78 research outputs found

    Face liveness detection by rPPG features and contextual patch-based CNN

    Get PDF
    Abstract. Face anti-spoofing plays a vital role in security systems including face payment systems and face recognition systems. Previous studies showed that live faces and presentation attacks have significant differences in both remote photoplethysmography (rPPG) and texture information. We propose a generalized method exploiting both rPPG and texture features for face anti-spoofing task. First, we design multi-scale long-term statistical spectral (MS-LTSS) features with variant granularities for the representation of rPPG information. Second, a contextual patch-based convolutional neural network (CP-CNN) is used for extracting global-local and multi-level deep texture features simultaneously. Finally, weight summation strategy is employed for decision level fusion of the two types of features, which allow the proposed system to be generalized for detecting not only print attack and replay attack, but also mask attack. Comprehensive experiments were conducted on five databases, namely 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD, and OULU-NPU, to show the superior results of the proposed method compared with state-of-the-art methods.Tiivistelmä. Kasvojen anti-spoofingilla on keskeinen rooli turvajärjestelmissä, mukaan lukien kasvojen maksujärjestelmät ja kasvojentunnistusjärjestelmät. Aiemmat tutkimukset osoittivat, että elävillä kasvoilla ja esityshyökkäyksillä on merkittäviä eroja sekä etävalopölymografiassa (rPPG) että tekstuuri-informaatiossa, ehdotamme yleistettyä menetelmää, jossa hyödynnetään sekä rPPG: tä että tekstuuriominaisuuksia kasvojen anti-spoofing -tehtävässä. Ensinnäkin rPPG-informaation esittämiseksi on suunniteltu monivaiheisia pitkän aikavälin tilastollisia spektrisiä (MS-LTSS) ominaisuuksia, joissa on muunneltavissa olevat granulariteetit. Toiseksi, kontekstuaalista patch-pohjaista konvoluutioverkkoa (CP-CNN) käytetään globaalin paikallisen ja monitasoisen syvään tekstuuriominaisuuksiin samanaikaisesti. Lopuksi, painoarvostusstrategiaa käytetään päätöksentekotason fuusioon, joka auttaa yleistämään menetelmää paitsi hyökkäys- ja toistoiskuille, mutta myös peittää hyökkäyksen. Kattavat kokeet suoritettiin viidellä tietokannalla, nimittäin 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD ja OULU-NPU, ehdotetun menetelmän parempien tulosten osoittamiseksi verrattuna uusimpiin menetelmiin

    A Survey of PPG's Application in Authentication

    Full text link
    Biometric authentication prospered because of its convenient use and security. Early generations of biometric mechanisms suffer from spoofing attacks. Recently, unobservable physiological signals (e.g., Electroencephalogram, Photoplethysmogram, Electrocardiogram) as biometrics offer a potential remedy to this problem. In particular, Photoplethysmogram (PPG) measures the change in blood flow of the human body by an optical method. Clinically, researchers commonly use PPG signals to obtain patients' blood oxygen saturation, heart rate, and other information to assist in diagnosing heart-related diseases. Since PPG signals contain a wealth of individual cardiac information, researchers have begun to explore their potential in cyber security applications. The unique advantages (simple acquisition, difficult to steal, and live detection) of the PPG signal allow it to improve the security and usability of the authentication in various aspects. However, the research on PPG-based authentication is still in its infancy. The lack of systematization hinders new research in this field. We conduct a comprehensive study of PPG-based authentication and discuss these applications' limitations before pointing out future research directions.Comment: Accepted by Computer & Security (COSE

    Contrast-Phys: Unsupervised Video-based Remote Physiological Measurement via Spatiotemporal Contrast

    Full text link
    Video-based remote physiological measurement utilizes face videos to measure the blood volume change signal, which is also called remote photoplethysmography (rPPG). Supervised methods for rPPG measurements achieve state-of-the-art performance. However, supervised rPPG methods require face videos and ground truth physiological signals for model training. In this paper, we propose an unsupervised rPPG measurement method that does not require ground truth signals for training. We use a 3DCNN model to generate multiple rPPG signals from each video in different spatiotemporal locations and train the model with a contrastive loss where rPPG signals from the same video are pulled together while those from different videos are pushed away. We test on five public datasets, including RGB videos and NIR videos. The results show that our method outperforms the previous unsupervised baseline and achieves accuracies very close to the current best supervised rPPG methods on all five datasets. Furthermore, we also demonstrate that our approach can run at a much faster speed and is more robust to noises than the previous unsupervised baseline. Our code is available at https://github.com/zhaodongsun/contrast-phys.Comment: accepted to ECCV 202

    PhysFormer: Facial Video-based Physiological Measurement with Temporal Difference Transformer

    Full text link
    Remote photoplethysmography (rPPG), which aims at measuring heart activities and physiological signals from facial video without any contact, has great potential in many applications (e.g., remote healthcare and affective computing). Recent deep learning approaches focus on mining subtle rPPG clues using convolutional neural networks with limited spatio-temporal receptive fields, which neglect the long-range spatio-temporal perception and interaction for rPPG modeling. In this paper, we propose the PhysFormer, an end-to-end video transformer based architecture, to adaptively aggregate both local and global spatio-temporal features for rPPG representation enhancement. As key modules in PhysFormer, the temporal difference transformers first enhance the quasi-periodic rPPG features with temporal difference guided global attention, and then refine the local spatio-temporal representation against interference. Furthermore, we also propose the label distribution learning and a curriculum learning inspired dynamic constraint in frequency domain, which provide elaborate supervisions for PhysFormer and alleviate overfitting. Comprehensive experiments are performed on four benchmark datasets to show our superior performance on both intra- and cross-dataset testings. One highlight is that, unlike most transformer networks needed pretraining from large-scale datasets, the proposed PhysFormer can be easily trained from scratch on rPPG datasets, which makes it promising as a novel transformer baseline for the rPPG community. The codes will be released at https://github.com/ZitongYu/PhysFormer.Comment: Accepted by CVPR202

    rPPG-MAE: Self-supervised Pre-training with Masked Autoencoders for Remote Physiological Measurement

    Full text link
    Remote photoplethysmography (rPPG) is an important technique for perceiving human vital signs, which has received extensive attention. For a long time, researchers have focused on supervised methods that rely on large amounts of labeled data. These methods are limited by the requirement for large amounts of data and the difficulty of acquiring ground truth physiological signals. To address these issues, several self-supervised methods based on contrastive learning have been proposed. However, they focus on the contrastive learning between samples, which neglect the inherent self-similar prior in physiological signals and seem to have a limited ability to cope with noisy. In this paper, a linear self-supervised reconstruction task was designed for extracting the inherent self-similar prior in physiological signals. Besides, a specific noise-insensitive strategy was explored for reducing the interference of motion and illumination. The proposed framework in this paper, namely rPPG-MAE, demonstrates excellent performance even on the challenging VIPL-HR dataset. We also evaluate the proposed method on two public datasets, namely PURE and UBFC-rPPG. The results show that our method not only outperforms existing self-supervised methods but also exceeds the state-of-the-art (SOTA) supervised methods. One important observation is that the quality of the dataset seems more important than the size in self-supervised pre-training of rPPG. The source code is released at https://github.com/linuxsino/rPPG-MAE

    Explainable and Interpretable Face Presentation Attack Detection Methods

    Get PDF
    Decision support systems based on machine learning (ML) techniques are excelling in most artificial intelligence (AI) fields, over-performing other AI methods, as well as humans. However, challenges still exist that do not favour the dominance of AI in some applications. This proposal focuses on a critical one: lack of transparency and explainability, reducing trust and accountability of an AI system. The fact that most AI methods still operate as complex black boxes, makes the inner processes which sustain their predictions still unattainable. The awareness around these observations foster the need to regulate many sensitive domains where AI has been applied in order to interpret, explain and audit the reliability of the ML based systems. Although modern-day biometric recognition (BR) systems are already benefiting from the performance gains achieved with AI (which can account for and learn subtle changes in the person to be authenticated or statistical mismatches between samples), it is still in the dark ages of black box models, without reaping the benefits of the mismatches between samples), it is still in the dark ages of black box models, without reaping the benefits of the XAI field. This work will focus on studying AI explainability in the field of biometrics focusing in particular use cases in BR, such as verification/ identification of individuals and liveness detection (LD) (aka, antispoofing). The main goals of this work are: i) to become acquainted with the state-of-the-art in explainability and biometric recognition and PAD methods; ii) to develop an experimental work xxxxx Tasks 1st semester (1) Study of the state of the art- bibliography review on state of the art for presentation attack detection (2) Get acquainted with the previous work of the group in the topic (3) Data preparation and data pre-processing (3) Define the experimental protocol, including performance metrics (4) Perform baseline experiments (5) Write monography Tasks 2nd semester (1) Update on the state of the art (2) Data preparation and data pre-processing (3) Propose and implement a methodology for interpretability in biometrics (4) Evaluation of the performance and comparison with baseline and state of the art approaches (5) Dissertation writing Referências bibliográficas principais: (*) [Doshi17] B. Kim and F. Doshi-Velez, "Interpretable machine learning: The fuss, the concrete and the questions," 2017 [Mol19] Christoph Molnar. Interpretable Machine Learning. 2019 [Sei18] C. Seibold, W. Samek, A. Hilsmann, and P. Eisert, "Accurate and robust neural networks for security related applications exampled by face morphing attacks," arXiv preprint arXiv:1806.04265, 2018 [Seq20] Sequeira, Ana F., João T. Pinto, Wilson Silva, Tiago Gonçalves and Cardoso, Jaime S., "Interpretable Biometrics: Should We Rethink How Presentation Attack Detection is Evaluated?", 8th IWBF2020 [Wilson18] W. Silva, K. Fernandes, M. J. Cardoso, and J. S. Cardoso, "Towards complementary explanations using deep neural networks," in Understanding and Interpreting Machine Learning in MICA. Springer, 2018 [Wilson19] W. Silva, K. Fernandes, and J. S. Cardoso, "How to produce complementary explanations using an Ensemble Model," in IJCNN. 2019 [Wilson19A] W. Silva, M. J. Cardoso, and J. S. Cardoso, "Image captioning as a proxy for Explainable Decisions" in Understanding and Interpreting Machine Learning in MICA, 2019 (Submitted
    corecore