3,442 research outputs found

    Model-based estimation of off-highway road geometry using single-axis LADAR and inertial sensing

    Get PDF
    This paper applies some previously studied extended Kalman filter techniques for planar road geometry estimation to the domain of autonomous navigation of off-highway vehicles. In this work, a clothoid model of the road geometry is constructed and estimated recursively based on road features extracted from single-axis LADAR range measurements. We present a method for feature extraction of the road centerline in the image plane, and describe its application to recursive estimation of the road geometry. We analyze the performance of our method against simulated motion of varied road geometries and against closed-loop detection, tracking and following of desert roads. Our method accomodates full 6 DOF motion of the vehicle as it navigates, constructs consistent estimates of the road geometry with respect to a fixed global reference frame, and requires an estimate of the sensor pose for each range measurement

    Fusion of Imaging and Inertial Sensors for Navigation

    Get PDF
    The motivation of this research is to address the limitations of satellite-based navigation by fusing imaging and inertial systems. The research begins by rigorously describing the imaging and navigation problem and developing practical models of the sensors, then presenting a transformation technique to detect features within an image. Given a set of features, a statistical feature projection technique is developed which utilizes inertial measurements to predict vectors in the feature space between images. This coupling of the imaging and inertial sensors at a deep level is then used to aid the statistical feature matching function. The feature matches and inertial measurements are then used to estimate the navigation trajectory using an extended Kalman filter. After accomplishing a proper calibration, the image-aided inertial navigation algorithm is then tested using a combination of simulation and ground tests using both tactical and consumer- grade inertial sensors. While limitations of the Kalman filter are identified, the experimental results demonstrate a navigation performance improvement of at least two orders of magnitude over the respective inertial-only solutions

    An Effective Multi-Cue Positioning System for Agricultural Robotics

    Get PDF
    The self-localization capability is a crucial component for Unmanned Ground Vehicles (UGV) in farming applications. Approaches based solely on visual cues or on low-cost GPS are easily prone to fail in such scenarios. In this paper, we present a robust and accurate 3D global pose estimation framework, designed to take full advantage of heterogeneous sensory data. By modeling the pose estimation problem as a pose graph optimization, our approach simultaneously mitigates the cumulative drift introduced by motion estimation systems (wheel odometry, visual odometry, ...), and the noise introduced by raw GPS readings. Along with a suitable motion model, our system also integrates two additional types of constraints: (i) a Digital Elevation Model and (ii) a Markov Random Field assumption. We demonstrate how using these additional cues substantially reduces the error along the altitude axis and, moreover, how this benefit spreads to the other components of the state. We report exhaustive experiments combining several sensor setups, showing accuracy improvements ranging from 37% to 76% with respect to the exclusive use of a GPS sensor. We show that our approach provides accurate results even if the GPS unexpectedly changes positioning mode. The code of our system along with the acquired datasets are released with this paper.Comment: Accepted for publication in IEEE Robotics and Automation Letters, 201

    Bio-Inspired Information Extraction In 3-D Environments Using Wide-Field Integration Of Optic Flow

    Get PDF
    A control theoretic framework is introduced to analyze an information extraction approach from patterns of optic flow based on analogues to wide-field motion-sensitive interneurons in the insect visuomotor system. An algebraic model of optic flow is developed, based on a parameterization of simple 3-D environments. It is shown that estimates of proximity and speed, relative to these environments, can be extracted using weighted summations of the instantaneous patterns of optic flow. Small perturbation techniques are utilized to link weighting patterns to outputs, which are applied as feedback to facilitate stability augmentation and perform local obstacle avoidance and terrain following. Weighting patterns that provide direct linear mappings between the sensor array and actuator commands can be derived by casting the problem as a combined static state estimation and linear feedback control problem. Additive noise and environment uncertainties are incorporated into an offline procedure for determination of optimal weighting patterns. Several applications of the method are provided, with differing spatial measurement domains. Non-linear stability analysis and experimental demonstration is presented for a wheeled robot measuring optic flow in a planar ring. Local stability analysis and simulation is used to show robustness over a range of urban-like environments for a fixed-wing UAV measuring in orthogonal rings and a micro helicopter measuring over the full spherical viewing arena. Finally, the framework is used to analyze insect tangential cells with respect to the information they encode and to demonstrate how cell outputs can be appropriately amplified and combined to generate motor commands to achieve reflexive navigation behavior

    Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments

    Get PDF
    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version

    Toward an Autonomous Lunar Landing Based on Low-Speed Optic Flow Sensors

    No full text
    International audienceFor the last few decades, growing interest has returned to the quite chal-lenging task of the autonomous lunar landing. Soft landing of payloads on the lu-nar surface requires the development of new means of ensuring safe descent with strong final conditions and aerospace-related constraints in terms of mass, cost and computational resources. In this paper, a two-phase approach is presented: first a biomimetic method inspired from the neuronal and sensory system of flying insects is presented as a solution to perform safe lunar landing. In order to design an au-topilot relying only on optic flow (OF) and inertial measurements, an estimation method based on a two-sensor setup is introduced: these sensors allow us to accu-rately estimate the orientation of the velocity vector which is mandatory to control the lander's pitch in a quasi-optimal way with respect to the fuel consumption. Sec-ondly a new low-speed Visual Motion Sensor (VMS) inspired by insects' visual systems performing local angular 1-D speed measurements ranging from 1.5 ‱ /s to 25 ‱ /s and weighing only 2.8 g is presented. It was tested under free-flying outdoor conditions over various fields onboard an 80 kg unmanned helicopter. These pre-liminary results show that the optic flow measured despite the complex disturbances encountered closely matched the ground-truth optic flow

    ROAMER: Robust Offroad Autonomy using Multimodal State Estimation with Radar Velocity Integration

    Full text link
    Reliable offroad autonomy requires low-latency, high-accuracy state estimates of pose as well as velocity, which remain viable throughout environments with sub-optimal operating conditions for the utilized perception modalities. As state estimation remains a single point of failure system in the majority of aspiring autonomous systems, failing to address the environmental degradation the perception sensors could potentially experience given the operating conditions, can be a mission-critical shortcoming. In this work, a method for integration of radar velocity information in a LiDAR-inertial odometry solution is proposed, enabling consistent estimation performance even with degraded LiDAR-inertial odometry. The proposed method utilizes the direct velocity-measuring capabilities of an Frequency Modulated Continuous Wave (FMCW) radar sensor to enhance the LiDAR-inertial smoother solution onboard the vehicle through integration of the forward velocity measurement into the graph-based smoother. This leads to increased robustness in the overall estimation solution, even in the absence of LiDAR data. This method was validated by hardware experiments conducted onboard an all-terrain vehicle traveling at high speed, ~12 m/s, in demanding offroad environments
    • 

    corecore