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Abstract. DINEOF (Data Interpolating Empirical Orthogo-
nal Functions) is an EOF-based technique for the reconstruc-
tion of missing data in geophysical fields, such as those pro-
duced by clouds in sea surface temperature satellite images.
A technique to reduce spurious time variability in DINEOF
reconstructions is presented. The reconstruction of these im-
ages within a long time series using DINEOF can lead to
large discontinuities in the reconstruction. Filtering the tem-
poral covariance matrix allows to reduce this spurious vari-
ability and therefore more realistic reconstructions are ob-
tained. The approach is tested in a three years sea surface
temperature data set over the Black Sea. The effect of the
filter in the temporal EOFs is presented, as well as some ex-
amples of the improvement achieved with the filtering in the
SST reconstruction, both compared to the DINEOF approach
without filtering.

1 Introduction

DINEOF (Data INterpolating Empirical Orthogonal Func-
tions) is a technique to reconstruct missing data in geo-
physical data sets using an EOF basis to infer the missing
data (Beckers and Rixen, 2003). This technique is typi-
cally applied to satellite data with gaps due to, for exam-
ple, clouds present in the atmosphere that impede the sur-
face IR radiation to reach the satellite sensor. Even in satel-
lite measures taken with microwave-based sensors (such as
the SST provided by TRMM (Tropical Rainfall Measuring
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Mission) Microwave Imager (TMI) satellites, or the Ad-
vanced Microwave Scanning Radiometer (AMSR-E),http:
//www.remss.com, Gentemann et al., 2004) large gaps can
be present in rain zones and at days when the satellite swath
does not completely cover the zone of study.

These clouds and gaps can obscure almost completely the
studied domain, with a few clustered observations remaining
in some parts of it. These observations are therefore not rep-
resentative of the whole spatial variability of the domain, and
an EOF decomposition, such as the one realised within DI-
NEOF to retrieve missing data, can result in an over-fitting
of the EOFs to the few present data. As a consequence the
reconstructed image does not necessarily reflect the spatial
variation of that given image. Satellite data sets typically
used for reconstruction with DINEOF may contain some im-
ages with the characteristics mentioned above. It is therefore
possible that the reconstruction presents some discontinuities
in time (i.e. consecutive images with very different values),
because of the presence of these highly clouded images. We
propose a filter that, applied to the temporal covariance ma-
trix of the data before the EOF decomposition step in DI-
NEOF, will reduce the temporal discontinuities in the tem-
poral EOFs and therefore in the reconstructed data set.

This work is organized as follows: the data used to test the
filter is described in Sect.2. Section3 briefly explains the re-
construction technique, DINEOF, and the proposed filter to
decrease spurious temporal variability in the temporal EOFs.
The results of this approach are then compared to the DI-
NEOF reconstruction without the filter in Sect.4. This work
is concluded in Sect.5.
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Fig. 1. Top panel: temporal variation of cloud cover percentage in the Black Sea (in black) and with a low-pass filter of 30 days (red line).
The year labels show the 1st January of each year. Bottom panel: spatial variation of cloud cover percentage in the Black Sea. CR stands for
Crimean peninsula, and BA stands for Batumi region.

2 Data

Daily night-time Sea Surface Temperature (SST) data of the
Black Sea spanning from 1 January 2003 to 31 December
2005 are used in this work. The data are obtained through
Advanced Very High Resolution Radiometer (AVHRR) sen-
sors on board the NOAA Polar Orbiting Environmental
Satellite series. They are available at the Jet Propulsion Lab-
oratory (JPL) PODAAC website (http://podaac.jpl.nasa.gov).
The horizontal resolution is 4.8 km. Images with cloud cover
larger than 98% are not used for the analysis, and therefore
the final temporal size is 903 (out of the initial 1096 images).

The average cloudiness of this data set is about 70%. Tem-
poral variability of total cloud cover presents an annual cycle
with minimum average cloud cover of about 40 to 50% in
summer and maximum average cloud cover of about 90% in
winter (Fig.1). Note the very high cloudiness in winter of in-

dividual time frames in this figure. Spatially, regions with the
highest cloud cover percentage are the Sea of Azov and the
northwestern shelf of the Black Sea, with an average cloud
cover higher than 75%. In the rest of the Black Sea, the aver-
age cloud cover varies from 60 to 80%. Typical cloud sizes
are very large, covering most of the Black Sea at a time.

3 Methods

3.1 DINEOF

Consider a matrixX with size M×N , with M the spatial
size andN the temporal size. DINEOF proceeds as follows
to calculate the missing data: anomalies are computed and
the missing data are initialised to the mean (i.e. to a zero
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anomaly). Starting with the calculation of the most dominant
EOF mode of this matrix, the missing data are calculated by:

Xm,n = Um,161VT
n,1 (1)

with m=1...M andn=1...N . U are the spatial modes,V
are the temporal modes and6 are the singular values. This
new estimation for the missing data is reintroduced in the
data matrix, and the EOF mode calculation is repeated. This
process is repeated until convergence of the missing values,
and then the EOF modes calculated are increased to two,
then three, etc. The EOF mode calculation is done using a
Lanczos solver provided byToumazou and Cretaux(2001),
which uses the ARPACK freeware (Lehoucq et al., 1997).
The optimal number of EOF modes retained are calculated
by cross-validation (i.e., a few valid data are set aside and
the error of the reconstruction is assessed by comparing the
reconstructed data to these cross-validation data).

To test the new filtering approach, the data used for cross-
validation are not taken randomly as it is done in DINEOF
by default (e.g.Beckers and Rixen, 2003; Alvera-Azćarate
et al., 2005, 2007). For this work, the 15 cleanest images are
artificially covered by clouds extracted from other images,
following the approach described inBeckers et al.(2006).
Three percent of data is covered in this way for the cross-
validation. The cross-validation clouds are a more realistic
case than the random points, and therefore the reconstruction
of the cross-validation data is done in the same conditions
as the rest of the missing data. The cross-validation error
using this approach can be expected to be a more realistic
estimation of the reconstruction error.

Concerning the anomalies calculated within DINEOF, a
space and time average is subtracted from the data to com-
pute them. This choice guarantees that the method is sym-
metric in space and time. In addition, it allows to com-
pute anomalies in any data set, without prior knowledge of
its variability. For satellite SST, it can be useful to remove
e.g. the annual cycle, and provide these anomalies to DI-
NEOF to reconstruct the missing data. However, when the
annual cycle is not removed from the initial data, the EOF
decomposition identifies this as the most dominant signal, so
the first EOF contains in most cases the annual cycle. One
can see the EOF decomposition then as a way to separate the
annual cycle from the rest of the variability of the data set. In
this work we chose not to remove the annual cycle from the
data, but rather the general spatial and temporal mean. This
way, the effect of the new proposed filter can be assessed in-
dependently, as removing a different average might have also
an impact on the reconstructed data.

For an extended description of DINEOF, and recent devel-
opments, the reader is referred toBeckers and Rixen(2003);
Alvera-Azćarate et al.(2005); Beckers et al.(2006); Alvera-
Azcárate et al.(2007).

3.2 Filtering the covariance matrix

Matrix X (if complete) can be filtered in the time domain as
follows:

X̃ = XF (2)

whereF is aN×N matrix containing the filter. A singular
value decomposition (SVD) of the filtered matrixX̃ can be
calculated:

FT XT XFṼ = X̃T X̃Ṽ = Ṽ6̃ (3)

The temporal covariance matrix is defined as:

B = XT X (4)

Therefore, Eq. (3) can be also written as:

FT BFṼ = B̃Ṽ = Ṽ6̃ (5)

where we made appear the filtered covariance matrix
B̃=FT BF.

The filter F is implemented as a Laplacian filter on the
terms ofX, in which the temporal increment between two
images is also taken into account: two consecutive images in
matrixX with a large time gap between them are less related
than two consecutive images that are in addition consecutive
in time. The latest will be more strongly weighted to each
other than the first mentioned case. Considering a vectorx

containing the data to be filtered, the filter can be expressed
as follows:

x
(s+1)
i = x

(s)
i +

Gi+1 − Gi

t ′i+1 − t ′i
(6)

wherei=1...N , s=1...p, and

Gi = α
xi − xi−1

ti − ti−1
(7)

t ′i =
ti−1 + ti

2
(8)

α is a parameter specifying the strength of the filter,t is
a vector containing the time andx is a vector containing the
data, all of lengthN . The filter is applied first to the columns
of B and then to its rows, according to Eq. (5). This step can
be easily incorporated to DINEOF, before the SVD decom-
position. FilteringB instead ofX is more appropriate since
B is much smaller and is less sensitive to missing data.

The filter in Eq. (6) implies three consecutive terms of the
times series. The reach of the filter can be increased by it-
eratively reapplying it a predefined number of times. This
iteration acts then over 2p+1 members, withp the number
of iterations of the filter.

The highest frequency removed by the filter depends on
the values ofα andp. In this work,α was fixed to 0.01d2
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Fig. 2. Cross-validation error decreasing with the increasing number of EOFs used for the reconstruction. The minimum error is marked
with an asterisk for each line. The lines show the cross-validation error for DINEOF without filtering, and for DINEOF with filtering of the
covariance matrix using 1, 3, 10, 30 and 100 iterations of the filter.

(if α>
min(1t)2

2 the filter will be unstable) and the value for
p was then decided by considering the cross-validation error
provided by DINEOF. Figure2 shows the cross-validation
error for the reference run using DINEOF, and for five runs
(with p=1, 3, 10, 30 and 100) with the filter included in DI-
NEOF. The use of the filter, for all values ofp, produces
a smaller cross-validation error than the reference run. Of
all the five runs with the filter, it appears thatp=3 gives
the best reconstruction, which means that frequencies higher
than 2π

√
αp=1.1 days are being filtered from the data set.

Note that the choice of the number of iterations can be con-
sidered as a fine-tuning experiment to obtain the smallest
cross-validation error, as all experiments with filtering ob-
tained better cross-validation error than the non-filtered ver-
sion.

4 Results

4.1 Analysis of the covariance matrix

Figure3 shows the covariance matrixB=XT X (non filtered
– left panel – and filtered – right panel –) for the 2003 Black
Sea SST data reconstructed using DINEOF. The diagonal in

this matrix represents the variance of each day’s data with re-
spect to the mean of the data set. We can see a high variance
in summer and winter, with spring and fall nearer to the av-
erage temperature, and therefore with a lower variance. The
off-diagonal terms are related to the degree of similitude of
each image with respect to the rest of the images (or covari-
ance), so winter is negatively correlated with summer, for
example. The comparison between the left and right panels
allows to see the effect of the filtering in the covariance ma-
trix. In the non-filtered covariance matrix, discontinuities in
the form of vertical and horizontal lines of low correlation
are apparent. These discontinuities are caused by the irregu-
larities in time and space mentioned above, and can lead to
an unrealistic reconstruction of the data. The filtered version
of B, which is used within DINEOF in the version presented
in this work, eliminates or reduces some of these discontinu-
ities (Fig.3 right).

4.2 EOF mode analysis

Figure4 presents the first spatial and temporal EOF modes
of the reconstructed data set with the classic DINEOF ap-
proach and with DINEOF including the filtered covariance
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Fig. 3. Temporal covariance matrix of the 2003 Black Sea SST reconstructed using DINEOF. Left panel: without filtering; right panel: with
the application of the embedded filter. The labels indicate the first day of each month.

matrix. The filter is applied in the time dimension, therefore
the spatial structure of the first EOF mode is very similar in
both approaches. The first temporal mode of Fig.4, how-
ever, does present a difference between both reconstructions.
While representing the annual cycle of cooling and warming
temperatures in both reconstructed data sets, the non-filtered
version presents several peaks at moments when the cloud
coverage of the original data set is higher, for example dur-
ing winter months. These peaks are smoothed in the filtered
DINEOF version, which will lead to smoother reconstruc-
tions in time, as it will be shown later. The first EOF mode
(accounting for 98.11% of the total variability) represents the
annual cycle variations of the Black Sea SST, because as we
mentioned in Sect.3.1, this cycle was not removed from the
initial data. The cyclonic, coastal-trapped, basin-wide Rim
Current is the most prominent feature in the spatial maps of
Fig. 4. This current presents the warmest temperature during
winter, and it is colder than it surroundings during summer, in
part influenced by coastal upwelling along the Turkish coast
(Sur and Ilyin, 1997) and the Crimean peninsula (Sur and
Ilyin , 1997; Gawarkiewicz et al., 1999). The coldest regions
during winter are the northwestern shelf and the Sea of Azov,
exposed to rapid temperature changes related to the atmo-
spheric conditions due to its shallow bathymetry (Sur et al.,
1996; Kosarev et al., 2008).

The second EOF is shown in Fig.5. The smoothing of the
temporal EOF is more evident here than in the first EOF, and
again the spatial modes present the same structure. The sec-
ond temporal mode presents a semi-annual periodicity and a
northeast-southwest spatial structure, mainly separating the
Sea of Azov and the northwestern shelf from the south-
east Black Sea. This mode accounts for a warming/cooling
anomaly in spring/fall in the northwest shelf, and the oppo-
site trend for the southeast zone of the Black Sea. This mode
accounts for almost 1% of the total variability (or 53% of the
remaining variability of modes of higher order than the first
mode).

The third EOF mode, accounting for only 0.3% of the total
variability (or 34% of the remaining variability of modes of
higher order than the first and second modes), is presented
in Fig. 6. The same comments as for the other modes stand
here, as the spatial mode is almost the same for the filtered
and non-filtered versions of DINEOF, and the temporal mode
is smoother in the filtered DINEOF version.

4.3 SST Reconstruction

The three years of Black Sea SST have been reconstructed
using DINEOF with no filtering, and including the filtering
of the covariance matrix withp=3. In the classic approach
(with no filtering), 17 EOF modes are retained by DINEOF,
reaching a minimal cross-validation error of 0.6◦C and a total
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Fig. 4. First EOF spatial mode for the DINEOF reconstruction with no filtering of the covariance matrix (top left), with filtering of the
covariance matrix (top right) and first temporal mode for both versions (bottom). The x-axis labels in the bottom panel indicate the 1st
January of each year. The spatial EOF has units of◦C and the temporal EOFs have no units.

explained variance of 99.92%. When the filter of the covari-
ance matrix is included, 42 EOF modes are retained, with
a minimal cross-validation error of 0.46◦C, and a total ex-
plained variance of 99.93%. It might appear surprising that
when the filtering is included, more EOF modes are retained
by DINEOF, although this can be explained by these modes
being better constrained (i.e. determined) because the filter
introduces information about the temporal sequence of the
data. Also, note that the cross-validation error obtained with
the inclusion of the filter is close to the accuracy of satellite
SST data, when compared to in situ data (e.g.McClain et al.,
1985; Kumar et al., 2000; Marullo et al., 2007; Castro et al.,
2008).

In Fig. 7 a sequence of initial data and reconstructions is
shown. An example when a cross-validation cloud has been
added is shown, so that readers can see the original data (first
row of Fig. 7) and the data set used for the reconstruction
(second row). Of course the three days shown are only a
small part of the whole 903 images used in this work. The
third row in Fig. 7 shows the reconstructed data using DI-

NEOF, and the fourth row shows the reconstruction using
DINEOF with filtering of the covariance matrix. As the in-
formation surrounding a given date is used for the reconstruc-
tion of a particular image in the filtering approach, the recon-
struction using this version shows improvements respect to
the classic DINEOF approach. For example, due to the added
cross-validation cloud, information on 3 July 2004 is almost
non-existent, although we can see in the original data set
that a cold filament started to develop south of the Crimean
peninsula. This filament is still detected on 4 July 2004.
The reconstruction with the classic DINEOF approach does
not present this filament, but the filtered DINEOF version
does, mainly because this information was taken from the
surrounding data. As a result, the filtered DINEOF version is
more realistic, and is able to reconstruct features even when
these are completely missing on a given image. One benefit
of retaining more EOFs (in the filtered DINEOF version) is
that this increases the number of degrees of freedom. Typ-
ically, the lower rank EOFs contain small scale spatial in-
formation, which is now retained for the reconstruction. On
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Fig. 5. Second EOF spatial mode for the DINEOF reconstruction with no filtering of the covariance matrix (top left), with filtering of the
covariance matrix (top right) and second temporal mode for both versions (bottom). The x-axis labels in the bottom panel indicate the 1st
January of each year. The spatial EOF has units of◦C and the temporal EOFs have no units.

the example given in Fig.7 there are features that are also
better represented in the filtered version of DINEOF, as the
warm filament going from the Bosphorus strait to the Cape
Kerempe, and the cold eddy in the Batumi region (southeast
Black Sea).

Another example of the effect of the covariance matrix
filtering on the reconstruction results can be seen in Fig.8.
The initially cloudy data from 24, 25 and 27 December 2003
present a large cloud cover on the last two days. On 25 De-
cember, only a few data near the east coast of the Black Sea
are cloudless, which represent values typically warmer than
the western part in this period of the year. The reconstruction
using DINEOF with no filtering leads to a very warm recon-
struction on 25 December. The temperature change of up
to 6◦C within one day observed in the classic reconstruction
is not realistic in the Black Sea. The reconstruction using
the filtering of the covariance matrix leads to a more real-
istic result, with a temperature distribution similar to what
is observed on 24 December 2003. On 27 December (the
next day in the reconstructed images sequence), the informa-
tion available in the initial matrix is from the colder western
Black Sea. The reconstruction without the filtering leads to

cold SST over the whole Black Sea, and the southeastern part
of the basin does not present warmer water as it would be ex-
pected from past information. The filtered DINEOF recon-
struction does present this east-west gradient, with warmer
temperatures in the southeast and colder in the west.

To compare our filtering approach with a more direct a
posteriori filtering of the data, a fourth row has been added
to Fig.8. This a posteriori approach consists in applying the
Laplacian filter directly to the reconstructed data (i.e. to the
data in the second row of Fig.8). To establish the optimal
number of iterationsp, a cross-validation technique similar
to the one present in DINEOF was used. A set of cross-
validation points (about 1% of the initial data) in the form
of clouds was identified and removed from the initial data
set, before reconstructing with DINEOF. The reconstructed
data set is then filtered with different values ofp, and the
initial cross-validation data is used to asses the error. The
error was minimised forp=300 iterations. The filtered data
present a much better representation of the surface tempera-
ture on 25 December 2003 than the classic DINEOF recon-
struction, however at the expense of much smoother SST for
the surrounding dates. On 24 December 2003, the Batumi
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Fig. 6. Third EOF spatial mode for the DINEOF reconstruction with no filtering of the covariance matrix (top left), with filtering of the
covariance matrix (top right) and third temporal mode for both versions (bottom). The x-axis labels in the bottom panel indicate the 1st
January of each year. The spatial EOF has units of◦C and the temporal EOFs have no units.

gyre presents lower temperatures than observed, and in gen-
eral, the spatial structures are much smoother than when the
filter is applied within DINEOF. Note that the same proce-
dure (i.e. a cross-validation error calculation) has been used
to establish the number of iterations that yield the best results
in the embedded filter and the a posteriori filter. When the fil-
ter is applied a posteriori a much higher number of iterations
is needed to obtain an accurate result. This is because the a
posteriori filter has to counterbalance the effect of the noisy
temporal EOFs that lead to the reconstruction in the second
row of Fig. 8, whereas the embedded filter prevent the tem-
poral EOFs to become noisy in the first place.

4.4 Effect of the number of EOFs on the reconstructions

The increased accuracy obtained with DINEOF when includ-
ing the filter of the covariance matrix can be due to two rea-
sons: the filtering of spikes on the temporal EOFs, and the
increased number of EOFs that were retained in the Black
Sea example shown here. To elucidate which of these ef-
fects account for the improvements seen in Figs.7 and8, we
have repeated the DINEOF reconstruction without filter, but
forcing DINEOF to retain the same number of EOF modes

than with the filter (i.e. 42 EOF modes). As it might be
expected, this reconstruction is able to better represent the
small-scale variability of Fig.7, to an extent that the recon-
struction with and without filter present very similar results
(the new results are not shown). However, this new recon-
struction does still present the very warm reconstruction on
25 December 2003, and in general, it exhibits spurious high
frequency variations (as those seen in the temporal EOFs of
Figs. 4 to 6). The cross-validation error of the classic DI-
NEOF reconstruction retaining 42 EOF modes is of 0.61◦C
(i.e., higher than the reconstruction with 17 EOFs, and higher
than the reconstruction with the filter). These results confirm
that the filtering of the covariance matrix is able to reduce the
spikes in the temporal EOFs, therefore obtaining more realis-
tic reconstructions. The increased number of EOFs retained
when including a filter within DINEOF accounts for a better
reconstruction of the small-scale features.

The improved results obtained when using a higher num-
ber of EOFs brings us to the cross-validation technique used
within DINEOF. It appears that a higher number of EOFs al-
lows for a reconstruction of the small scale variability, but
one must not forget that the cross-validation error is higher
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Fig. 7. Example of large cloud added for the cross-validation. Top row: initial cloudy data at three consecutive days, 2 to 4 July 2004. Second
row: the same data set, but with a cross-validation cloud added on the 3rd July 2004, used for the reconstruction. Third row: reconstruction
using no filtering of the covariance matrix. Fourth row: reconstruction with filtering of the covariance matrix.

for those reconstructions. The higher order EOFs do not
only contain small-scale information, but also noise, so forc-
ing DINEOF to retain a higher number of EOFs than what
is calculated with the cross-validation method is not to be
done without caution, as it might degrade the overall accu-
racy of the reconstruction. The cross-validation approach
used within DINEOF might however not be optimal, retain-
ing less EOFs than necessary. This remains an open question
that will be addressed in future work.

5 Conclusions

A technique to decrease the amount of noise in the tem-
poral EOFs used for reconstruction of missing data in DI-
NEOF (Data Interpolating Empirical Orthogonal Functions)
has been described. The noise is caused by the presence of
few valid observations at given time steps which are in ad-
dition clustered in space. The approach presented in this
work consists on a Laplacian filter which is applied to the

www.ocean-sci.net/5/475/2009/ Ocean Sci., 5, 475–485, 2009
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Fig. 8. SST initial data on 24, 25 and 27 December 2003 (top row) and two reconstruction by DINEOF: with no filtering of the covariance
matrix (second row) and with filtering of the covariance matrix (third row). The last row show the result of a temporal filter applied after the
reconstruction (i.e. to the data shown in the second row).

temporal covariance matrix of the data, before the temporal
EOFs are calculated and used to infer the missing data values.
It has been shown that the reconstruction of missing data is
improved when this filter is embedded within DINEOF. The
temporal information is taken into account in the reconstruc-
tion, avoiding large discontinuities between two consecutive
reconstructed images. The results obtained have been com-
pared to a DINEOF reconstruction without the filter. The
error of the reconstruction, as measured by cross-validation,
is lower when the filter is embedded in DINEOF (0.6◦C ver-
sus 0.46◦C when the filter is used). In addition, the temporal
EOFs are better constrained, and as a result more EOFs are
retained by DINEOF. This in turn increases the spatial vari-
ability of the reconstructed data.

The combination of a lower reconstruction error and a
higher number of temporal EOFs retained for estimating
the missing values results in an improved estimation of the
oceanographic features on the Black Sea sea surface temper-
ature. An example has been shown in which a filament south
of the Crimean peninsula was more accurately represented
in the filtered reconstruction, because of the presence of this
filament in the surrounding images, an information not ex-
ploited in the reconstruction with no filter.

It has also been shown that the approach presented here
gives better results than simply filtering the data after the
reconstruction, as in order to obtain a realistic temperature
distribution a large amount of filtering is needed, therefore
reducing gradients and losing some mesoscale information.
This justifies the increased complexity of our filtering tech-
nique.
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A. Alvera-Azćarate et al.: Enhancing temporal correlations in EOF expansions 485

Acknowledgements.This work was realised in the context of the
RECOLOUR (REconstruction of COLOUR scenes) – SR/00/111,
and BELCOLOUR-2 (SR/00/104) projects funded by the Belgian
Science Policy (BELSPO) in the frame of the Research Program
For Earth Observation “STEREO II”. AVHRR SST data were
obtained from the Physical Oceanography Distributed Active
Archive Center (PODAAC) at the NASA Jet Propulsion Lab-
oratory, Pasadena, California (http://podaac.jpl.nasa.gov). The
National Fund for Scientific Research, Belgium, is acknowledged
for funding the post-doctoral positions of A. Alvera-Azcárate and
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