59,284 research outputs found

    Symplectic gaugings and the field-antifield formalism

    Full text link
    We give an example of how conventional gauging methods obstruct a systematic analysis of gauged supergravities. We discuss how the embedding tensor formalism deals with these problems and argue that the gauge algebra related to the embedding tensor formalism is soft, open and reducible. We connect the embedding tensor formalism to the field-antifield (or Batalin-Vilkovisky) formalism, which is the most general formulation known for gauge theories.Comment: Contribution to the Proceedings of the XVIth European Workshop on String Theory in Madrid (June 14-18, 2010), 10 page

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Gauged Supergravities in Various Spacetime Dimensions

    Get PDF
    In this review articel we study the gaugings of extended supergravity theories in various space-time dimensions. These theories describe the low-energy limit of non-trivial string compactifications. For each theory under consideration we review all possible gaugings that are compatible with supersymmetry. They are parameterized by the so-called embedding tensor which is a group theoretical object that has to satisfy certain representation constraints. This embedding tensor determines all couplings in the gauged theory that are necessary to preserve gauge invariance and supersymmetry. The concept of the embedding tensor and the general structure of the gauged supergravities are explained in detail. The methods are then applied to the half-maximal (N=4) supergravities in d=4 and d=5 and to the maximal supergravities in d=2 and d=7. Examples of particular gaugings are given. Whenever possible, the higher-dimensional origin of these theories is identified and it is shown how the compactification parameters like fluxes and torsion are contained in the embedding tensor.Comment: 155 pages, author's PhD thesi
    corecore