15 research outputs found

    Restricted Space Algorithms for Isomorphism on Bounded Treewidth Graphs

    Get PDF
    The Graph Isomorphism problem restricted to graphs of bounded treewidth or bounded tree distance width are known to be solvable in polynomial time [Bod90],[YBFT99]. We give restricted space algorithms for these problems proving the following results: - Isomorphism for bounded tree distance width graphs is in L and thus complete for the class. We also show that for this kind of graphs a canon can be computed within logspace. - For bounded treewidth graphs, when both input graphs are given together with a tree decomposition, the problem of whether there is an isomorphism which respects the decompositions (i.e. considering only isomorphisms mapping bags in one decomposition blockwise onto bags in the other decomposition) is in L. - For bounded treewidth graphs, when one of the input graphs is given with a tree decomposition the isomorphism problem is in LogCFL. - As a corollary the isomorphism problem for bounded treewidth graphs is in LogCFL. This improves the known TC1 upper bound for the problem given by Grohe and Verbitsky [GroVer06].Comment: STACS conference 2010, 12 page

    The Isomorphism Problem for Planar 3-Connected Graphs is in Unambiguous Logspace

    Get PDF
    The isomorphism problem for planar graphs is known to be efficiently solvable. For planar 3-connected graphs, the isomorphism problem can be solved by efficient parallel algorithms, it is in the class AC1AC^1. In this paper we improve the upper bound for planar 3-connected graphs to unambiguous logspace, in fact to ULcoULUL \cap coUL. As a consequence of our method we get that the isomorphism problem for oriented graphs is in NLNL. We also show that the problems are hard for LL

    The Complexity of Bisimulation and Simulation on Finite Systems

    Full text link
    In this paper the computational complexity of the (bi)simulation problem over restricted graph classes is studied. For trees given as pointer structures or terms the (bi)simulation problem is complete for logarithmic space or NC1^1, respectively. This solves an open problem from Balc\'azar, Gabarr\'o, and S\'antha. Furthermore, if only one of the input graphs is required to be a tree, the bisimulation (simulation) problem is contained in AC1^1 (LogCFL). In contrast, it is also shown that the simulation problem is P-complete already for graphs of bounded path-width

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page

    Combinatorial refinement on circulant graphs

    Full text link
    The combinatorial refinement techniques have proven to be an efficient approach to isomorphism testing for particular classes of graphs. If the number of refinement rounds is small, this puts the corresponding isomorphism problem in a low-complexity class. We investigate the round complexity of the 2-dimensional Weisfeiler-Leman algorithm on circulant graphs, i.e. on Cayley graphs of the cyclic group Zn\mathbb{Z}_n, and prove that the number of rounds until stabilization is bounded by O(d(n)logn)\mathcal{O}(d(n)\log n), where d(n)d(n) is the number of divisors of nn. As a particular consequence, isomorphism can be tested in NC for connected circulant graphs of order pp^\ell with pp an odd prime, >3\ell>3 and vertex degree Δ\Delta smaller than pp. We also show that the color refinement method (also known as the 1-dimensional Weisfeiler-Leman algorithm) computes a canonical labeling for every non-trivial circulant graph with a prime number of vertices after individualization of two appropriately chosen vertices. Thus, the canonical labeling problem for this class of graphs has at most the same complexity as color refinement, which results in a time bound of O(Δnlogn)\mathcal{O}(\Delta n\log n). Moreover, this provides a first example where a sophisticated approach to isomorphism testing put forward by Tinhofer has a real practical meaning.Comment: 19 pages, 1 figur

    The Weisfeiler-Leman Dimension of Planar Graphs is at most 3

    Full text link
    We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively. First we show that, for dimension 3 and higher, the WL-algorithm correctly tests isomorphism of graphs in a minor-closed class whenever it determines the orbits of the automorphism group of any arc-colored 3-connected graph belonging to this class. Then we prove that, apart from several exceptional graphs (which have WL-dimension at most 2), the individualization of two correctly chosen vertices of a colored 3-connected planar graph followed by the 1-dimensional WL-algorithm produces the discrete vertex partition. This implies that the 3-dimensional WL-algorithm determines the orbits of a colored 3-connected planar graph. As a byproduct of the proof, we get a classification of the 3-connected planar graphs with fixing number 3.Comment: 34 pages, 3 figures, extended version of LICS 2017 pape

    The Iteration Number of Colour Refinement

    Get PDF
    The Colour Refinement procedure and its generalisation to higher dimensions, the Weisfeiler-Leman algorithm, are central subroutines in approaches to the graph isomorphism problem. In an iterative fashion, Colour Refinement computes a colouring of the vertices of its input graph. A trivial upper bound on the iteration number of Colour Refinement on graphs of order n is n-1. We show that this bound is tight. More precisely, we prove via explicit constructions that there are infinitely many graphs G on which Colour Refinement takes |G|-1 iterations to stabilise. Modifying the infinite families that we present, we show that for every natural number n ? 10, there are graphs on n vertices on which Colour Refinement requires at least n-2 iterations to reach stabilisation
    corecore