296 research outputs found

    The Impact of IPv6 on Penetration Testing

    Get PDF
    In this paper we discuss the impact the use of IPv6 has on remote penetration testing of servers and web applications. Several modifications to the penetration testing process are proposed to accommodate IPv6. Among these modifications are ways of performing fragmentation attacks, host discovery and brute-force protection. We also propose new checks for IPv6-specific vulnerabilities, such as bypassing firewalls using extension headers and reaching internal hosts through available transition mechanisms. The changes to the penetration testing process proposed in this paper can be used by security companies to make their penetration testing process applicable to IPv6 targets

    Temporal and Spatial Classification of Active IPv6 Addresses

    Full text link
    There is striking volume of World-Wide Web activity on IPv6 today. In early 2015, one large Content Distribution Network handles 50 billion IPv6 requests per day from hundreds of millions of IPv6 client addresses; billions of unique client addresses are observed per month. Address counts, however, obscure the number of hosts with IPv6 connectivity to the global Internet. There are numerous address assignment and subnetting options in use; privacy addresses and dynamic subnet pools significantly inflate the number of active IPv6 addresses. As the IPv6 address space is vast, it is infeasible to comprehensively probe every possible unicast IPv6 address. Thus, to survey the characteristics of IPv6 addressing, we perform a year-long passive measurement study, analyzing the IPv6 addresses gleaned from activity logs for all clients accessing a global CDN. The goal of our work is to develop flexible classification and measurement methods for IPv6, motivated by the fact that its addresses are not merely more numerous; they are different in kind. We introduce the notion of classifying addresses and prefixes in two ways: (1) temporally, according to their instances of activity to discern which addresses can be considered stable; (2) spatially, according to the density or sparsity of aggregates in which active addresses reside. We present measurement and classification results numerically and visually that: provide details on IPv6 address use and structure in global operation across the past year; establish the efficacy of our classification methods; and demonstrate that such classification can clarify dimensions of the Internet that otherwise appear quite blurred by current IPv6 addressing practices

    Monitoring of Tunneled IPv6 Traffic Using Packet Decapsulation and IPFIX

    Get PDF
    This paper deals with tunneled IPv6 traffic monitoring and describing IPv6 transition issues. The contribution is a possibility of monitoring what is inside IPv6 tunnels. This gives network administrators a way to detect security threats which would be otherwise considered as harmless IPv4 traffic. This approach is also suitable for long term network monitoring. This is achieved by the usage of IPFIX (IP Flow Information Export) as the information carrying format. The proposed approach also allows to monitor traffic on 10 Gb/s links because it supports hardware-accelerated packet distribution to multiple processors.Článek pojednává o monitorování tunelovaného provozu IPv6, rozbalením paketů a exportu pomocí protokolu IPFIX. V článku je diskutována problematika tunelovacích přechodových mechanismů protokolu IPv6 a prezentováno řešení, které je tento provoz schopno monitorovat i na páteřních linkách o rychlosti 10Gb/s

    NATCracker: NAT Combinations Matter

    Get PDF
    In this paper, we report our experience in working with Network Address Translators (NATs). Traditionally, there were only 4 types of NATs. For each type, the (im)possibility of traversal is well-known. Recently, the NAT community has provided a deeper dissection of NAT behaviors resulting into at least 27 types and documented the (im)possibility of traversal for some types. There are, however, two fundamental issues that were not previously tackled by the community. First, given the more elaborate set of behaviors, it is incorrect to reason about traversing a single NAT, instead combinations must be considered and we have not found any study that comprehensively states, for every possible combination, whether direct connectivity with no relay is feasible. Such a statement is the first outcome of the paper. Second, there is a serious need for some kind of formalism to reason about NATs which is a second outcome of this paper. The results were obtained using our own scheme which is an augmentation of currently-known traversal methods. The scheme is validated by reasoning using our formalism, simulation and implementation in a real P2P network

    IPv6: a new security challenge

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011O Protocolo de Internet versão 6 (IPv6) foi desenvolvido com o intuito de resolver alguns dos problemas não endereçados pelo seu antecessor, o Protocolo de Internet versão 4 (IPv4), nomeadamente questões relacionadas com segurança e com o espaço de endereçamento disponível. São muitos os que na última década têm desenvolvido estudos sobre os investimentos necessários à sua adoção e sobre qual o momento certo para que o mesmo seja adotado por todos os players no mercado. Recentemente, o problema da extinção de endereçamentos públicos a ser disponibilizado pelas diversas Region Internet registry – RIRs - despertou o conjunto de entidades envolvidas para que se agilizasse o processo de migração do IPv4 para o IPv6. Ao contrário do IPv4, esta nova versão considera a segurança como um objetivo fundamental na sua implementação, nesse sentido é recomendado o uso do protocolo IPsec ao nível da camada de rede. No entanto, e devido à imaturidade do protocolo e à complexidade que este período de transição comporta, existem inúmeras implicações de segurança que devem ser consideradas neste período de migração. O objetivo principal deste trabalho é definir um conjunto de boas práticas no âmbito da segurança na implementação do IPv6 que possa ser utilizado pelos administradores de redes de dados e pelas equipas de segurança dos diversos players no mercado. Nesta fase de transição, é de todo útil e conveniente contribuir de forma eficiente na interpretação dos pontos fortes deste novo protocolo assim como nas vulnerabilidades a ele associadas.IPv6 was developed to address the exhaustion of IPv4 addresses, but has not yet seen global deployment. Recent trends are now finally changing this picture and IPv6 is expected to take off soon. Contrary to the original, this new version of the Internet Protocol has security as a design goal, for example with its mandatory support for network layer security. However, due to the immaturity of the protocol and the complexity of the transition period, there are several security implications that have to be considered when deploying IPv6. In this project, our goal is to define a set of best practices for IPv6 Security that could be used by IT staff and network administrators within an Internet Service Provider. To this end, an assessment of some of the available security techniques for IPv6 will be made by means of a set of laboratory experiments using real equipment from an Internet Service Provider in Portugal. As the transition for IPv6 seems inevitable this work can help ISPs in understanding the threats that exist in IPv6 networks and some of the prophylactic measures available, by offering recommendations to protect internal as well as customers’ networks

    Observations of IPv6 Addresses

    Get PDF
    IPv6 addresses are longer than IPv4 addresses, and are so capable of greater expression. Given an IPv6 address, conventions and standards allow us to draw conclusions about how IPv6 is being used on the node with that address. We show a technique for analysing IPv6 addresses and apply it to a number of datasets. The datasets include addresses seen at a busy mirror server, at an IPv6-enabled TLD DNS server and when running traceroute across the production IPv6 network. The technique quantifies differences in these datasets that we intuitively expect, and shows that IPv6 is being used in different ways by different groups

    Observations of IPv6 Addresses

    Get PDF
    IPv6 addresses are longer than IPv4 addresses, and are so capable of greater expression. Given an IPv6 address, conventions and standards allow us to draw conclusions about how IPv6 is being used on the node with that address. We show a technique for analysing IPv6 addresses and apply it to a number of datasets. The datasets include addresses seen at a busy mirror server, at an IPv6-enabled TLD DNS server and when running traceroute across the production IPv6 network. The technique quantifies differences in these datasets that we intuitively expect, and shows that IPv6 is being used in different ways by different groups
    corecore