implies that  is neutral in ℓ , 

according to Result 3.4. □ 

 

Further elaboration of the structure of such semigroups proceeds similarly to that 

following Theorem 4.5 in [5]. We conclude our discussion of ℓ  with an example. 

 

Example 5.7. For the semigroup  constructed in Remark 4.9, ℓ  is join semidistributive 

but  is not neutral. 

 

Proof. This is clear from the properties of  that were stated there, applying Theorem 5.4. □ 

 

5.1.  for Clifford Semigroups 

In sharp contrast to the situation for ℓ , we shall see that even though (2΄) 

automatically holds in every Clifford semigroup, it is not true that  is join semidistributive if 

and only if the same is true for  and the maximal subgroups are locally cyclic. It is well 

known that every Clifford semigroup  is (isomorphic to) the strong semilattice  of its maximal 

subgroups , ∈ . For , the structure map →  is given by ↦ . 

The combination of Propositions 5.8, 5.10, and 5.11 with Proposition 2.1 determines the 

Clifford semigroups for which the lattice of all inverse subsemigroups is join semidistributive. 

 

Proposition 5.8. Let  be a Clifford semigroup. Then  is join semidistributive if and only if: 

(a)  is join semidistributive (as described in Proposition 2.1); 
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(b) Each subgroup is locally cyclic; 

(c) If an infinite sequence 	 	 	 of idempotents of  exists and , , … , … is a 

sequence of members of the associated subgroups , then ∈ 〈 ∶ 1〉. 

Here  denotes the image of  in  under the structure map : → . 

 

Proof. Condition (b) is equivalent to join semidistributivity of , by §2.2. To prove that (c) is 

necessary, suppose such a sequence is given. Let ∶ 0 , ∶ 0  and 

〈 : 1〉. Note that ∈ . Now for all 0, , so 

∨ ∨ . But ∩ ∅, so join semidistributivity of  implies that ⊂ . In particular, 

∈ . Since ∅ ∅ , , then in the notation of (c), ∈ 〈 , ∶

1〉. But , ,  and , so ∈ 〈 ∶ 1〉, as required. 

To prove the converse, we apply Lemma 5.3 and the fifth and sixth paragraphs of the 

proof of Theorem 5.4. If  is not join semidistributive, there exist , , ∈ ,  full, 

such that ∨ ∨ ∩ ∨ ; and since  is a union of its maximal subgroups, there 

again exists ∈ , say, where ∈ ∩ ; ∈ , ∉ ∩ ∨ ; 

, where ∈ , ∉ ∩ ∨  and ∈ ∩ . Observe that 

. 

Iterating this argument yields sequences as in (c) with  and 

∈ , for each 1. Observe that ∙∙∙

∙∙∙ ∈ . Then the consequence of (c), that ∈ 〈 ∶ 1〉, 

yields the contradiction ∈ . □ 

 

It is clear from this proposition that the remaining focus need only be on -chains of 

groups, by which we mean Clifford semigroups over the semilattice 0 1 2 ∙∙∙ . In the 

sequel, we shall take as the default that  is the semilattice of groups , having identity 

element , with structure mappings ∶ → , 0. It is useful to abbreviate  to 

. 

A necessary structural condition for  to be join semidistributive is provided by the 

following. Remark 5.12 demonstrates that it is not in general sufficient. 

 

Corollary 5.9. Let  be an -chain of (locally cyclic) groups, as above. If  is join 

semidistributive, then ⋂ , for all 0. Hence there exists an -chain  of groups 
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for which  and  are each distributive, but  is not join semidistributive. 

 

Proof. Clearly, it suffices to prove the first statement for 0. Suppose the conclusion is false, 

and let  be a nonidentity element in the intersection. Then for each 1, there exists ∈  

such that , in the notation of Proposition 5.8. Clearly, criterion (c) of that proposition is 

not met. 

To prove the second, let  be the -chain of groups , where  is the cyclic group 

1, . Each structure map is a bijection, so the necessary condition is not satisfied. □ 

 

For a given sequence of idempotents, criterion (c) depends only on the subgroup  and 

the structural mappings , that is, in any given -chain of groups we may focus on the 

subgroup . We consider the two possibilities for , starting with the periodic one. 

Recall from §2.2 that a locally cyclic group is periodic if and only if it is (isomorphic to) a 

subgroup of / . For ∈ , denote by  its image in the quotient group. For any prime , let 

 be the subgroup of  consisting of those numbers whose denominator is a power of . 

Then  is a quasi-cyclic -group ( -Prüfer group). 

 

Proposition 5.10. Let  be an -chain of groups, as above. If  is periodic, then criterion (c) 

of Proposition 5.8 is met if and only if ⋂ 	 . 

If  is finite cyclic or is quasicyclic, this is the case if and only if  for some 

0. In general, that need not be so. 

 

Proof. We represent  as a subgroup of / , as above, so 0. Necessity was proven 

above. Conversely, assume that ⋂ 	 0 . For any given prime ,  satisfies the 

descending chain condition on subgroups so, for all sufficiently large , the terms of the 

sequence  are disjoint from , that is,  does not divide the denominator of any fraction in 

 (when expressed in lowest terms). Hence, given any positive integer , by repeating this 

argument for all the prime divisors of , there exists 0 such that for all /ℓ ∈ , 

expressed as rationals in lowest terms, , ℓ 1. 

Now choose a sequence , , …. and represent  as /  and each  as /ℓ . 

Choose  as above. Working first in , ℓ /ℓ / ℓ /  and, choosing integers 

,  such that ℓ 1, ℓ /ℓ / ℓ / 1 /

/ . In / , therefore, ℓ ∈ 〈 〉, so (c) is satisfied. 
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That 0  for some  in cyclic and quasicyclic cases is immediate from the 

Descending Chain Condition (DCC) on subgroups. To demonstrate that this is not always so, let 

/ , let 	 be a listing of the primes in ascending order, and for each 1, let  

be the image in /  of the subgroup /ℓ ∈ ∶ , , … , |ℓ . Embed  in  via the 

inclusion mapping. Then ⋂ 0  but no 0 . □ 

Again recall from §2.2 that a locally cyclic group is torsion-free if and only if it is 

(isomorphic to) a subgroup of . We assume such a representation in the next result. 

 

Proposition 5.11. Let  be an -chain of groups, as above. If  is torsion-free, then criterion 

(c) of Proposition 5.8 is met if and only either (i) 0  for some 0 or (ii) for every 

positive integer , there exists 0 such that  divides the index | ∩ ∶ ∩ |. 

 

Proof. To prove necessity, suppose no  is 0 . Then no ∩  is 0  and so ⋂ ∩

0 , by Corollary 5.9. Put ∩ , where each | ∩ : ∩ |. Note that 

|  for each . Let  be any positive integer and put max 	gcd , . From the 

divisibility property of the sequence  it follows that gcd , |  for all . Hence each 

linear congruence ≡ 	 mod	  has a solution . Now ∈ ∩ , and so there 

exists ∈  such that . Thus 	|	  for each . By criterion (c), ∈

〈 〉, so 	|	  and, therefore, . Thus gcd ,  for some , that is, 	|	 , as 

required. 

Conversely, choose a sequence  as in (c). In case (i), the outcome is clear. In case (ii), 

we first suppose that ∈ . Let /ℓ , for 1, written in lowest terms with 1. 

Then for each 1, ∈ ∩ . By (ii), there exists  such that 1, so that ℓ

0. Again by (ii), there exists  such that ℓ 	|	 . It follows that ℓ ,

ℓ 	|	 . (Since , ℓ 1, , ℓ , ℓ 	|	 .) Hence there exist , ∈  

such that ℓ ℓ ℓ ℓ ∈ 〈 〉, as 

required for (c). 

In case / ∉ , apply the above argument to the sequence , , …. Thus 

∈ 〈 〉 and dividing by  gives the required inclusion once more. □ 

 

Example 5.12. The necessary condition found in Corollary 5.9 is not sufficient. Case (ii) in 

Corollary 5.11 is not vacuous. 
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Proof. In each example,  for all . For the first one, let , 3 , ∈ , so that 

| ∶ | 3  for each 1. Now ⋂ 0  but (ii) of the last corollary fails to hold. For 

the second one, let , 	 1 , ∈ , so that | ∶ | 	 1 ! for each 1. 

Clearly, the resulting semigroup  satisfies (ii) of the last corollary, and so  is join 

semidistributive. □ 

 

6. Lower Semimodularity Revisited 

A lattice  is lower semimodular if, whenever ∨ ≻  in , then ≻ ∧ . This 

property is preserved by interval sublattices, subdirect products, and complete lattice morphisms 

[13, Theorem 1.7.6]. In [5, Theorem 4.2], neutrality of  was used to obtain decompositions of 

 and ℓ  in the case that the respective lattice was lower semimodular. Now we use 

neutrality of  to exhibit an alternative set of necessary and sufficient conditions for lower 

semimodularity, along with alternative decompositions. 

 

Corollary 6.1. If  is lower semimodular, then  is cryptic and  is a neutral element of 

. Hence  is a subdirect product of the lower semimodular lattices  and / , 

where  is a Clifford semigroup and /  is combinatorial. Moreover,  is itself a 

subdirect product of  and . 

The entirely analogous statement holds for ℓ . 

 

Proof. The first statement (similarly, its analogue for ℓ ) is immediate from Theorem 4.10, 

when combined with [5, Proposition 4.1], Result 3.2, and Propositions 4.3 and 4.7. The second is 

an application of [5, Theorem 4.2]. □ 
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