10,554 research outputs found

    Analysis and equalization of data-dependent jitter

    Get PDF
    Data-dependent jitter limits the bit-error rate (BER) performance of broadband communication systems and aggravates synchronization in phase- and delay-locked loops used for data recovery. A method for calculating the data-dependent jitter in broadband systems from the pulse response is discussed. The impact of jitter on conventional clock and data recovery circuits is studied in the time and frequency domain. The deterministic nature of data-dependent jitter suggests equalization techniques suitable for high-speed circuits. Two equalizer circuit implementations are presented. The first is a SiGe clock and data recovery circuit modified to incorporate a deterministic jitter equalizer. This circuit demonstrates the reduction of jitter in the recovered clock. The second circuit is a MOS implementation of a jitter equalizer with independent control of the rising and falling edge timing. This equalizer demonstrates improvement of the timing margins that achieve 10/sup -12/ BER from 30 to 52 ps at 10 Gb/s

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    Fault-tolerant computer study

    Get PDF
    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed

    Superconducting Logic Circuits Operating With Reciprocal Magnetic Flux Quanta

    Get PDF
    Complimentary Medal-Oxide Semiconductor (CMOS) technology is expected to soon reach its fundamental limits of operation. The fundamental speed limit of about 4 GHz has already effectively been sidestepped by parallelization. This increases raw processing power but does nothing to improve power dissipation or latency. One approach for increasing computing performance involves using superconducting digital logic circuits. In this thesis I describe a new kind of superconducting logic, invented by Quentin Herr at Northrop Grumman, which uses reciprocal pairs of quantized single magnetic flux pulses to encode classical bits. In Reciprocal Quantum Logic (RQL) the data is encoded in integer units of the magnetic flux quantum. RQL gates operate without the bias resistors of previous superconducting logic families and dissipate several orders of magnitude less power. I demonstrate the basic operation of key RQL gates (AndOr, AnotB, Set/Reset) and show their self-resetting properties. Together, these gates form a universal logic set and provide memory capabilities. Experiments measuring the bit error rate of the AndOr gate extrapolated a minimum BER of 10-480 and a BER of 10-44 with 30% margins on flux biasing. I describe an analytic timing model for RQL gates which demonstrates the self-correcting timing features. From this model I derive equations for the timing behavior and operating limits. Using this timing model I ran simulations to determine correction factions for more accurate predictions at higher frequencies. Using these results, I also develop Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) models to describe the combinational logic of RQL gates. To test the timing predictions of the timing model, I performed three experiments on Nb/AlOx/Nb circuits at 4.2 K. The first measured the time of output. The second measured the operating margins of the circuit. The third measured the maximum frequency of operation for RQL circuits. Together, these three experiments showed quantitative agreement with the model for the timing output, qualitative agreement with the limits of operation, and a projected speed limit of 50 GHz for the Hypres 4.5 kA/cm2 process. To power RQL circuits I describe a new design for power splitters and combiners which minimize standing waves. I describe a new kind of Wilkinson power splitter which required numerical optimization but proved to be adequate. I experimentally tested two new designs of the power splitter. Both showed less than 10% variation in standing waves between power splitter and combiner, making it adequate for RQL circuits. I also compared these results with the S-parameters of the power network, which also indicated that the design was adequate for RQL circuits. Finally, I tested an 8-bit Kogge-Stone architecture carry-look ahead adder designed using VHDL models. The adder contained 815 Josephson junctions and was fully functional at 6.21 GHz with a latency of 1.25 clock cycles. The adder produced the correct logical output, had a measured optimal operating point within 8% of the optimal simulated operating point, and measured power margins of 1 dB. It operated best at the designed clock amplitude of 0.88Ic and dissipated 0.570 mW of power

    SPH Simulations with Reconfigurable Hardware Accelerator

    Full text link
    We present a novel approach to accelerate astrophysical hydrodynamical simulations. In astrophysical many-body simulations, GRAPE (GRAvity piPE) system has been widely used by many researchers. However, in the GRAPE systems, its function is completely fixed because specially developed LSI is used as a computing engine. Instead of using such LSI, we are developing a special purpose computing system using Field Programmable Gate Array (FPGA) chips as the computing engine. Together with our developed programming system, we have implemented computing pipelines for the Smoothed Particle Hydrodynamics (SPH) method on our PROGRAPE-3 system. The SPH pipelines running on PROGRAPE-3 system have the peak speed of 85 GFLOPS and in a realistic setup, the SPH calculation using one PROGRAPE-3 board is 5-10 times faster than the calculation on the host computer. Our results clearly shows for the first time that we can accelerate the speed of the SPH simulations of a simple astrophysical phenomena using considerable computing power offered by the hardware.Comment: 27 pages, 13 figures, submitted to PAS

    Design and implementation of the subsystem subject to emission of multicomponent high-frequency signals to ensure its reliability

    Get PDF
    Telecommunication systems, especially digital ones, are mostly known to be immune to noise given their extensive range of applications. This study aimed to investigate the methods and tools used for the analysis of multicomponent signals input to high-frequency digital subsystems, including the analysis of changes in its electrical behavior. This research mainly focuses on analyzing a high-frequency telecommunication subsystem, recording the results, investigating the system behavior against signals with different amplitudes and phases, detecting the received signals, and measuring the phase differences. The study extended the mono-component signals to multi-component signals and accurately extracted the statistical signal specifications using analytic signals in the time-frequency domain. To this end, a method was proposed based on the switch matrix to relate the different components and parameters, and also a mathematical model based on the state-space equations was employed to evaluate the nonlinear system modes. Given that the decoupling of measurement parameters is a problem to be tackled from multiple aspects, the costs and test durations were also taken into calculations in addition to considering all the detection methods for interference signals, reliability and time under test
    • …
    corecore