2 research outputs found

    Note di Matematica 26

    Get PDF
    Abstract. We point out the geometric significance of a part of the theorem regarding the maximality of the orthogonal group in the equiaffine group proved in Keywords: Erlanger Programm, definability, Lω 1 ω -logic MSC 2000 classification: 03C40, 14L35, 51F25, 51A99 A. Schleiermacher and K. Strambach [12] proved a very interesting result regarding the maximaility of the group of orthogonal transformations and of that of Euclidean similarities inside certain groups of affine transformations. Although similar results have been proved earlier, this is the first time that the base field for the groups in question was not the field of real numbers, but an arbitrary Pythagorean field which admits only Archimedean orderings. They also state, as geometric significance of the result regarding the maximality of the group of Euclidean motions in the unimodular group over the reals, that there is "no geometry between the classical Euclidean and the affine geometry". The aim of this note is to point out the exact geometric meaning of the positive part of the 2-dimensional part their theorem, in the case in which the underlying field is an Archimedean ordered Euclidean field. In this case their theorem states that: (1) the group G 1 of Euclidean isometries is maximal in the group H 1 of equiaffinities (affine transformations that preserve non-directed area), and that (2) the group G 2 of Euclidean similarities is maximal in the group H 2 of affine transformations. The restriction to the 2-dimensional case is not essential but simplifies the presentation. The geometric counterpart of group-theoretic results in the spirit of the Erlanger Programm is given by Beth's theorem, as was emphasized by Büch
    corecore