7%
university of 5%,
groningen % %

i

University Medical Center Groningen

University of Groningen

The double attractor behavior of induced inflation
Kallosh, Renata; Linde, Andrei; Roest, Diederik

Published in:
Journal of High Energy Physics

DOI:
10.1007/JHEP09(2014)062

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Kallosh, R., Linde, A., & Roest, D. (2014). The double attractor behavior of induced inflation. Journal of
High Energy Physics, (9), [062]. https://doi.org/10.1007/JHEP09(2014)062

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-05-2019


https://doi.org/10.1007/JHEP09(2014)062
https://www.rug.nl/research/portal/en/publications/the-double-attractor-behavior-of-induced-inflation(aa0ec24d-6647-4835-950c-d51af94b1fc9).html

PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: August 11, 201/
ACCEPTED: August 26, 2014
PUBLISHED: September 10, 2014

The double attractor behavior of induced inflation

Renata Kallosh,” Andrei Linde® and Diederik Roest®
@ Department of Physics and SITP, Stanford University,
Stanford, California 94305 U.S.A.

bCentre for Theoretical Physics, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands

E-mail: kallosh@stanford.edu, alinde@stanford.edu, d.roest@rug.nl

ABSTRACT: We describe an induced inflation, which refers to a class of inflationary mod-
els with a generalized non-minimal coupling £g(¢)R and a specific scalar potential. The
defining property of these models is that the scalar field takes a vev in the vacuum and
thus induces an effective Planck mass. We study this model as a function of the coupling
parameter £. At large £, the predictions of the theory are known to have an attractor be-
havior, converging to a universal result independent on the choice of the function g(¢). We
find that at small £, the theory approaches a second attractor. The inflationary predictions
of this class of theories continuously interpolate between those of the Starobinsky model
and the predictions of the simplest chaotic inflation with a quadratic potential.
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1 Introduction

Inflationary models are specified not only by the inflaton’s kinetic term and potential
energy, but also its coupling to the gravitational sector. This (non-)minimal coupling is
a natural ingredient of effective field theories involving gravity and a scalar, and can be
parametrized by /—¢g %Q(gb)R 7; this is referred to as the Jordan frame if Q(¢) is a non-
trivial function of scalars. The cosmological observables are extremely sensitive to even
small changes in this non-minimal coupling, which therefore deserves close study.

A case in point is the A\¢* model with the often considered Q(¢) = 1+ £¢?, which has
a conformal symmetry for the special case { = —1/6. We are interested in positive values,
however: while ¢ = 0 is ruled out by Planck data [1], the same model with ¢ > 21073
is already quite consistent with observations [2]. At large ¢ predictions of this particular
model tends to a low r Higgs inflation model [3, 4]. The inflaton potential for this model
in the Einstein frame at large £ and large absolute values of the canonically normalized
inflaton field ¢ acquires the form

Vir ~ (1 — e~ V2/3lely2, (1.1)

up to an overall numerical coefficient which depends on A and £. Interestingly, for ¢ > 0
this potential coincides with the potential of the Starobinsky model R + R? [5-7] in the
representation proposed by Whitt [8],

Vg ~ (1 — e V239)2 (1.2)
In both models, inflation leads to the universal prediction

ng=1-2/N, r=12/N? (1.3)



in the leading approximation in 1/N, where N is the number of e-folding of inflation. Note,
however, that the shape of the potentials at negative ¢ is very different in these two models.
In Higgs inflation, the potential is even in ¢, and inflation can occur both at ¢ > 0 and at
¢ < 0. Meanwhile, in the Starobinsky model, the potential at large negative ¢ blows up
exponentially, and inflation is possible only at ¢ > 0.

During the last year, several different classes of models with a similar attractor behavior
have been found and their supergravity generalizations have been constructed. They in-
clude, in particular, a broad class of models of conformal inflation [9, 10], a-attractors [11],
and the models with generalized non-minimal coupling [12]; see [13] for a recent review.

In particular, it was shown in [12] that this attractor behavior is valid for a broad class
of functions (¢) = 1+ ¢ f(¢) and Jordan frame potentials V; = Af?(¢). This can be seen
as a natural generalization of the special case f(¢) = ¢? considered before. Predictions
of all of these models at large £ asymptote to the universal attractor point (1.3). Similar
results have been later found for induced inflation models with Q(¢) = £g(¢) [14, 15].

For many of such models, just like for the model A¢*, the convergence to the strong
coupling limit begins very early, already at £ < 1, so the speculations about the unitarity
bound in these theories for ¢ ~ 10* are largely irrelevant for the discussion of the attractor
behavior found in [12]; see a detailed discussion of these issues in [12, 13, 16].

The recent BICEP2 data release [17] has attracted attention to the possibility that
models with non-minimal coupling may be consistent with observations not only in the
strong coupling limit, but in the weak coupling limit as well, for £ — 0, far from the
universal attractor. According to [12], for the theories with Q(¢) = 1 + £f(¢), the limit
& — 0 simply restores different model-dependent predictions of various chaotic inflation
models with minimal coupling to gravity [18-20]. However, as we will show in this paper,
the predictions of the induced inflation Q(¢) = £g(¢) in the limit £ — 0 converge to the
single universal prediction, the one of the simplest version of chaotic inflation with the
quadratic potential,

ns=1-—2/N, r=1/8N . (1.4)

Interestingly, this class of models therefore interpolates between two different inflationary
attractors.

2 Universal attractor

We will first review the universal attractor that arises for a sufficiently strong non-minimal
coupling & — oo of a particular form, following [12, 14, 15]. The starting point is the most
general single-field and two-derivative inflationary action: it is defined in terms of three
functions Q(¢), K(¢),U(¢) and reads

L= V=5 |32 - SK(6)(09) ~ U(9)| (21)

The above will be referred to as the Jordan frame formulation. For (¢) > 0, by means
of a conformal transformation, one can always go to the Einstein frame, corresponding to



setting 2 = 1. This implies the following for the kinetic terms and potential energy of the

theory:
R 1(K 307 , U
Lp=+—g 2—2<Q+292>(5¢)—92 (2.2)
We will further restrict our attention to the particular case
K=1, U=XQ-1)*, Q¢)=1+£f(9), (2.3)

with the function f vanishing at the origin [12].
The universal attractor at & — oo arises when the second part of the kinetic term
dominates over the first:
307 1

> q- (2.4)

In this situation, one can define a canonically normalized scalar field

Y= j:\/glog Qo) . (2.5)

The choice of sign here is non-trivial because log 2(¢) vanishes at ¢ = 0, so one should be
careful to make sure that the function ¢(¢) is differentiable at ¢ = 0. If f(¢) is an odd
function of ¢, e.g. linear, the simple expression (2.5) with a definite sign remains a solution
for —oo < ¢ < 0o. In contrast, if f(¢) is even, e.g. quadratic, then one should use both
solutions with opposite signs for ¢ < 0 and ¢ > 0.

As a result, if f(¢) is an odd function of ¢, the Einstein frame inflaton potential in the
large £ limit coincides with the potential in the Starobinsky model (1.2). Markedly different,
for even f(¢), it coincides with the large ¢ limit of the Higgs inflation potential (1.1) [12].
Note that these potentials differ for negative ¢, but they have an identical inflationary
plateau for positive . As inflation only takes place at a single plateau, the predictions of
these potentials are identical and are given by (1.3).

The situation is even simpler in the Higgs model when the field in the unitary gauge is
represented by its radial degree of freedom taking only positive values. There the difference
between these two potentials disappears for all values of the Higgs field.

This set of models allow various generalizations described in [12, 14, 15]. Here we will
discuss one of them, called induced inflation [14, 15].

3 Induced inflation

In the induced inflation model one takes

1\ 2
with g(0) = 0. The coefficient of the Einstein-Hilbert term is determined by the vev of the
scalar field: as the scalar potential has a minimum at 2 = 1, this gives rise to the usual
expression for the Planck mass.



Note that the models (2.3) and (3.1) are related by the simple replacement f(¢) —
g(¢) — &1 (for more details and the embedding in supergravity, see [15, 21]). Their strong
coupling limits for large g(¢) are therefore similar. However, the detailed structure of the
inflaton potential in these theories is different.

As an example, let us consider the simplest induced inflation model with Q = £¢? at
sufficiently large &. In this case, the approximation (2.4) is valid for all ¢ > 0. Therefore
one can use equation (2.5) for all ¢, which yields

¢ = i\/glog (€% (3-2)

In this theory, just like in the theory with Q = 14+£¢?, one should be careful when analyzing
the solution at ¢ = 0, but for a different reason. The point ¢ = 0 is the boundary of the
moduli space for induced inflation, which corresponds to infinitely large values of |¢|. In
the Jordan frame it corresponds to the singularity of the effective gravitational constant,
whereas in the Einstein frame the potential diverges in the limit ¢ — 0. As a results, two
branches of the solution (3.2) are disconnected, and only one of them describes our world.
Without loss of generality, one can use the positive branch, which relates all physically
accessible values 0 < ¢ < oo to the full range of values of the canonically normalized
inflaton field, —oo < ¢ < oo. This conclusion remains valid for the Higgs field taking
values 0 < ¢ < oo in the unitary gauge, but the full range of values of the canonically
normalized inflaton field, —oco < ¢ < co.

As a result, induced inflation at strong coupling has a canonical scalar field defined by

Q=eV?3e, (3.3)

with —oco < ¢ < co. Hence the potential in this model is given by the Starobinsky-Whitt
equation (1.2) rather than by the Higgs inflation type expression (1.1) given in [14]. The
difference disappears for inflation at ¢ > 0, but it leads to the absence of induced inflation
at large ¢ for ¢ < 0.

Finally, one should note that in other, more complicated versions of induced inflation,
the potential at large & is also given by the expression (1.2) in the regions where the
condition (2.4) is satisfied, but under certain conditions inflation may take place even
when this condition is violated and the expression for the potential becomes somewhat
different from (1.2).

4 Quadratic attractor

Turning to the opposite limit of weak coupling, & — 0, the differences between the universal
attractor with (2.3) and induced inflation (3.1) increase. Indeed, as we will see, their
predictions diverge wildly in this limit: while the non-minimal coupling (2.3) leads to the
minimally coupled original model in this limit, the induced inflation models (3.1) typically
lead to the same observational consequences as the simplest chaotic inflation model with
a quadratic potential.



More concretely, in this limit, we will be interested in the case where the first part
dominates the kinetic term in (2.2), exactly opposite to requirement for the universal
attractor (see [22] for a related discussion). Inflation will take place close to the minimum
Q = 1, and hence requires very large values of g as & becomes small. Moreover, ¢'/g is
required to be negligible during inflation. This leads to the approximation

9=+ a1p. (4.1)

The above condition requires the first Taylor coefficient ¢g; to be much smaller than the
zeroeth coefficient €71 we are expanding the function g at very large field values, but
require its derivative to be smaller. Therefore, to lowest order in £g; < 1, the kinetic terms
are canonical in this limit. Moreover, the scalar potential becomes

V = A\gip?, (4.2)

again at lowest order in £g1, and therefore coincides with quadratic inflation in the limit
¢ — 0. The corresponding inflationary predictions are therefore given by (1.4) at lowest
order in 1/N.

We have thus found that this model has two different attractors in these opposite
limits. The requirements for the Starobinsky attractor at strong coupling is a zero of
the function g while ¢’/g becomes large. In contrast, the quadratic attractor arises for
functions g that can become arbitrarily large at some field value, while ¢’/g is smaller than
one. Interestingly, both attractors have identical spectral indices at lowest order, but differ
in their expressions for the tensor-to-scalar ratio. These two possibilities were identified as
the two universality classes with this value of ns [23, 24].

One should note that the existence of the double attractor regime in the induced
inflation is very similar to the recently revealed property of a-attractors [25], where it was
shown that in the limit & — 0 the predictions of a broad class of a-attractors [11] converge
tons =1—2/N, r =0, whereas in the opposite limit & — oo the predictions converge to
those of the chaotic inflation with a quadratic potential (1.4).

The quadratic attractor in the induced inflation actually arises in a more general setting
than discussed above. First of all, similar to the universal attractor [12], the two functions
in (3.1) are not necessarily equal; as long as they have an identical expansion (4.1) at lowest
order around the value £, the weak coupling limit will give rise to (1.4). As an example,
any two polynomials that have terms up to the same power have this property. This is
to be contrasted with the requirement for the universal attractor, where the two functions
are required to have terms from the same power onwards. More concretely, consider the
polynomials

P q
Q=¢>ad,  U=A(Y o - &) (4.3)

with non-vanishing coefficients ¢; and d;. These will asympote to the universal attractor
at large £ provided m = n, and to the quadratic attractor at small & if p = q.
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Figure 1. The ¢(-dependence of (ns, log(r)) for different chaotic models with n = (2/3,1, 2,6, 16) (in
decreasing redshift, i.e. from right to left) for 60 e-folds. The dots correspond to log(§) = (—1,0,1).

Finally, one can include an arbitrary smooth function h(2) in the scalar potential,
U=M(Q)(Q—-1)2. (4.4)

Provided h does not vanish at 2 = 1, such a function will not alter the weak coupling
limit. However, the function A will generically destroy the universal attractor in the strong
coupling limit & > 1, while preserving the attractor at £ < 1.

5 Examples

A numerical analysis confirms the prediction that the induced inflation models interpolate
between Starobinsky and quadratic inflation. As an example, we take the function g defined
n (3.1) to be

g=9¢"". (5.1)

The resulting plots are given in figure 1 for various values of n. Note that all lines initially
point in the same direction. This is a consequence of the universal behavior for small &
identified in [12]: irrespective of the minimally coupled model, all lines initially have a
slope of —16 in the (ns,r) plane at weak coupling. In contrast to [12], we do not find a
comb-like structure at weak coupling; this is a consequence of the quadratic attractor for
induced inflation at weak coupling. In the strong coupling behaviour, the observational
predictions between universal and induced inflation are negligible, and we recover the same
approach to the Starobinsky-like attractor.

The transition point between the two different limiting behaviors lies around £ = 1
(purple dots). More precisely, for higher n one needs an increasingly small ¢ in order to
get close to the quadratic point. We anticipate that the tipping point scales as log(§) =
—(n+1)/2 as a function of the power of the monomial. In other words, while for n =1 it



suffices to take £ = 1/10 in order to approach quadratic, we expect that for e.g. n =5 a
similar asymptotic regime is only reached when ¢ becomes of order 1073,

A special case in the above, already considered by [26], is n = 2. As this corresponds
to a linear function, one can perform a field redefinition to bring the induced Ansatz (3.1)
to (2.3). Therefore, at any value for the coupling, these two theories have to be identical.
Indeed, taking a linear function for the universal Ansatz (2.3) leads to a minimally coupling
quadratic potential in the weak coupling limit. Therefore, taking the functions f and g
to be linear leads to identical weak coupling limits. In all other cases, however, the weak
coupling limits will be different while the strong coupling limits coincide.

One may also consider a more general set of polynomial functions f = > ¢,¢". In the
limit £ — 0, the position of the minimum of the potential appears at ¢ — oo. Therefore for
any particular choice of ¢, the predictions of the model will coincide with the prediction
of the theory where f(¢) is dominated by the term ¢,¢" with the highest power ¢™. This
term determines the speed of the convergence to the predictions of the simplest model of
chaotic inflation with a quadratic potential.

6 Discussion

In this letter we have pointed out that the class of inflationary models that is referred to
as induced inflation, as proposed by [14], has very interesting properties at strong and at
weak coupling. In the first case, the entire class closely resembles Starobinsky inflation,
with some subtle model-dependent differences. Equally surprising, the set of theories has
a second attractor at weak coupling: in this opposite limit, the inflationary predictions
converge to those of chaotic inflation with a quadratic potential. The proverbial “opposites
attract” therefore very much applies to this class of inflationary theories.
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