243 research outputs found

    Fault Detection Effectiveness of Metamorphic Relations Developed for Testing Supervised Classifiers

    Full text link
    In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the \emph{oracle problem} and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8\% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies.Comment: 8 pages, AITesting 201

    Identifying Implementation Bugs in Machine Learning based Image Classifiers using Metamorphic Testing

    Full text link
    We have recently witnessed tremendous success of Machine Learning (ML) in practical applications. Computer vision, speech recognition and language translation have all seen a near human level performance. We expect, in the near future, most business applications will have some form of ML. However, testing such applications is extremely challenging and would be very expensive if we follow today's methodologies. In this work, we present an articulation of the challenges in testing ML based applications. We then present our solution approach, based on the concept of Metamorphic Testing, which aims to identify implementation bugs in ML based image classifiers. We have developed metamorphic relations for an application based on Support Vector Machine and a Deep Learning based application. Empirical validation showed that our approach was able to catch 71% of the implementation bugs in the ML applications.Comment: Published at 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018

    A Survey on Metamorphic Testing

    Get PDF
    A test oracle determines whether a test execution reveals a fault, often by comparing the observed program output to the expected output. This is not always practical, for example when a program's input-output relation is complex and difficult to capture formally. Metamorphic testing provides an alternative, where correctness is not determined by checking an individual concrete output, but by applying a transformation to a test input and observing how the program output “morphs” into a different one as a result. Since the introduction of such metamorphic relations in 1998, many contributions on metamorphic testing have been made, and the technique has seen successful applications in a variety of domains, ranging from web services to computer graphics. This article provides a comprehensive survey on metamorphic testing: It summarises the research results and application areas, and analyses common practice in empirical studies of metamorphic testing as well as the main open challenges

    A Survey on Metamorphic Testing

    Get PDF
    A test oracle determines whether a test execution reveals a fault, often by comparing the observed program output to the expected output. This is not always practical, for example when a program’s input-output relation is complex and difficult to capture formally. Metamorphic testing provides an alternative, where correctness is not determined by checking an individual concrete output, but by applying a transformation to a test input and observing how the program output “morphs” into a different one as a result. Since the introduction of such metamorphic relations in 1998, many contributions on metamorphic testing have been made, and the technique has seen successful applications in a variety of domains, ranging from web services to computer graphics. This article provides a comprehensive survey on metamorphic testing: It summarises the research results and application areas, and analyses common practice in empirical studies of metamorphic testing as well as the main open challenges.European Commission (FEDER)Spanish Govermen

    A Survey on Metamorphic Testing

    Full text link

    Piping classification to metamorphic testing: an empirical study towards better effectiveness for the identification of failures in mesh simplification programs

    Get PDF
    Mesh simplification is a mainstream technique to render graphics responsively in modern graphical software. However, the graphical nature of the output poses a test oracle problem in testing. Previous work uses pattern classification to identify failures. Although such an approach may be promising, it may conservatively mark the test result of a failure-causing test case as passed. This paper proposes a methodology that pipes the test cases marked as passed by the pattern classification component to a metamorphic testing component to look for missed failures. The empirical study uses three simple and general metamorphic relations as subjects, and the experimental results show a 10 percent improvement of effectiveness in the identification of failures. © 2007 IEEE.Link_to_subscribed_fulltextThis research is supported in part by a grant of the Research Grants Council of Hong Kong (project no. 714504), a grant of City University of Hong Kong (project no. 200079), and a grant of The University of Hong Kong

    Finding failures from passed test cases: Improving the pattern classification approach to the testing of mesh simplification programs

    Get PDF
    Mesh simplification programs create three-dimensional polygonal models similar to an original polygonal model, and yet use fewer polygons. They produce different graphics even though they are based on the same original polygonal model. This results in a test oracle problem. To address the problem, our previous work has developed a technique that uses a reference model of the program under test to train a classifier. Using such an approach may mistakenly mark a failure-causing test case as passed. It lowers the testing effectiveness of revealing failures. This paper suggests piping the test cases marked as passed by a statistical pattern classification module to an analytical metamorphic testing (MT) module. We evaluate our approach empirically using three subject programs with over 2700 program mutants. The result shows that, using a resembling reference model to train a classifier, the integrated approach can significantly improve the failure detection effectiveness of the pattern classification approach. We also explain how MT in our design trades specificity for sensitivity. Copyright © 2009 John Wiley & Sons, Ltd.link_to_subscribed_fulltex
    • …
    corecore