220,924 research outputs found

    Modularity of Convergence and Strong Convergence in Infinitary Rewriting

    Full text link
    Properties of Term Rewriting Systems are called modular iff they are preserved under (and reflected by) disjoint union, i.e. when combining two Term Rewriting Systems with disjoint signatures. Convergence is the property of Infinitary Term Rewriting Systems that all reduction sequences converge to a limit. Strong Convergence requires in addition that redex positions in a reduction sequence move arbitrarily deep. In this paper it is shown that both Convergence and Strong Convergence are modular properties of non-collapsing Infinitary Term Rewriting Systems, provided (for convergence) that the term metrics are granular. This generalises known modularity results beyond metric \infty

    Faithful (meta-)encodings of programmable strategies into term rewriting systems

    Get PDF
    Rewriting is a formalism widely used in computer science and mathematical logic. When using rewriting as a programming or modeling paradigm, the rewrite rules describe the transformations one wants to operate and rewriting strategies are used to con- trol their application. The operational semantics of these strategies are generally accepted and approaches for analyzing the termination of specific strategies have been studied. We propose in this paper a generic encoding of classic control and traversal strategies used in rewrite based languages such as Maude, Stratego and Tom into a plain term rewriting system. The encoding is proven sound and complete and, as a direct consequence, estab- lished termination methods used for term rewriting systems can be applied to analyze the termination of strategy controlled term rewriting systems. We show that the encoding of strategies into term rewriting systems can be easily adapted to handle many-sorted signa- tures and we use a meta-level representation of terms to reduce the size of the encodings. The corresponding implementation in Tom generates term rewriting systems compatible with the syntax of termination tools such as AProVE and TTT2, tools which turned out to be very effective in (dis)proving the termination of the generated term rewriting systems. The approach can also be seen as a generic strategy compiler which can be integrated into languages providing pattern matching primitives; experiments in Tom show that applying our encoding leads to performances comparable to the native Tom strategies

    Linear Compressed Pattern Matching for Polynomial Rewriting (Extended Abstract)

    Full text link
    This paper is an extended abstract of an analysis of term rewriting where the terms in the rewrite rules as well as the term to be rewritten are compressed by a singleton tree grammar (STG). This form of compression is more general than node sharing or representing terms as dags since also partial trees (contexts) can be shared in the compression. In the first part efficient but complex algorithms for detecting applicability of a rewrite rule under STG-compression are constructed and analyzed. The second part applies these results to term rewriting sequences. The main result for submatching is that finding a redex of a left-linear rule can be performed in polynomial time under STG-compression. The main implications for rewriting and (single-position or parallel) rewriting steps are: (i) under STG-compression, n rewriting steps can be performed in nondeterministic polynomial time. (ii) under STG-compression and for left-linear rewrite rules a sequence of n rewriting steps can be performed in polynomial time, and (iii) for compressed rewrite rules where the left hand sides are either DAG-compressed or ground and STG-compressed, and an STG-compressed target term, n rewriting steps can be performed in polynomial time.Comment: In Proceedings TERMGRAPH 2013, arXiv:1302.599

    A Reduction-Preserving Completion for Proving Confluence of Non-Terminating Term Rewriting Systems

    Get PDF
    We give a method to prove confluence of term rewriting systems that contain non-terminating rewrite rules such as commutativity and associativity. Usually, confluence of term rewriting systems containing such rules is proved by treating them as equational term rewriting systems and considering E-critical pairs and/or termination modulo E. In contrast, our method is based solely on usual critical pairs and it also (partially) works even if the system is not terminating modulo E. We first present confluence criteria for term rewriting systems whose rewrite rules can be partitioned into a terminating part and a possibly non-terminating part. We then give a reduction-preserving completion procedure so that the applicability of the criteria is enhanced. In contrast to the well-known Knuth-Bendix completion procedure which preserves the equivalence relation of the system, our completion procedure preserves the reduction relation of the system, by which confluence of the original system is inferred from that of the completed system

    Reversible Computation in Term Rewriting

    Get PDF
    Essentially, in a reversible programming language, for each forward computation from state SS to state SS', there exists a constructive method to go backwards from state SS' to state SS. Besides its theoretical interest, reversible computation is a fundamental concept which is relevant in many different areas like cellular automata, bidirectional program transformation, or quantum computing, to name a few. In this work, we focus on term rewriting, a computation model that underlies most rule-based programming languages. In general, term rewriting is not reversible, even for injective functions; namely, given a rewrite step t1t2t_1 \rightarrow t_2, we do not always have a decidable method to get t1t_1 from t2t_2. Here, we introduce a conservative extension of term rewriting that becomes reversible. Furthermore, we also define two transformations, injectivization and inversion, to make a rewrite system reversible using standard term rewriting. We illustrate the usefulness of our transformations in the context of bidirectional program transformation.Comment: To appear in the Journal of Logical and Algebraic Methods in Programmin

    Projections for infinitary rewriting

    Full text link
    Proof terms in term rewriting are a representation means for reduction sequences, and more in general for contraction activity, allowing to distinguish e.g simultaneous from sequential reduction. Proof terms for finitary, first-order, left-linear term rewriting are described in the Terese book, chapter 8. In a previous work, we defined an extension of the finitary proof-term formalism, that allows to describe contractions in infinitary first-order term rewriting, and gave a characterisation of permutation equivalence. In this work, we discuss how projections of possibly infinite rewrite sequences can be modeled using proof terms. Again, the foundation is a characterisation of projections for finitary rewriting described in Terese, Section 8.7. We extend this characterisation to infinitary rewriting and also refine it, by describing precisely the role that structural equivalence plays in the development of the notion of projection. The characterisation we propose yields a definite expression, i.e. a proof term, that describes the projection of an infinitary reduction over another. To illustrate the working of projections, we show how a common reduct of a (possibly infinite) reduction and a single step that makes part of it can be obtained via their respective projections. We show, by means of several examples, that the proposed definition yields the expected behavior also in cases beyond those covered by this result. Finally, we discuss how the notion of limit is used in our definition of projection for infinite reduction

    Generic Encodings of Constructor Rewriting Systems

    Get PDF
    Rewriting is a formalism widely used in computer science and mathematical logic. The classical formalism has been extended, in the context of functional languages, with an order over the rules and, in the context of rewrite based languages, with the negation over patterns. We propose in this paper a concise and clear algorithm computing the difference over patterns which can be used to define generic encodings of constructor term rewriting systems with negation and order into classical term rewriting systems. As a direct consequence, established methods used for term rewriting systems can be applied to analyze properties of the extended systems. The approach can also be seen as a generic compiler which targets any language providing basic pattern matching primitives. The formalism provides also a new method for deciding if a set of patterns subsumes a given pattern and thus, for checking the presence of useless patterns or the completeness of a set of patterns.Comment: Added appendix with proofs and extended example

    Rewriting and Well-Definedness within a Proof System

    Full text link
    Term rewriting has a significant presence in various areas, not least in automated theorem proving where it is used as a proof technique. Many theorem provers employ specialised proof tactics for rewriting. This results in an interleaving between deduction and computation (i.e., rewriting) steps. If the logic of reasoning supports partial functions, it is necessary that rewriting copes with potentially ill-defined terms. In this paper, we provide a basis for integrating rewriting with a deductive proof system that deals with well-definedness. The definitions and theorems presented in this paper are the theoretical foundations for an extensible rewriting-based prover that has been implemented for the set theoretical formalism Event-B.Comment: In Proceedings PAR 2010, arXiv:1012.455
    corecore