224,132 research outputs found

    Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF

    Get PDF
    DINEOF (Data Interpolating Empirical Orthogonal Functions) is an EOF-based technique for the reconstruction of missing data in geophysical fields, such as those produced by clouds in sea surface temperature satellite images. A technique to reduce spurious time variability in DINEOF reconstructions is presented. The reconstruction of these images within a long time series using DINEOF can lead to large discontinuities in the reconstruction. Filtering the temporal covariance matrix allows to reduce this spurious variability and therefore more realistic reconstructions are obtained. The approach is tested in a three years sea surface temperature data set over the Black Sea. The effect of the filter in the temporal EOFs is presented, as well as some examples of the improvement achieved with the filtering in the SST reconstruction, both compared to the DINEOF approach without filtering

    Surface Reconstruction and Evolution from Multiple Views

    Get PDF
    Applications like 3D Telepresence necessitate faithful 3D surface reconstruction of the object and 3D data compression in both spatial and temporal domains. This makes us feel immersed in virtual environments there by making 3D Telepresence a powerful tool in many applications. Hence 3D surface reconstruction and 3D compression are two challenging problems which are addressed in this thesis

    Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF

    Full text link
    DINEOF (Data Interpolating Empirical Orthogonal Functions) is an EOF-based technique for the reconstruction of missing data in geophysical fields, such as those produced by clouds in sea surface temperature satellite images. A technique to reduce spurious time variability in DINEOF reconstructions is presented. The reconstruction of these images within a long time series using DINEOF can lead to large discontinuities in the reconstruction. Filtering the temporal covariance matrix allows to reduce this spurious variability and therefore more realistic reconstructions are obtained. The approach is tested in a three years sea surface temperature data set over the Black Sea. The effect of the filter in the temporal EOFs is presented, as well as some examples of the improvement achieved with the filtering in the SST reconstruction, both compared to the DINEOF approach without filtering

    Microfocal X-Ray Computed Tomography Post-Processing Operations for Optimizing Reconstruction Volumes of Stented Arteries During 3D Computational Fluid Dynamics Modeling

    Get PDF
    Restenosis caused by neointimal hyperplasia (NH) remains an important clinical problem after stent implantation. Restenosis varies with stent geometry, and idealized computational fluid dynamics (CFD) models have indicated that geometric properties of the implanted stent may differentially influence NH. However, 3D studies capturing the in vivo flow domain within stented vessels have not been conducted at a resolution sufficient to detect subtle alterations in vascular geometry caused by the stent and the subsequent temporal development of NH. We present the details and limitations of a series of post-processing operations used in conjunction with microfocal X-ray CT imaging and reconstruction to generate geometrically accurate flow domains within the localized region of a stent several weeks after implantation. Microfocal X-ray CT reconstruction volumes were subjected to an automated program to perform arterial thresholding, spatial orientation, and surface smoothing of stented and unstented rabbit iliac arteries several weeks after antegrade implantation. A transfer function was obtained for the current post-processing methodology containing reconstructed 16 mm stents implanted into rabbit iliac arteries for up to 21 days after implantation and resolved at circumferential and axial resolutions of 32 and 50 μm, respectively. The results indicate that the techniques presented are sufficient to resolve distributions of WSS with 80% accuracy in segments containing 16 surface perturbations over a 16 mm stented region. These methods will be used to test the hypothesis that reductions in normalized wall shear stress (WSS) and increases in the spatial disparity of WSS immediately after stent implantation may spatially correlate with the temporal development of NH within the stented region

    Conditional Temporal Attention Networks for Neonatal Cortical Surface Reconstruction

    Full text link
    Cortical surface reconstruction plays a fundamental role in modeling the rapid brain development during the perinatal period. In this work, we propose Conditional Temporal Attention Network (CoTAN), a fast end-to-end framework for diffeomorphic neonatal cortical surface reconstruction. CoTAN predicts multi-resolution stationary velocity fields (SVF) from neonatal brain magnetic resonance images (MRI). Instead of integrating multiple SVFs, CoTAN introduces attention mechanisms to learn a conditional time-varying velocity field (CTVF) by computing the weighted sum of all SVFs at each integration step. The importance of each SVF, which is estimated by learned attention maps, is conditioned on the age of the neonates and varies with the time step of integration. The proposed CTVF defines a diffeomorphic surface deformation, which reduces mesh self-intersection errors effectively. It only requires 0.21 seconds to deform an initial template mesh to cortical white matter and pial surfaces for each brain hemisphere. CoTAN is validated on the Developing Human Connectome Project (dHCP) dataset with 877 3D brain MR images acquired from preterm and term born neonates. Compared to state-of-the-art baselines, CoTAN achieves superior performance with only 0.12mm geometric error and 0.07% self-intersecting faces. The visualization of our attention maps illustrates that CoTAN indeed learns coarse-to-fine surface deformations automatically without intermediate supervision.Comment: Accepted by the 26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 202

    Automatic facial expression tracking for 4D range scans

    Get PDF
    This paper presents a fully automatic approach of spatio-temporal facial expression tracking for 4D range scans without any manual interventions (such as specifying landmarks). The approach consists of three steps: rigid registration, facial model reconstruction, and facial expression tracking. A Scaling Iterative Closest Points (SICP) algorithm is introduced to compute the optimal rigid registration between a template facial model and a range scan with consideration of the scale problem. A deformable model, physically based on thin shells, is proposed to faithfully reconstruct the facial surface and texture from that range data. And then the reconstructed facial model is used to track facial expressions presented in a sequence of range scans by the deformable model

    Space-time Reconstruction of Oceanic Sea States via Variational Stereo Methods

    Full text link
    We present a remote sensing observational method for the measurement of the spatio-temporal dynamics of ocean waves. Variational techniques are used to recover a coherent space-time reconstruction of oceanic sea states given stereo video imagery. The stereoscopic reconstruction problem is expressed in a variational optimization framework. There, we design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal regularizers. A nested iterative scheme is devised to numerically solve, via 3-D multigrid methods, the system of partial differential equations resulting from the optimality condition of the energy functional. The output of our method is the coherent, simultaneous estimation of the wave surface height and radiance at multiple snapshots. We demonstrate our algorithm on real data collected off-shore. Statistical and spectral analysis are performed. Comparison with respect to an existing sequential method is analyzed
    corecore