247,752 research outputs found

    The double attractor behavior of induced inflation

    Get PDF
    We describe an induced inflation, which refers to a class of inflationary models with a generalized non-minimal coupling ξg(ϕ)R\xi g(\phi) R and a specific scalar potential. The defining property of these models is that the scalar field takes a vev in the vacuum and thus induces an effective Planck mass. We study this model as a function of the coupling parameter ξ\xi. At large ξ\xi, the predictions of the theory are known to have an attractor behavior, converging to a universal result independent on the choice of the function g(ϕ)g(\phi). We find that at small ξ\xi, the theory approaches a second attractor. The inflationary predictions of this class of theories continuously interpolate between those of the Starobinsky model and the predictions of the simplest chaotic inflation with a quadratic potential.Comment: 5 pages, 2 figures; v2: refs added, accepted by JHE

    The Axiomatic Structure of Empirical Content

    Get PDF
    In this paper, we provide a formal framework for studying the empirical content of a given theory. We define the falsifiable closure of a theory to be the least weakening of the theory that makes only falsifiable claims. The falsifiable closure is our notion of empirical content. We prove that the empirical content of a theory can be exactly captured by a certain kind of axiomatization, one that uses axioms which are universal negations of conjunctions of atomic formulas. The falsifiable closure operator has the structure of a topological closure, which has implications, for example, for the behavior of joint vis a vis single hypotheses. The ideas here are useful for understanding theories whose empirical content is well-understood (for example, we apply our framework to revealed preference theory, and Afriat's theorem), but they can also be applied to theories with no known axiomatization. We present an application to the theory of multiple selves, with a fixed finite set of selves and where selves are aggregated according to a neutral rule satisfying independence of irrelevant alternatives. We show that multiple selves theories are fully falsifiable, in the sense that they are equivalent to their empirical content

    Discrete R Symmetries and Anomalies

    Get PDF
    We comment on aspects of discrete anomaly conditions focussing particularly on RR symmetries. We review the Green-Schwarz cancellation of discrete anomalies, providing a heuristic explanation why, in the heterotic string, only the "model-independent dilaton" transforms non-linearly under discrete symmetries; this argument suggests that, in other theories, multiple fields might play a role in anomaly cancellations, further weakening any anomaly constraints at low energies. We provide examples in open string theories of non-universal discrete anomalies at low energies. We then consider the fact that RR symmetries are necessarily broken at low energies. We exhibit dynamical models, in which fields charged under the Standard Model gauge group (for example, a doublet and a triplet) gain roughly equal masses, but where the doublet and the triplet possess different discrete charges and the low-energy anomaly conditions fail.Comment: 13 pages; matches version published in JHEP; references added, expanded discussion about anomaly universality and gauge coupling unificatio

    Gauge Coupling Unification from Unified Theories in Higher Dimensions

    Get PDF
    Higher dimensional grand unified theories, with gauge symmetry breaking by orbifold compactification, possess SU(5) breaking at fixed points, and do not automatically lead to tree-level gauge coupling unification. A new framework is introduced that guarantees precise unification -- even the leading loop threshold corrections are predicted, although they are model dependent. Precise agreement with the experimental result, \alpha_s^{exp} = 0.117 \pm 0.002, occurs only for a unique theory, and gives \alpha_s^{KK} = 0.118 \pm 0.004 \pm 0.003. Remarkably, this unique theory is also the simplest, with SU(5) gauge interactions and two Higgs hypermultiplets propagating in a single extra dimension. This result is more successful and precise than that obtained from conventional supersymmetric grand unification, \alpha_s^{SGUT} = 0.130 \pm 0.004 \pm \Delta_{SGUT}. There is a simultaneous solution to the three outstanding problems of 4D supersymmetric grand unified theories: a large mass splitting between Higgs doublets and their color triplet partners is forced, proton decay via dimension five operators is automatically forbidden, and the absence of fermion mass relations amongst light quarks and leptons is guaranteed, while preserving the successful m_b/m_\tau relation. The theory necessarily has a strongly coupled top quark located on a fixed point and part of the lightest generation propagating in the bulk. The string and compactification scales are determined to be around 10^{17} GeV and 10^{15} GeV, respectively.Comment: 29 pages, LaTe

    Non-Abelian Einstein-Born-Infeld-Dilaton Cosmology

    Get PDF
    The non-abelian Einstein-Born-Infeld-Dilaton theory, which rules the dynamics of tensor-scalar gravitation coupled to a su(2)su(2)-valued gauge field ruled by Born-Infeld lagrangian, is studied in a cosmological framework. The microscopic energy exchange between the gauge field and the dilaton which results from a non-universality of the coupling to gravity modifies the usual behaviour of tensor-scalar theories coupled to matter fluids. General cosmological evolutions are derived for different couplings to gravitation and a comparison to universal coupling is highlighted. Evidences of cosmic acceleration are presented when the evolution is interpreted in the Jordan physical frame of a matter respecting the weak equivalence principle. The importance for the mechanism of cosmic acceleration of the dynamics of the Born-Infeld gauge field, the attraction role of the matter fluid and the non-universality of the gravitational couplings is briefly outlined.Comment: 31 pages, 9 figures, minor changes, accepted for publication in Phys. Rev. D1

    Heavy superpartners with less tuning from hidden sector renormalisation

    Get PDF
    In supersymmetric extensions of the Standard Model, superpartner masses consistent with collider bounds typically introduce significant tuning of the electroweak scale. We show that hidden sector renormalisation can greatly reduce such a tuning if the supersymmetry breaking, or mediating, sector runs through a region of strong coupling not far from the weak scale. In the simplest models, only the tuning due to the gaugino masses is improved, and a weak scale gluino mass in the region of 5 TeV may be obtained with an associated tuning of only one part in ten. In models with more complex couplings between the visible and hidden sectors, the tuning with respect to sfermions can also be reduced. We give an example of a model, with low scale gauge mediation and superpartner masses allowed by current LHC bounds, that has an overall tuning of one part in twenty.Comment: 18 pages, 6 figure
    corecore