3,739 research outputs found

    Marshall Space Flight Center Faculty Fellowship Program

    Get PDF
    The 2017 Marshall Faculty Fellowship Program involved 21 faculty in the laboratories and departments at Marshall Space Flight Center. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2017 Marshall Faculty Fellowship program, along with the Program Announcement (Appendix A) and the Program Description (Appendix B). The research affected the following six areas: (1) Materials (2) Propulsion (3) Instrumentation (4) Spacecraft systems (5) Vehicle systems (6) Space science The materials investigations included composite structures, printing electronic circuits, degradation of materials by energetic particles, friction stir welding, Martian and Lunar regolith for in-situ construction, and polymers for additive manufacturing. Propulsion studies were completed on electric sails and low-power arcjets for use with green propellants. Instrumentation research involved heat pipes, neutrino detectors, and remote sensing. Spacecraft systems research was conducted on wireless technologies, layered pressure vessels, and two-phase flow. Vehicle systems studies were performed on life support-biofilm buildup and landing systems. In the space science area, the excitation of electromagnetic ion-cyclotron waves observed by the Magnetospheric Multiscale Mission provided insight regarding the propagation of these waves. Our goal is to continue the Marshall Faculty Fellowship Program funded by Center internal project offices. Faculty Fellows in this 2017 program represented the following minority-serving institutions: Alabama A&M University and Oglala Lakota College

    Dynamic Data Driven Applications System Concept for Information Fusion

    Get PDF
    AbstractWe present a framework of Information Fusion (IF) using the Dynamic Data Driven Applications Systems (DDDAS) concept. Existing literature at the intersection of these two topics supports environmental modeling (e.g., terrain understanding) for context enhanced applications. Taking advantage of sensor models, statistical methods, and situation- specific spatio-temporal fusion products derived from wide area sensor networks, DDDAS demonstrates robust multi-scale and multi-resolution geographical terrain computations. We highlight the complementary nature of these seemingly parallel approaches and propose a more integrated analytical framework in the context of a cooperative multimodal sensing application. In particular, we use a Wide-Area Motion Imagery (WAMI) application to draw parallels and contrasts between IF and DDDAS systems that warrants an integrated perspective. This elementary work is aimed at triggering a sequence of deeper insightful research towards exploiting sparsely sampled piecewise dense WAMI measurements – an application where the challenges of big-data with regards to mathematical fusion relationships and high-performance computations remain significant and will persist. Dynamic data-driven adaptive computations are required to effectively handle the challenges with exponentially increasing data volume for advanced information fusion systems solutions such as simultaneous target tracking and identification

    Modularity Archetypes and Their Coexistence in Technological Development: The Case of a Telecoms Company from Analogue Voice to 5G

    Get PDF
    Modularity is a key concept in the research and practice of information systems. Yet, it has been variously interpreted. Synthesizing the literature, we inductively develop a two-by-two matrix encapsulating two dualities of modularity: architectural vs. governance dimensions, and bottom-up vs. top-down perspectives. This matrix groups the literatures into four archetypical approaches to modularity (Engineering, Ecosystem, Generative and Logical). We next illustrate these archetypes through a qualitative study of a large global telecommunications firm. Drawing upon archival data and interviews, we show how each of these four approaches to modularity become dominant at different times, but also how they overlap and coexist

    End-to-end Reinforcement Learning for Online Coverage Path Planning in Unknown Environments

    Full text link
    Coverage path planning is the problem of finding the shortest path that covers the entire free space of a given confined area, with applications ranging from robotic lawn mowing and vacuum cleaning, to demining and search-and-rescue tasks. While offline methods can find provably complete, and in some cases optimal, paths for known environments, their value is limited in online scenarios where the environment is not known beforehand, especially in the presence of non-static obstacles. We propose an end-to-end reinforcement learning-based approach in continuous state and action space, for the online coverage path planning problem that can handle unknown environments. We construct the observation space from both global maps and local sensory inputs, allowing the agent to plan a long-term path, and simultaneously act on short-term obstacle detections. To account for large-scale environments, we propose to use a multi-scale map input representation. Furthermore, we propose a novel total variation reward term for eliminating thin strips of uncovered space in the learned path. To validate the effectiveness of our approach, we perform extensive experiments in simulation with a distance sensor, surpassing the performance of a recent reinforcement learning-based approach

    Living by numbers: media representations of sports stars’ careers

    Get PDF
    corecore