46 research outputs found

    Robust Temporal Logic Model Predictive Control

    Full text link
    Control synthesis from temporal logic specifications has gained popularity in recent years. In this paper, we use a model predictive approach to control discrete time linear systems with additive bounded disturbances subject to constraints given as formulas of signal temporal logic (STL). We introduce a (conservative) computationally efficient framework to synthesize control strategies based on mixed integer programs. The designed controllers satisfy the temporal logic requirements, are robust to all possible realizations of the disturbances, and optimal with respect to a cost function. In case the temporal logic constraint is infeasible, the controller satisfies a relaxed, minimally violating constraint. An illustrative case study is included.Comment: This work has been accepted to appear in the proceedings of 53rd Annual Allerton Conference on Communication, Control and Computing, Urbana-Champaign, IL (2015

    Robust Motion Planning employing Signal Temporal Logic

    Full text link
    Motion planning classically concerns the problem of accomplishing a goal configuration while avoiding obstacles. However, the need for more sophisticated motion planning methodologies, taking temporal aspects into account, has emerged. To address this issue, temporal logics have recently been used to formulate such advanced specifications. This paper will consider Signal Temporal Logic in combination with Model Predictive Control. A robustness metric, called Discrete Average Space Robustness, is introduced and used to maximize the satisfaction of specifications which results in a natural robustness against noise. The comprised optimization problem is convex and formulated as a Linear Program.Comment: 6 page

    Automata guided hierarchical reinforcement learning for zero-shot skill composition

    Full text link
    An obstacle that prevents the wide adoption of (deep) reinforcement learning (RL) in control systems is its need for a large amount of interactions with the environment in order to master a skill. The learned skill usually generalizes poorly across domains and re-training is often necessary when presented with a new task. We present a framework that combines methods in formal methods with hierarchical reinforcement learning (HRL). The set of techniques we provide allows for convenient specification of tasks with complex logic, learn hierarchical policies (meta-controller and low-level controllers) with well-defined intrinsic rewards using any RL methods and is able to construct new skills from existing ones without additional learning. We evaluate the proposed methods in a simple grid world simulation as well as simulation on a Baxter robot

    Prescribed Performance Control Guided Policy Improvement for Satisfying Signal Temporal Logic Tasks

    Full text link
    Signal temporal logic (STL) provides a user-friendly interface for defining complex tasks for robotic systems. Recent efforts aim at designing control laws or using reinforcement learning methods to find policies which guarantee satisfaction of these tasks. While the former suffer from the trade-off between task specification and computational complexity, the latter encounter difficulties in exploration as the tasks become more complex and challenging to satisfy. This paper proposes to combine the benefits of the two approaches and use an efficient prescribed performance control (PPC) base law to guide exploration within the reinforcement learning algorithm. The potential of the method is demonstrated in a simulated environment through two sample navigational tasks.Comment: This is the extended version of the paper accepted to the 2019 American Control Conference (ACC), Philadelphia (to be published

    A Hierarchical Reinforcement Learning Method for Persistent Time-Sensitive Tasks

    Full text link
    Reinforcement learning has been applied to many interesting problems such as the famous TD-gammon and the inverted helicopter flight. However, little effort has been put into developing methods to learn policies for complex persistent tasks and tasks that are time-sensitive. In this paper, we take a step towards solving this problem by using signal temporal logic (STL) as task specification, and taking advantage of the temporal abstraction feature that the options framework provide. We show via simulation that a relatively easy to implement algorithm that combines STL and options can learn a satisfactory policy with a small number of training case

    A hierarchical reinforcement learning method for persistent time-sensitive tasks

    Full text link
    Reinforcement learning has been applied to many interesting problems such as the famous TD-gammon and the inverted helicopter flight. However, little effort has been put into developing methods to learn policies for complex persistent tasks and tasks that are time-sensitive. In this paper, we take a step towards solving this problem by using signal temporal logic (STL) as task specification, and taking advantage of the temporal abstraction feature that the options framework provide. We show via simulation that a relatively easy to implement algorithm that combines STL and options can learn a satisfactory policy with a small number of training cases

    Prescribed Performance Control for Signal Temporal Logic Specifications

    Full text link
    Motivated by the recent interest in formal methods-based control for dynamic robots, we discuss the applicability of prescribed performance control to nonlinear systems subject to signal temporal logic specifications. Prescribed performance control imposes a desired transient behavior on the system trajectories that is leveraged to satisfy atomic signal temporal logic specifications. A hybrid control strategy is then used to satisfy a finite set of these atomic specifications. Simulations of a multi-agent system, using consensus dynamics, show that a wide range of specifications, i.e., formation, sequencing, and dispersion, can be robustly satisfied.Comment: 9 pages - this an extended version of the 56th IEEE Conference on Decision and Control (2017) versio
    corecore