47 research outputs found

    A characterization of testable hypergraph properties

    Get PDF
    We provide a combinatorial characterization of all testable properties of kk-graphs (i.e. kk-uniform hypergraphs). Here, a kk-graph property P\mathbf{P} is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/32/3 between kk-graphs that satisfy P\mathbf{P} and those that are far from satisfying P\mathbf{P}. For the 22-graph case, such a combinatorial characterization was obtained by Alon, Fischer, Newman and Shapira. Our results for the kk-graph setting are in contrast to those of Austin and Tao, who showed that for the somewhat stronger concept of local repairability, the testability results for graphs do not extend to the 33-graph setting.Comment: 82 pages; extended abstract of this paper appears in FOCS 201

    A polynomial regularity lemma for semi-algebraic hypergraphs and its applications in geometry and property testing

    Get PDF
    Fox, Gromov, Lafforgue, Naor, and Pach proved a regularity lemma for semi-algebraic kk-uniform hypergraphs of bounded complexity, showing that for each ϵ>0\epsilon>0 the vertex set can be equitably partitioned into a bounded number of parts (in terms of ϵ\epsilon and the complexity) so that all but an ϵ\epsilon-fraction of the kk-tuples of parts are homogeneous. We prove that the number of parts can be taken to be polynomial in 1/ϵ1/\epsilon. Our improved regularity lemma can be applied to geometric problems and to the following general question on property testing: is it possible to decide, with query complexity polynomial in the reciprocal of the approximation parameter, whether a hypergraph has a given hereditary property? We give an affirmative answer for testing typical hereditary properties for semi-algebraic hypergraphs of bounded complexity

    Property Testing via Set-Theoretic Operations

    Get PDF
    Given two testable properties P1\mathcal{P}_{1} and P2\mathcal{P}_{2}, under what conditions are the union, intersection or set-difference of these two properties also testable? We initiate a systematic study of these basic set-theoretic operations in the context of property testing. As an application, we give a conceptually different proof that linearity is testable, albeit with much worse query complexity. Furthermore, for the problem of testing disjunction of linear functions, which was previously known to be one-sided testable with a super-polynomial query complexity, we give an improved analysis and show it has query complexity O(1/\eps^2), where \eps is the distance parameter.Comment: Appears in ICS 201

    Eigenvalues of Non-Regular Linear-Quasirandom Hypergraphs

    Full text link
    Chung, Graham, and Wilson proved that a graph is quasirandom if and only if there is a large gap between its first and second largest eigenvalue. Recently, the authors extended this characterization to k-uniform hypergraphs, but only for the so-called coregular k-uniform hypergraphs. In this paper, we extend this characterization to all k-uniform hypergraphs, not just the coregular ones. Specifically, we prove that if a k-uniform hypergraph satisfies the correct count of a specially defined four-cycle, then there is a gap between its first and second largest eigenvalue.Comment: 15 pages. (this paper was originally part of an old version of arXiv:1208.4863
    corecore